
1CMSC 412 – S04 (lect 17)

Announcements
Reading Chapter 12
Project #4 is Due Thursday
Midterm #2 is next Thursday
Final is
– May 14th 4-6 PM, CSIC 1115

2CMSC 412 – S04 (lect 17)

DOS Directories
Root directory
– immediately follows the FAT

Directory is a table of 32 byte entries
– 8 byte file name, 3 byte filename extension
– size of file, data and time stamp, starting cluster number of

the file, file attribute codes
– Fixed size and capacity

Subdirectory
– This is just a file
– Record of where the subdirectory is located is stored in the

FAT

3CMSC 412 – S04 (lect 17)

Unix Directories
Space for directories are allocated in units called
chunks
– Size of a chunk is chosen so that each allocation can be

transferred to disk in a single operation
– Chunks are broken into variable-length directory entries to

allow filenames of arbitrary length
– No directory entry can span more than one chunk
– Directory entry contains

• pointer to inode (file data-structure)
• size of entry
• length of filename contained in entry (up to 255)
• remainder of entry is variable length - contains file name

4CMSC 412 – S04 (lect 17)

inodes

File index node
Contains:
– Pointers to blocks in a file (direct, single indirect, double

indirect, triple indirect)
– Type and access mode
– File’s owner
– Number of references to file
– Size of file
– Number of physical blocks

5CMSC 412 – S04 (lect 17)

Unix directories - links
Each file has unique inode but it may have multiple
directory entries in the same filesystem to reference
inode
Each directory entry creates a hard link of a filename
to the file’s inode
– Number of links to file are kept in reference count variable in

inode
– If links are removed, file is deleted when number of links

becomes zero
Symbolic or soft link
– Implemented as a file that contains a pathname
– Symbolic links do not have an effect on inode reference

count

6CMSC 412 – S04 (lect 17)

File Lookup (/usr/bin/vi)

Indirect
Index

Root inode =2

usrDirectory Entry

binDirectory Entry

viDirectory Entry

Inode

Inode

Data Block

7CMSC 412 – S04 (lect 17)

Using UNIX filesystem data structures
Example: find /usr/bin/vi
– from Leffler, McKusick, Karels and Quarterman
– Search root directory of filesystem to find /usr

• root directory inode is, by convention, stored in inode #2
• inode shows where data blocks are for root directory - these

blocks (not the inode itself) must be retrieved and searched for
entry user

• we discover that the directory user’s inode is inode #4
– Search user for bin

• access blocks pointed to by inode #4 and search contents of
blocks for entry that gives us bin’s inode

• we discover that bin’s inode is inode #7
– Search bin for vi

• access blocks pointed to by inode #7 and search contents of
block for an entry that gives us vi’s inode

• we discover that vi’s inode is inode #7
– Access inode #7 - this is vi’s inode

8CMSC 412 – S04 (lect 17)

How to Improve Speed?

Use A Cache
Name-to-Inode lookup
– Hash on full path name
– Find inode without and disk accesses on a hit

9CMSC 412 – S04 (lect 17)

Mount System Call

How to attach a file system into a name space?
Simple Idea:
– use letters C, D, E, etc.

Better Idea:
– Allow attachment at arbitrary points in namespace
– Designate one tree as the “root” file system
– Others are attached to the root

10CMSC 412 – S04 (lect 17)

UNIX Shell and Current Directory

Current Directory
– Maintained on a per process basis by kernel
– System Calls: get/set the current directory
– Open system Call

• File name checked and if it lacks a leading /, pre-pend
cwd onto path

Shell (file path)
– Entirely implemented in user space
– PATH Encironment variable

• Lists directories to search
– Hash table of commands and their location (file, or internal)

11CMSC 412 – S04 (lect 17)

Log Structured File Systems

Key Idea
– Use transactions like model for filesystem updates

Write data to a log (also called a journal)
– Records meta data changes
– Records data blocks written
– File operation is committed once it is to the log
– Partial updates to log are lost on failure

Next Step
– Eliminate the filesystem and just keep the log
– Requires a process called a cleaner

• Copies old data from log to head of log to allow compaction

