
1CMSC 412 – S10 (lect 7)

Announcements
Program #1
– Is one the Web
– Due in Friday 3/5/10 at 6:00 PM

Reading
– Chapter 6 (8th Ed) or Chapter 7 (6th Ed)

2CMSC 412 – S10 (lect 7)

Message Passing
What happens when a message is sent?
– sender blocks waiting for receiver to receive
– sender blocks until the message is on the wire
– sender blocks until the OS has a copy of the message
– sender blocks until the receiver responds to the message

• sort of like a procedure call
• could be expanded into a remote procedure call (RPC) system

Error cases
– a process terminates:

• receiver could wait forever
• sender could wait or continue (depending on semantics)

– a message is lost in transit
• who detects this? could be OS or the applications

Special case: if 2 messages are buffered, drop the older one
– useful for real-time info systems

3CMSC 412 – S10 (lect 7)

Signals (UNIX)

provide a way to convey one bit of information
between two processes (or OS and a process)
types of signals:
– change in the system: window size
– time has elapsed: alarms
– error events: segmentation fault
– I/O events: data ready

are like interrupts
– a processes is stopped and a special handler function is

called

a fixed set of signals is normally available

4CMSC 412 – S10 (lect 7)

Signals

Signal Handler
Table

SigIOHandler
{
}

SigAlarmHandler
{
}

SetSigAction(sig, handler)

5CMSC 412 – S10 (lect 7)

Shared Memory

Process 1 Process 2

Shared Region

Like Threads, but only part of memory shared
Allows communication without needing kernel action
– Kernel calls setup shared region

6CMSC 412 – S10 (lect 7)

Producer-consumer: shared memory
Consider the following code for a producer

repeat
….
produce an item into nextp
…
while counter == n;
buffer[in] = nextp;
in = (in+1) % n;
counter++;

until false;

Now consider the consumer
repeat

while counter == 0;
nextc = buffer[out];
out = (out + 1) % n;
counter--;
consume the item in nextc

until false;

Does it work?
NO!

7CMSC 412 – S10 (lect 7)

Problems with the Producer-Consumer
Shared Memory Solution

Consider the three address code for the counter
Counter Increment Counter Decrement
reg1 = counter reg2 = counter
reg1 = reg1 + 1 reg2 = reg2 - 1
counter = reg1 counter = reg2

Now consider an ordering of these instructions
T0 producer reg1 = counter { reg1 = 5 }
T1 producer reg1 = reg1 + 1 { reg1 = 6 }
T2 consumer reg2 = counter { reg2 = 5 }
T3 consumer reg2 = reg2 - 1 { reg2 = 4 }
T4 producer counter = reg1 { counter = 6 }
T5 consumer counter = reg2 { counter = 4 }

This
should
be 5!

8CMSC 412 – S10 (lect 7)

Definition of terms

Race Condition
– Where the order of execution of instructions influences the

result produced
– Important cases for race detection are shared objects

• counters: in the last example

Mutual exclusion
– only one process at a time can be updating shared objects

Critical section
– region of code that updates or uses shared data

• to provide a consistent view of objects need to make sure
an update is not in progress when reading the data

– need to provide mutual exclusion for a critical section

9CMSC 412 – S10 (lect 7)

Critical Section Problem

processes must
– request permission to enter the region
– notify when leaving the region

protocol needs to
– provide mutual exclusion

• only one process at a time in the critical section
– ensure progress

• no process outside a critical section may block another
process

– guarantee bounded waiting time
• limited number of times other processes can enter the

critical section while another process is waiting
– not depend on number or speed of CPUs

• or other hardware resources

10CMSC 412 – S10 (lect 7)

Critical Section (cont)

May assume that some instructions are atomic
– typically load, store, and test word instructions

Algorithm #1 for two processes
– use a shared variable that is either 0 or 1
– when Pk = k a process may enter the region

repeat
(while turn != 0);
// critical section
turn = 1;
// non-critical section

until false;

repeat
(while turn != 1);
// critical section
turn = 0;
// non-critical section

until false;

– this fails the progress requirement since process 0 not being
in the critical section stops process 1.

11CMSC 412 – S10 (lect 7)

Critical Section (Algorithm 2)
Keep an array of flags indicating which processes
want to enter the section

bool flag[2];

repeat
flag[i] = true;
while (flag[j]);

// critical section

flag[i] = false;

// non-critical section
until false;

This does NOT work either!
– possible to have both flags set to 1

Both processes
could be here at
the same time

12CMSC 412 – S10 (lect 7)

Critical Section (Algorithm 3)

Combine 1 & 2

bool flag[2];
int turn;

repeat
flag[i] = true;
turn = j;
while (flag[j]&& turn ==j);

// critical section

flag[i] = false;

// non-critical section
until false;

This one does work! Why?

13CMSC 412 – S10 (lect 7)

Critical Section (many processes)

What if we have several processes?
One option is the Bakery algorithm

bool choosing[n];
integer number[n];

choosing[i] = true;
number[i] = max(number[0],..number[n-1])+1;
choosing[i] = false;
for j = 0 to n-1

while choosing[j];
while number[j] != 0 and ((number[j], j) < number[i],i);

end
// critical section
number[i] = 0

14CMSC 412 – S10 (lect 7)

Bakery Algorithm - explained

When a process wants to enter critical section, it
takes a number
– however, assigning a unique number to each process is not

possible
• it requires a critical section!

– however, to break ties we can used the lowest numbered
process id

Each process waits until its number is the lowest one
– it can then enter the critical section

provides fairness since each process is served in the
order they requested the critical section

15CMSC 412 – S10 (lect 7)

Synchronization Hardware
If it’s hard to do synchronization in software, why not
do it in hardware?
Disable Interrupts
– works, but is not a great idea since important events may be

lost (depending on HW)
– doesn’t generalize to multi-processors

test-and-set instruction
– one atomic operation

• executes without being interrupted
– operates on one bit of memory
– returns the previous value and sets the bit to one

swap instruction
– one atomic operation
– swap(a,b) puts the old value of b into a and of a into b

16CMSC 412 – S10 (lect 7)

Using Test and Set for Mutual Exclusion
repeat

while test-and-set(lock);
// critical section
lock = false;
// non-critical section

until false;

bounded waiting time version
repeat

waiting[i] = true;
key = true;
while waiting[i] and key

key = test-and-set(lock);
waiting[i] = false;
// critical section
j = (i + 1) % n
while (j != i) and (!waiting[j])

j = (j + 1) % n;
if (j == i)

lock = false;
else

waiting[j] = false;
// non-critical section

until false;

Note: no priority based on wait time

no process waiting

release process j

look for a waiting process

wait until released or no one busy

17CMSC 412 – S10 (lect 7)

Semaphores

getting critical section problem correct is difficult
– harder to generalize to other synchronization problems
– Alternative is semaphores

semaphores
– integer variable
– only access is through atomic operations

P (or wait)
while s <= 0;
s = s - 1;

V (or signal)
s = s + 1

Two types of Semaphores
– Counting (values range from 0 to n)
– Binary (values range from 0 to 1)

18CMSC 412 – S10 (lect 7)

Using Semaphores
critical section
repeat

P(mutex);
// critical section
V(mutex);
// non-critical section

until false;

Require that Process 2 begin statement S2 after
Process 1 has completed statement S1:
semaphore synch = 0;
Process 1

S1
V(synch)

Process 2
P(synch)
S2

19CMSC 412 – S10 (lect 7)

Implementing semaphores

Busy waiting implementations
Instead of busy waiting, process can block itself
– place process into queue associated with semaphore
– state of process switched to waiting state
– transfer control to CPU scheduler
– process gets restarted when some other process executes a

signal operations

20CMSC 412 – S10 (lect 7)

Implementing Semaphores
declaration
type semaphore = record

value: integer = 1;
L: FIFO list of process;

end;
P(S): S.value = S.value -1

if S.value < 0 then {
add this process to S.L
block;

};
V(S): S.value = S.value+1

if S.value <= 0 then {
remove process P from S.L
wakeup(P);

}

Can be neg, if so, indicates
how many waiting

Bounded waiting!!

