
1CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

Announcements

l Program #2 is available
– its on the web page

l Reading chapter 6 (6.1 and 6.2)

2CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

forking a new process

l create a PCB for the new process
– copy most entries from the parent
– clear accounting fields
– buffered pending I/O
– allocate a pid (process id for the new process)

l allocate memory for it
– could require copying all of the parents segments
– however, text segment usually doesn’t change so that could

be shared
– might be able to use memory mapping hardware to help

• will talk more about this in the memory management part
of the class

l add it to the ready queue

3CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

Process Termination
l Process can terminate self

– via the exit system call

l One process can terminate another process
– use the kill system call
– can any process kill any other process?

• No, that would be bad.
• Normally an ancestor can terminate a descendant

l OS kernel can terminate a process
– exceeds resource limits
– tries to perform an illegal operation

l What if a parent terminates before the child
– called an orphan process
– in UNIX becomes child of the root process
– in VMS - causes all descendants to be killed

4CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

Termination (cont.) - UNIX example

l Kernel
– frees memory used by the process
– moved process control block to the terminated queue

l Terminated process
– signals parent of its death (SIGCHILD)
– is called a zombie in UNIX
– remains around waiting to be reclaimed

l parent process
– wait system call retrieves info about the dead process

• exit status
• accounting information

– signal handler is generally called the reaper
• since its job is to collect the dead processes

5CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

Threads

l processes can be a heavy (expensive) object
l threads are like processes but generally a collection

of threads will share
– memory (except stack)
– open files (and buffered data)
– signals

l can be user or system level
– user level: kernel sees one process

+ easy to implement by users
- I/O management is difficult
- in an multi-processor can’t get parallelism

– system level: kernel schedules threads

6CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

Thread Implementation
User Visible Threads

Async Kernel Calls (Digital Unix)

Light Weigth Processes (Solaris)

7CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

Cooperating Processes

l Often need to share information between processes
– information: a shared file
– computational speedup:

• break the problem into several tasks that can be run on
different processors

• requires several processors to actually get speedup
– modularity: separate processes for different functions

• compiler driver, compiler, assembler, linker
– convenience:

• editing, printing, and compiling all at once

8CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

Interprocess Communication

l Communicating processes establish a link
– can more than two processes use a link?
– are links one way or two way?
– how to establish a link

• how do processes name other processes to talk to
– use the process id (signals work this way)
– use a name in the filesystem (UNIX domain sockets)
– indirectly via mailboxes (a separate object)

l Use send/receive functions to communicate
– send(dest, message)
– receive(dest, message)

9CMSC 412 - S98 (lect 05) copyright 1996 Jeffrey K. Hollingsworth

Producer-consumer pair

l producer creates data and sends it to the consumer
l consumer read the data and uses it
l examples: compiler and assembler can be used as a

producer consumer pair
l Buffering

– processes may not produce and consume items one by one
– need a place to store produced items for the consumer

• called a buffer
– could be fixed size (bounded buffer) or unlimited (un-

bounded buffer)

