### Announcements

- Program #2 regrades requests due by 11:00 today
- HW #2 was collected at the start of class
- Reading
  - Today: 6.3-6.4
  - Thursday: 3.1

CMSC 417 - F97 (lect 16)

copyright 1997 Jeffrey K. Hollingsworth

# Sliding Window Protocol

### • Need to

- have multiple outstanding packets
- limit total number of outstanding packets
- permit re-transmissions to occur
- Sliding Window
  - permit at most N outstanding packets
  - when packet is ACK'd advance window to first non-ACK'd pkt

### • Retransmission

- Go-back N
  - when a packet is lost, restart from that packet
  - provides in-order delivery, but wastes bandwidth
- Selective Retransmission
  - use timeout to re-sent lost packet
  - use NACK as a **hint** that something was lost



## Buffer Management

### • Unreliable Network

- sender must buffer all un-acked packets
- receiver can buffer if space is available
  - if not, drop packet and wait to re-transmission

### • Buffer Size

- does one size fit all?
  - are TPDUs of uniform size?
- might use a fixed size buffer smaller than max TPDU
  - requires support for multiple buffers per TPDU
- Possible to decouple buffer allocation from window
  - ACKs contain both buffer credits and ACKSs
- Buffer Copies
  - possible for each layer to copy the buffer, but this is slow
  - handoff pointers to data, but requires coordination between layers

# Multiplexing in the Transport Layer

### • Upward multiplexing

- putting multiple transport connections onto one network connection
- used to accommodate pricing strategies that charge for connections

### • Downward multiplexing

- using several network connections per transport connection
- permits use of multiple copies of network resources
  - if the network layer uses sliding windows
    - a high latency network may under utilize the link
    - multiple connections each get a window
  - per connection buffer allocation
    - get more buffers
  - round-robin scheduling
    - get a larger share of link bandwidth

## Crash Recovery

#### • Router or Link Crashes

- Data in transit can be lost.
- End nodes have sufficient state to recover lost data.
- Transport protocol can hide network failures from the application.

### • Host Crashes

- Transport level state will be lost at one end.
- Does the transport layer have sufficient info to recover?, No!.
  - Information must flow down to network and up to transport user
    - ACKs go down, and data goes up.
    - It is not possible to make these two operations atomic.
  - lack of stable storage causes this problem
- Result, higher up layer must deal with host crashes



### Predicates And State Transitions

| Pred | Meaning               | Act | Meaning               |
|------|-----------------------|-----|-----------------------|
| P1   | Connection table full | A1  | Send Call_acc         |
| P 2  | Call_req pending      | A2  | Wait for Call_req     |
| P 3  | LIS TEN Pending       | A3  | Send Call_req         |
| P4   | Clear_req Pending     | A4  | Start Timer           |
| P 5  | Credit Available      | A5  | Send Clear_conf       |
|      |                       | A6  | Send Clear_req        |
|      |                       | A7  | Send message          |
|      |                       | A8  | Wait for credit       |
|      |                       | A9  | Send Credit           |
|      |                       | A10 | Set Clr_req_recv flag |
|      |                       | A11 | Record credit         |
|      |                       | A12 | Accept message        |
|      |                       |     | 1                     |