Announcements

- Homework #2 was returned
- Reading
 - Today: 3.1
 - Thursday: 3.2

CMSC 417 - F97 (lect 18)

copyright 1997 Jeffrey K. Hollingsworth

1

TCP Timer Management

- Problem: How to pick timeout value?
 - need to estimate round-trip latency
 - need low variance in round trip latency
- Solution: dynamic estimates of RTT
 - $RTT = \alpha RTT + (1 \alpha) M$
 - M time of an ACK

 $\alpha=7/8$

- Need to pick retransmission time
 - old policy, use Timeout = RTT β , with $\beta = 2$
 - estimate standard deviation of RTT using mean deviation

 $D = \alpha \quad D + (1 - \alpha) / RTT - M /$

Timeout = RTT + 4 * D

- How to update RTT on retransmission's
 - double Timeout on a retransmission

Other TCP Timers

- Persistence Timer
 - Prevents deadlock due to dropped window packets
 - This is a problem if the window is set to 0
- Keepalive Timer
 - Prevents half dead connections
 - may consume bandwidth
 - may kill live connections when net hiccups
- TIMED Wait
 - prevents re-use of a connection before max packet life is over
 - set to twice max packet lifetime

Performance Issues

- Broadcast storms
 - response to a broadcast packet sent by many hosts
 - caused by:
 - bad parameter resulting in an error message
 - asking a question everyone has the answer to
- Reboot storms
 - RARP queries
 - file servers responding to page requests
- Delay-bandwidth product
 - need to buffer at least as many bytes as can be "in flight"
- Jitter
 - keep standard deviation of packet arrivals low
 - important for continuous media traffic

How to Measure Performance

- Ensure sample size is large
 - repeat experiments for several iterations
- Make sure samples are representative
 - consider time of day, location, day of week, etc.
- Watch for clock resolution/accuracy
 - don't use two clocks at opposite ends of the network
 - if the clock resolution is poor, aggregate over multiple iterations
- Know what you are measuring
 - is a cache going to distort results?
 - is the hardware, OS, device driver, compiler the same?
- Careful not to extrapolate too far
 - results generally hold for an operating region, not all values

How to Design in Performance

- CPU Speed is more important than link speed
 - protocol processing time is the critical time for most networks
 - use simple algorithms for your network
- Reduce packet count
 - there is a large per packet cost in most levels
 - big packets amortize this overhead over more bytes
- Minimize Context Switches
 - user/kernel boundary crossings are expensive
 - require many cache misses, pipeline stalls, etc.
 - send large units of data
- Minimize Copying
 - each copy is extra time
 - memory operations are often 10 times slower than other insns

How To Design In Performance (cont.)

- Bandwidth is growing, but latency isn't shrinking as fast
 - fundamental limits of how many rounds trips are possible
 - need to design to transfer large requests
- Congestion Avoidance beats Recovery
 - getting the network out of a bad state will take time
 - better to prevent getting it there in the first place
- Avoid Timeouts
 - use NACKs to get info back
 - use long values for timeouts
 - timeouts result in:
 - interrupts (slow for the processor)
 - re-transmission (slow for the link)
- Make The Common Case Run Fast
 - data transmission is more common than connect