Announcements

- Project proposal drafts due March 14,1997
- Midterm #1
 - exam booklets were returned
 - class average was 61.8 (60.5 for undergrads)
 - standard deviation was 14.7 (14.5 for undergrads)
- Reading
 - Today: 5.4-5.5
 - Thursday: 5.6

Internetworking

- Goals: provide seamless operation over multiple subnets
 - could be two similar LANs
 - link WANs to LANS
 - link two different LANs together

Issues:

- packet size limits (different networks may have different limits)
- quality of service (is it provided, how is it defined)
- congestion control
- connection vs. connectionless networks
- Possible at many levels
 - physical layer: repeaters
 - link layer: bridges regenerate traffic, some filtering
 - network: routers route packets between networks
 - transport: gateway byte streams
 - application: gateway email between two different systems

Firewalls

• A way to limit information flow

- selective forwarding of information based on **policy**
- policy: rules about what should be permitted
- mechanism: way to enforce policy
- Can be implemented at many levels
 - at higher layers have more information
 - at lower layers can share filtering between multiple higher level entities

• Possible Layers

- link layer: filter based on MAC address
- network layer: filter based on source/destination, transport
- transport: filter based on service (e.g. port number)
- application: filter based on user name in email, based on content

Tunneling

• Problem

- Source and Destination are compatible
- something in the middle is not compatible
- Solution: Tunnel though the middle
 - only multi-protocol routers need to understand conversion
 - possible to tunnel through almost anything
 - can tunnel IP through IP (for mobile computing perhaps)

Internet Routing

- Use two levels of routing
- local (subnet) level routing
- Internet routing between multi-protocol gateways
 - multiple protocol gateways are generally fully connected
 - since they hide the underlying network
 - policies (politics) can dictate acceptable routes
 - don't route IBM packets of the Microsoft network
 - all packets starting and ending in Canada must stay in Canada
- Can use any of the standard routing algorithms
 - link-state
 - distance vector

Interior Gateway Routing Protocol

- Designed to Route within a single Autonomous System (AS)
 - An AS contains
 - areas (collection of one or more subnets)
 - backbone (to interconnect areas within AS)
 - Also Called Open Shortest Path First (OSPF)
- Divides routers into four classes
 - Internal only within the area
 - Area boarder routers connect two or more areas
 - Backbone routers connect to backbone
 - AS boundary routers talk to other AS
- Exchanges info between adjacent routers
 - not the same as a neighbor since could have many hops in-between
- Uses link-state
 - flooding with sequence numbers
 - supports multiple metrics: throughput, reliability, delay
 - backbone computes inter-area routes

Exterior Gateway Protocol (BGP)

- Used to route between AS's
 - concerned with politics and turf battles
 - supports specific policies
 - don't send my packets of network X
 - don't send packets through me
- Two types of nodes
 - stub networks (one connection to BGP)
 - multi-connected networks (more than one connection)
 - might also be transit networks (carry traffic for others)
- Uses Distance Vector
 - but includes complete path in table and sent to neighbors
 - uses "scoring" function to select among possible routes

Fragmentation

- Sometimes need to split packets into smaller units
 - limits of the hardware being used
 - operating system buffer constraints
 - protocol limits (max permitted packet is x bytes)
 - reduce channel occupancy (head of link blocking)
- Fragmentation
 - where to split it into smaller packets
 - source (requires end-to-end information on max size)
 - when it reaches boundary
 - how to represent split packets
 - need to encode fragment offset
- Reassembly
 - where to re-combine packets
 - destination (may result in poor performance)
 - at the gateway to the subnet that supports the full size

CMSC 417 - S97 (lect 11)