
Distributed Shared Memory (DSM)

De�nition: A software abstraction of
shared memory for distributed memory
multiprocessors [Li 86]

Proc 1 Proc 2 Proc3 ProcN

Mem2Mem1 Mem3 MemN

Network

Abstraction of shared memory

Msgs

Motivation:

Easier to program than message passing

Page-Based DSM (Ivy)

Mechanism

� remote-fork same program on each node

� data resides in common virtual address
space

� use virtual memory trap handler to
detect read/write to page

Issues

� how to keep illusion of shared memory?

� reduce interprocessor communication

� can processors keep local (cache) copy
of page?

Conventional DSM Implementation [Li 86]

Local Physical Memories

Global Virtual MemoryPage Fault

DSM Software

Proc1 Proc2 Proc3 ProcN

De�nitions

Coherence

� ensure modi�cations propagate to all
(cached) copies of data

� preserve program order

� serialize writes

� de�nes behavior of reads/writes to a
memory location

Consistency

� de�nes when and in what order
modi�cations are propagated

� de�nes behavior of reads and writes
with respect to accesses to other
memory locations

Coherence Protocol (Ivy)

Ownership

� static vs dynamic - can ownership
change?

� centralized vs distributed - which node
maintain ownership info?

� copyset - list of all nodes with copies

Mechanism

� invalidate - send message to discard
local copy

� update - send new data for local copy

Page modes

� no access - cannot read, cannot write

� exclusive access - can read, can write

� shared access - can read, cannot write

Coherence Protocol (Ivy)

No access

� on transition from no-access, fetch copy
of page

� any node with access has latest copy of
page

Exclusive access

� node has only copy, at most one node

� on transition to exclusive, invalidate all
remote copies and set their mode to
no-access

Shared access

�multiple nodes may hold shared page

� on transition to shared mode, invalidate
exclusive remote copy (if any) and set it
to shared mode

Consistency Protocol (Ivy)

Sequential consistency (SC)

\A system is sequentially consistent if the
result of any execution is the same as if
the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor
appear in this sequence in the order
speci�ed by its program." [Lamport79]

In practice, every write must be seen on all
processors before any succeeding read or
write can be issued.

Example:

A = 0; B = 0;
A = 1; B = 1;
if (B == 0) if (A == 0)
... ...

Problem: High Communication Cost

Communication is expensive.

� High latency.

� High processor cost.

Communication can be frequent.

Example: false sharing.

X Y

P1 P2

page

Leads to \ping-pong" e�ect

Release Consistency (RC) [Ghara. et al. 90]

Distinguish ordinary accesses and
synchronization (acquire and release)

Paraphrased: \read the last value written
by a processor that you synchronized with"

r(x)

P
i

P
j

P
k

P
l

acq

rel

rel

acq

rel

w(x) w(x)

acq

For properly-synchronized programs RC
behaves as conventional SC memory

Eager RC

Push the modi�cations at a release.

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)

mod(y)

mod(y)mod(x)

Lazy RC

Rather than push modi�cations at release,

pull them at acquire.

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)

mod(x)

mod(x,y)

Lazy Invalidate Protocol

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)

inv(x)

inv(x,y) y

Data: low

Messages: high (access misses)

Lock latency: low

Lazy Update Protocol

upd(x)

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)

upd(y) ,

mod(x)

mod(x)

Data: high

Messages: low

Lock latency: high

Lazy Hybrid Protocol

Send updates for shared values in cache.

Send invalidations for others.

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)

inv(x)

inv(x)
upd(y)

Data: low

Messages: low

Lock latency: low

Multiple Writer Protocol

Reduces false sharing overhead

Bu�er writes until release

Create di�s

Acquire lock ! pull in modi�cations

P1

P2

Concurrent writes

Concurrent writes

Release

Release

Acquire

Acquire

mods

Di� Creation

Write(x)

x:

Create twin

x:

Twin:

x:

Release:

Diff

Encode
Changes

If replicated,
write protect

Make x
writable

Diff

TreadMarks Implementation

Hardware:

8 40Mhz DECStation-5000/240

100 Mbps Fore ATM LAN

Ultrix v4.3

Software:

User-level library

Communication: AAL4 and UDP

SIGIO handler for incoming messages

mprotect and SIGSEGV handler

TreadMarks Speedups

Versions

� eager invalidate (EI)

� lazy invalidate (LI)

� lazy hybrid (LH)

Conclusions

Real applications can be run on DSMs.

LRC reduces communication...

...but communication primitives still
dominate overhead.

Usefulness depends on application.

