
1CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

Introduction

l Reading
– Today MPI & OpenMP papers
– Tuesday “Commutativity Analysis” & HPF

2CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

Programming Assignment Notes

l Assume that memory is limited
– don’t replicate the board on all nodes

l Need to provide load balancing
– goal is to speed computation
– must trade off

• communication costs of load balancing
• computation costs of making choices
• benefit of having similar amounts of work for each

processor

l Consider “back of the envelop” calculations
– how fast can pvm move data?
– what is the update time for local cells?
– how big does the board need to be to see speedups?

3CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

PVM Group Operations

l Group is the unit of communication
– a collection of one or more processes
– processes join group with pvm_joingroup(“<group name>“)
– each process in the group has a unique id

• pvm_gettid(“<group name>“)

l Barrier
– can involve a subset of the processes in the group
– pvm_barrier(“<group name>“, count)

l Reduction Operations
– pvm_reduce(void (*func)(), void *data, int count, int

datatype, int msgtag, char *group, int rootinst)
• result is returned to rootinst node
• does not block

– pre-defined funcs: PvmMin, PvmMax,PvmSum,PvmProduct

4CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

PVM Performance Issues

l Messages have to go through PVMD
– can use direct route option to prevent this problem

l Packing messages
– semantics imply a copy
– extra function call to pack messages

l Heterogenous Support
– information is sent in machine independent format
– has a short circuit option for known homogenous comm.

• passes data in native format then

5CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

Sample PVM Program
int main(int argc, char **argv) {
 int myGroupNum;
 int friendTid;
 int mytid;
 int tids[2];
 int message[MESSAGESIZE];
 int c,i,okSpawn;

 /* Initialize process and spawn if necessary */
 myGroupNum=pvm_joingroup("ping-pong");
 mytid=pvm_mytid();
 if (myGroupNum==0) { /* I am the first process */
 pvm_catchout(stdout);
 okSpawn=pvm_spawn(MYNAME,argv,0,"",1,&friendTid);
 if (okSpawn!=1) {
 printf("Can't spawn a copy of myself!\n");
 pvm_exit();
 exit(1);
 }
 tids[0]=mytid;
 tids[1]=friendTid;

} else { /*I am the second process */
 friendTid=pvm_parent();
 tids[0]=friendTid;
 tids[1]=mytid;
 }
 pvm_barrier("ping-pong",2);

 /* Main Loop Body */
 if (myGroupNum==0) {
 /* Initialize the message */
 for (i=0 ; i<MESSAGESIZE ; i++) {
 message[i]='1';
 }

 /* Now start passing the message back and forth */
 for (i=0 ; i<ITERATIONS ; i++) {
 pvm_initsend(PvmDataDefault);
 pvm_pkint(message,MESSAGESIZE,1);
 pvm_send(tid,msgid);

 pvm_recv(tid,msgid);
 pvm_upkint(message,MESSAGESIZE,1);

}
 } else {

 pvm_recv(tid,msgid);
 pvm_upkint(message,MESSAGESIZE,1);

 pvm_initsend(PvmDataDefault);
 pvm_pkint(message,MESSAGESIZE,1);
 pvm_send(tid,msgid);
 }
 pvm_exit();
 exit(0);
}

6CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

MPI
l Goals:

– Standardize previous message passing:
• PVM, P4, NX

– Support copy free message passing
– Portable to many platforms

l Features:
– point-to-point messaging
– group communications
– profiling interface: every function has a name shifted version

l Buffering
– no guarantee that there are buffers
– possible that send will block until receive is called

l Delivery Order
– two sends from same process to same dest. will arrive in order
– no guarantee of fairness between processes on recv.

7CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

MPI Communicators

l Provide a named set of processes for communication
l All processes within a communicator can be named

– numbered from 0… n-1

l Allows libraries to be constructed
– application creates communicators
– library uses it
– prevents problems with posting wildcard receives

• adds a communicator scope to each receive

l All programs start will MPI_COMM_WORLD

8CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

Non-Blocking Functions

l Two Parts
– post the operation
– wait for results

l Also includes a poll option
– checks if the operation has finished

l Semantics
– must not alter buffer while operation is pending

9CMSC 818Z - S99 (lect 5) copyright 1999 Jeffrey K. Hollingsworth

MPI Misc.

l MPI Types
– All messages are typed

• base types are pre-defined:
– int, double, real, {,unsigned}{short, char, long}

• can construct user defined types
– includes non-contiguous data types

l Processor Topologies
– Allows construction of Cartesian & arbitrary graphs
– May allow some systems to run faster

l What’s not in MPI-1
– process creation
– I/O
– one sided communication

