
Imprecise Calendars:
an Approach to Scheduling Computational Grids

Jeffrey K. Hollingsworth Songrit Maneewongvatana
Computer Science Department

University of Maryland
College Park, MD 20742

{hollings,songrit}@cs.umd.edu

Abstract
We describe imprecise calendars, a way to organize and
schedule clusters of nodes in a computation grid. Impre-
cise calendars permit the easy and efficient sharing of
resources between different clusters of computers that are
part of a computational grid. In addition, they can be
used to provide specific time reservations for applica-
tions. We describe the algorithms and policies for ma-
nipulation of imprecise calendars. We also include a se-
ries of simulation studies that compare our approach to
previous batch scheduling systems for both a single clus-
ter and collection of clusters up to over 3,000 nodes.

1. Introduction
The performance of individual computers continues

to increase, yet there remain important classes of applica-
tion that have computational demands that far exceed the
available capacity of the fastest micro-processors. Tradi-
tionally, many of these applications have been run on
parallel vector supercomputers, or more recently, parallel
machines built from standard micro-processors. However,
as the number of vendors of these machines, not to men-
tion their fraction of the overall computational market,
has shrunk, an alternative computational structure has
started to emerge. Computational Grids[3], the coordi-
nated use of multiple, often geographically distributed,
clusters of computers, provide a way to meet the needs of
these demanding applications. However, one of the major
challenges in creating computational grids is to provide a
way to coordinate the use of the combined nodes of mul-
tiple semi-autonomous sites.

In addition to coordinating access, computational
grids need to support the use of nodes at a specific time.
Traditionally, large-scale computational resources have
been managed as batch systems in order to maximize the
utilization of scarce and expensive machines. However,
for a variety of tasks that can utilize the processing power
of grids, it is critical that the nodes be made available at a
specific time. For example, if the data to be processed on
the grid is coming from a large scientific instrument, such
as a telescope or particle accelerator, time on the instru-

ment must be reserved in advance. For grids to be able to
process this type of data, they too must support this type
of reservation. Likewise, for applications that require one
or more people to be involved, such as real-time virtual
reality visualization of scientific simulation, or interactive
steering and debugging, the traditional batch queue model
used by large-scale computing centers is not sufficient.

To meet these scheduling challenges, we have been
working to develop a new approach to scheduling appli-
cations based on an extension of the way many people
schedule their daily lives. We call this model an imprecise
calendar. Imprecise calendars are a way to organize and
schedule jobs of various durations and needs. In addition,
imprecise calendars permit the scheduling of jobs at spe-
cific times in the future, often called reservations. Our
technique works at the level of a single cluster or global
confederation of clusters. Section two describes imprecise
calendars, Section three describes the results of a simula-
tion study of imprecise calendars and a comparison with
previous scheduling disciplines, and Section four reviews
related work.

2. Imprecise Calendars
Imprecise calendars are a hierarchical scheduling

system. They are designed to mirror the process many
people use to allocate their time. When planing events far
in the future, a general (somewhat vague) idea about what
events are pending and when they will happen is main-
tained. The larger the task, the more exactly we allocate
time for it. For example, a weeklong trip has very specific
planning in advance. However, a minor event is only
vaguely planned until it is fairly close to the event. One
reason people use this type of schedule is that it allows for
last minute minor events (minor in terms of the time re-
quired) to be added to fill in the items on a calendar. This
approach also permits people to plan imprecise meetings,
and then refine the time of the meeting, as the specific
time becomes closer. For example, two colleagues might
suggest getting together to discuss a project they are
working on “late next week”, and then as the time of the
Copyright 1999 IEEE. Published in the Proceedings of ICDCS’99, May 1999 Austin, Texas. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway,
NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

2

meeting got closer, a specific day and eventually a spe-
cific hour can be agreed upon.

We propose to use a similar type of scheduling ap-
proach to manage the resources of a computational grid.
The basic idea is to use a multi-resolution temporal data
structure to enable efficient (and coordinated) use of a
collection of computers. Like individuals using imprecise
temporal planing, a supervisor or manager might employ
imprecise calendars to their workers. For example, a man-
ager in a factory might plan when tasks are to be per-
formed but wait to assign them to specific workers until
just before the tasks begin. We propose to use a similar
approach to management of groups of nodes. One advan-
tage of imprecise calendars is that they provide a com-
pact representation of the data to be managed, and permit
“manager” nodes to see the global picture without wor-
rying about the tasks assigned to individual workers.

In this environment, compute servers are just a ma-
chine where a task is processed. Servers can be a single
machine or a group of computers. Servers can be dedi-
cated machine room computers, or workstations on peo-
ples desks. Users submit their job to one of the job man-
agers closest to their machine. Tasks in this environment
can be of any size, from a few seconds on a handful of
nodes to hours on hundreds of nodes. Tasks that need
only a few nodes or are short in duration can be effec-
tively executed locally and should not be included in the
higher levels of our scheduling system. On the other hand,
big tasks normally require some cooperation between
machines or set of machines, therefore planing and coor-
dination between collections of clusters is required.

2.1 System Components
In this section, we describe the components of our

scheduling system. We first present our abstraction and
then describe how we manage imprecise calendars. The
key abstractions are:

Nodes and managers: A node is a place where tasks
are executed. A node is the finest unit of scheduling visi-
ble to the grid-aware scheduler. A node could be a single
processor, a Symmetric Multi-Processor (SMP) system,
or a cluster of workstations. Within a node, a local sched-
uler makes decisions about when processes are scheduled,
or for SMP nodes, which processors run which jobs.

Tasks frequently need more resources than any single
node can provide, and so we group a set of nodes into a
cluster controlled by a manager. We treat a cluster of
nodes as a single entity that can be viewed as a powerful
logical machine. Several server clusters can be grouped to
form an even more powerful cluster. This structure forms
a management tree where the root of the tree represents
the whole computing system that users can access.

Manager nodes can be organized based on a variety
of criteria. One reason for assigning manager nodes is to
group nodes that are part of a single administrative do-
main (i.e., administered by a single organization) into a
cluster. A second reason to assign manager nodes is based
on the effective distance between nodes (i.e., the quality
of the communication links). A third criterion for organ-
izing manager nodes are to group systems with compara-
ble capabilities together. For example, single processor
workstations might be one cluster, and a group of 32-way
SMPs would be a separate cluster even if they are in the
same building and have identical network connections.

Slot: A slot is the fundamental unit of resource allo-
cation in our system. The duration of all slots are integer
multiples of a fundamental slot. A fundamental slot is a
system wide parameter that represents the finest unit of
temporal scheduling employed on the grid. We anticipate
that the duration of a fundamental slot will be on the order
of tens of seconds. We use S to denote a time slot. S0 is
the fundamental slot. S1 denotes the first level multiple of
the fundamental slot and so on.

Calendar: A calendar is a data structure to store in-
formation about allocation of nodes. Each manager
maintains a calendar about the individual resources (or
lower level managers) it manages. Each manager has to
know when to run each task, and information about the
predicted resource requirements of each task. Managers
use their calendars to determine the slot allocations.

Calendars consist of an array of time slots. The status
of a slot can be one of three values: free (A node will be
idle at that time), partially reserved, or reserved (there is
no more room for any new tasks). The start time of a slot
is the time that the node or nodes begins to schedule the
tasks in that slot. In calendar-based scheduling, the size of
the slots increases as they are further away from the pres-
ent time. However, it is not necessary that the slot size
increase with every adjacent slot, instead several adjacent
slots can have the same time scale. We explore a variety
of different slot durations in Section 3.1.

Tasks: Tasks can be one of two types. They can be
independent tasks that do not require synchronization
with other tasks1. Alternatively, tasks can be part of group
that communicates with other tasks on other nodes. We
have to co-schedule tasks from the same task group such
that the start time of the slots they reserved are the same.

2.2 Calendar information
At all times the first few slots in a calendar will be at

the finest temporal resolution. As we look out along the

1 Individual tasks might be sequential or small-scale parallel
jobs depending on if nodes are uni-processors, or multi-
processors.

3

calendar, the start time of slots is farther away, and the
temporal granularity of slots becomes coarser. The last
few slots in calendar are at the coarsest temporal resolu-
tion, Sn. As time progresses, the number of S0 slots de-
creases because the time period they cover ends. When
the number of slots of size S0 reaches a low-water thresh-
old, the node partitions a S1 slot into several S0 slots, and
a similar process repeats up the temporal hierarchy to Sn.
Nodes also maintain the size of their calendars (i.e., the
summation of their slot sizes). When a slot is consumed,
the calendar size decreases. If the total calendar duration
falls below the required scheduling horizon, a new Sn slot
is added to the end of the calendar. The overall size of the
calendar is defined by the needs of the jobs being sched-
uled. For example, if many jobs are submitted, the calen-
dar duration will grow so that all jobs have an assignment
in the calendar.

For each slot, our scheduling policy maintains a vari-
able, total resources, the amount of resource available in
that slot. Usually, the resource is CPU time. Therefore,
the total resource is a product of number of computers
under the manager’s control and the CPU time of each
computer. However, for nodes of different computational
speed, a per processor normalization constant is applied.

On a per calendar basis, we have a parameter, Re-
source threshold. This is a per-slot size limit on the
amount of a resource that we will commit in advance. The
reason for this limit is two fold. First, we want to allow
some amount of the resource to be available for last min-
ute tasks. Second, we limit commitments to ensure we can
meet our scheduling obligations as we firm up obligations
on our calendar. If more than one task is assigned to a
single slot, we should limit the amount of resources used
since some of these tasks might be parts of larger jobs that
need to be co-scheduled on the grid at the same time.

Figure 1 shows an example of the process of dividing
slots. The upper left representation of a calendar shows a
time-schedule for a 30-minute interval on four different
nodes. It is represented as a single slot since it has been
compressed both spatially and temporally. There is one
task that requires only 1/2 an hour on two nodes in the
slot, and the rest of the slot is free. This is the granularity

that would typically be maintained by a manager node.
The top right figure shows the same period, but the tem-
poral resolution has been refined to show four slots of 7.5
minutes each. This would correspond to a refinement of
the temporal schedule of a manager node as the current
time approaches the 30-minute interval depicted. The
lower left representation of the calendar shows the view
each node has of its schedule at the coarser temporal
resolution. Finally, the lower right calendar shows all four
slots for each node.

A final aspect of our scheduling policy is the tracking
of the trade deficits (or surpluses) accumulated by each
node. Each node and manager maintains a balance of
trade variable. The account balance is the balance of CPU
time it borrows from other nodes or lends to other nodes.
This account balance helps the system to monitor which
nodes (or which users) use excessive amount of CPU time
and to limit the requests from such nodes.

2.3 Assigning tasks
When a request for a resource arrives, the system

must determine when to allocate the task. We use several
policies in making these choices. The key issues are that
when a manager receives a request, it must determine a
set of slots where that job will be executed. When select-
ing a set of slots, the manager node determines if its
worker nodes can accommodate the request in a timely
manner.

To ensure that when slots are split all commitments
can be satisfied, we reserve a full slot for any request. To
see why it is possible to have an allocation that can not be
scheduled when a slot is divided, consider the example
shown in Figure 1. If we had two requests, one for one
node for 30 min. and a second for four nodes for 7.5 min-
utes, we would be able to accommodate this reservation at
the highest level. However, when we try to accommodate
this request at the finest granularity, we discover that the
request can not be scheduled since one job needs one
node for the entire duration and another needs all the
nodes for ¼ of the time.

While restricting the system to one job per slot may
seem wasteful, three factors make this policy acceptable.

T_A(1 hour)
Free(1 hour)

T_A(30 min)

Free (30 min)

Free (30 min)

T_A(30 min)

T_A(15 min)
Free(15 min)

T_A(15 min)
Free(15 min)

T_A(15 min)
Free(15 min)

T_A(15 min)
Free(15 min)

T_A(full) T_A(full)T_A(full)T_A(full)

Free (7.5 min) Free (7.5 min)Free (7.5 min)Free (7.5 min)

Free (7.5 min) Free (7.5 min)Free (7.5 min)Free (7.5 min)

T_A(full) T_A(full)T_A(full)T_A(full)

L1

L0

30 min. 30 min.

Figure 1: Calendar Data Structure at Four Different Resolutions.

4

First, short duration events tend to get submitted into the
system near their execution time, and will likely get as-
signed to S0 sized slots. Second, slots that are fully occu-
pied by a single job can be 100% allocated. Third, we
employ a variation of backfilling to move forward the
execution time of jobs when slots are divided and when a
job exits the system before its reserved time has ended. In
fact, the use of a slotted time in our scheduler often im-
proves the ability to backfill jobs since the length of all
jobs is an integer multiple of the fundamental slot size. To
backfill, our algorithm starts with the highest-level man-
ager node that has this slot type, and once it has backfilled
its jobs, its sub-mangers backfill any local jobs. Our back-
fill algorithm is based on Feitelson and Weil’s [2].

For multi-node tasks, we have an additional require-
ment: the number of nodes must be at least as many as the
job requires. If a job submitted to a manager requires
more resources than it manages, it forwards the request up
to its manager. This process repeats until a manager with
a sufficient number of nodes is located.

Our approach to finding a free set of slots by a man-
ager node is based on a first fit allocation scheme. How-
ever, if the first available calendar slot for an application
is too far in the future, the manager node sends the request
up to its manager to see if the job can be located on a
cluster under the supervision of a peer-manager.

Requests to run jobs at specific times are easily ac-
commodated using imprecise calendars. Each start of slot
implicitly encodes a specific time when it will start. Jobs
with a reserved starting time are flagged as reservation
jobs. This flag precludes backfilling the job and thus
moving it before its reservation. The reservation flag also
ensures that when the slot is divided that the job is as-
signed to the first new slot to maintain the job start time.

2.4 Calendars and Job Managers
To provide scalability, we need to ensure that manag-

ers and workers don’t have to keep their calendars in
lock-step synchronization. To do this, job managers keep
shadow calendars of nodes and sub-mangers in the sys-
tem. However, a job manager's copy of a calendar may
not reflect the master one at the first-level nodes, and a
request for a reservation might fail. Managers' calendars
are simply hints about the available resources of the
worker nodes, and the worker nodes must be consulted
before making a specific allocation.

There are two types of requests from job managers:
inquiry and reserve. Inquiry requests ask whether the
node has any slots that have enough resources at the
specified time. The node checks if the needed time slot is
still available. If sufficient resources are no longer avail-
able, the node declines the request and informs the man-

ager when the specified request can be satisfied. Reserve
requests ask nodes to allocate a time slot for it. This is a
variation on a two-phase commit protocol and is used to
ensure that multiple requests to different sub-managers
either commit or abort atomically.

In summary, the salient properties of imprecise cal-
endars are:

Time slots scale: Nearer slots have finer granularity,
further away slots have coarser resolution and less precise
start time information. Thus, we do not have to fix the
absolute starting time of jobs when they are submitted

Resources scale: We group nodes into clusters that
also can be viewed as a logical machine. The number of
levels can be arbitrary. Also, smaller tasks do not have to
go very far up the hierarchy to find a desired resource.
Larger tasks can gain the benefit of using the larger col-
lections of nodes available on the grid. By compressing
spatially and temporally, we reduce the storage require-
ment of management nodes.

Job start time guaranteed: By using an assignment
scheme based on one job per slot, we can ensure that we
have slots for all the tasks after partitioning. This is useful
because we do not have to select a victim task to miss its
scheduled time, nor must we try to squeeze the victim into
a later part of the schedule.

Fairness between big and small tasks: By using slot-
ted time and limiting the maximum slot occupancy that
can be reserved at specific temporal granularities, we help
to ensure that small and large tasks can be accommodated.

3. Simulation Study
To evaluate the ability of our scheduling system to

meet our objectives, we simulated a variety of types of
clusters. In particular, we tried to demonstrate the ability
of imprecise calendars to link together separate domains,
and do so efficiently. In addition, we wanted to compare
our approach to other approaches on a single cluster.

3.1 Slot Size and Duration
To compare the different slot sizes and assess their

impact on the performance of our system, we simulated
the imprecise calendars using a variety of different slot
sizes and number of slots at each size. We used as our
workload, the trace of jobs submitted to the Swedish
Royal Institute of technology (ETH) SP-2 system during
the months of October and November 1996. The distribu-
tion of jobs of various sizes in each workload is shown in
Figure 2.

Since the size and number of slots are such a critical
parameter for our system, we investigated several differ-
ent combinations of each parameter. To evaluate impre-
cise calendars, we simulated six different combinations of
slot sizes. The different slot sizes are shown in Figure 3.

5

In the first configuration we used a fixed slot size of
100,000 forty-second slots to provide a comparison with a
traditional scheduling policy that didn’t use temporal
compression. Due to the size of the calendar data struc-
ture, this would not be a practical configuration for a real
system. The second configuration had two temporal lev-
els, 40 seconds and 2,560 seconds. This was designed to
determine the penalty incurred by only having a few items
at the finest temporal resolution. The fourth and fifth con-
figurations vary the number of slots and their durations.
The sixth configuration has 32 ten second slots, eight 320
second slots and as many 2,560 second slots as required.
By creating many small and medium sized slots, we hope
to achieve similar performance to configuration one, but
with a smaller size.

Number of JobsJob Size
Oct. 1996 Nov. 1996

Total 2,404 1,982
< 10 seconds 156 194
10 to 100 seconds 1,005 580
100 to 1,000 seconds 496 376
Over 1,000 seconds 747 832

Figure 2: Distribution of Job Durations.

For each configuration, we computed the normalized
mean queuing delay for all jobs in the system. The nor-
malized mean queuing delay is the time a job spent from
when it was submitted into the system until it completed
execution, divided by it execution time. The idea of this
metric is to allow us to compare the delays seen by both
long and short jobs in a unified way. To access the impact
of scheduling policies on different types of jobs, we also
computed the normalized mean queuing delay for each of
four different jobs lengths: less than ten seconds, ten to
one hundred seconds, and one hundred to one thousand
seconds. These cases are shown in the 2nd through 5th bars
for each configuration in Figure 4.

Config. <number of slots, size>
1 <100 000, 40 sec>
2 <64, 40 sec>, <*, 2560 sec>
3 <8, 40 sec>, <8, 320 sec>, <*, 2560 sec>
4 <2, 40sec.>, <2, 1280 sec.>, <*, 2560 sec.>
5 <2, 10 sec>, <2, 1280 sec>, <*, 2560 sec>
6 <32, 10 sec>, <8, 320 sec>, <*, 2560 sec>

Figure 3: Summary of Slot Sizes Used.

As Figure 4 shows, the mean weighted job queuing
time increases from 5.6 to 7.7 for the October data, and
from 4.8 to 5.5 for the November data when we switch
from using 100,000 fine grained slots to only 64. The
third configuration introduces a medium-scale resolution,

however this actually decreases the performance of the
scheduling system for the November workload since it
creates unnecessary fragmentation that slows down small
duration jobs (10 to 100 seconds). For both the fourth and
fifth configurations, the lack of a large number of slots at
the medium temporal resolution hinders the performance
of jobs in the 10-100 second class. In the sixth configura-
tion, imprecise calendars with a three level temporal hier-
archy can represent the same time interval as 100,000
fixed-size slots yet requires only 1,511 slots, a reduction
in size by a factor of sixty.

Oct. 1996 Jobs

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6

Slot Sizes

M
ea

n
 J

o
b

 D
el

ay

Overall
<10
10-100
100-1000
>1000

Nov. 1996 Jobs

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6

Slot Sizes

M
ea

n
 J

o
b

 D
el

ay

Figure 4: Varying Slot Size.

We also investigated how our scheduling discipline
compared with existing batch scheduling techniques. For
our comparison, we simulated a variation on a traditional
backfilling scheduler that used the algorithm described in
[2]. The results of that simulation for the same two
months as the previous study are shown in Figure 5. The
results show that for the October workload, imprecise
calendars achieve approximately the same mean job
queuing delay as the backfill-based scheduler. However,
for the November workload, imprecise calendars were
able to reduce the mean job queuing delay by a factor of
two (from 10 to 5). These results indicate that imprecise
calendars are roughly comparable to existing techniques
for single clusters (and in fact better in some cases).
However, the real value of imprecise calendars is to per-
mit combining separate clusters into larger ones.

6

Oct. 1996 Data

0

2

4

6

8

10

Calendar BF

M
ea

n
Jo

b
D

el
ay

Nov. 1996 Jobs

0

5

10

15

20

25

Calendar BF

M
ea

n
Jo

b
D

el
ay Overall

<10
10-100
100-1000
>1000

Figure 5: Imprecise Calendars vs. Backfiling.

3.2 Comparison with Partitioned Scheduler
A previously proposed strategy to schedule jobs of

different sizes and to allow big and little parallel jobs to
co-exist is splitting the cluster into sub-clusters of differ-
ent size and using a First Come First Served (FCFS)
scheduling policy in each sub-cluster. This approach, used
on the TMC CM-5, ensures that small jobs don’t get stuck
behind big ones in the queue, however it can lead to inef-
ficient allocation of nodes. To compare our technique to a
partitioned scheduler, we ran our imprecise calendar
simulator on data from the Los Alamos CM-5. The Los
Alamos CM-5 used fixed partitions of two clusters of 32
nodes, and one each of 64, 128, 256, and 512 nodes. We
compared our confederation of schedulers to running each
queue separately with FCFS and traditional backfilling2.

Delay of Jobs

0
1
2
3
4
5
6

32 32 64 128 256 512 all

Cluster

m
ea

n
w

ai
t t

im
e

combined
separate
backfill

Figure 6: Partitioned Cluster Results.

The results, pictured in Figure 6, show that running
the system as a combined resource can greatly reduce the
queuing delays for small clusters. For both of the 32 node
queues, the delay was reduced by over a factor of three.
This set of simulations shows the potential of having
small clusters participate in a computational grid even
though they may not have that many nodes. By partici-
pating, they are able to gain resources from other larger
clusters in the system when they are overloaded, and do
so without causing any significant delay in the larger jobs
on the bigger clusters. In fact, as Figure 7 shows, the

2 We used slot sizes of 16x10sec, 16x40sec, 16x160sec,
16x640sec, and 16x2560sec for this study.

overall utilization of individual clusters remained almost
unchanged despite the reduction in mean queuing delay.

Utilization Trading
Queue Size

Separate Comb. Supply Use Balance

1 32 18.0% 18.1% 170.5 88.4 -82.0
2 32 21.5% 21.7% 162.3 85.4 -77.0
3 64 24.7% 24.9% 281.0 54.2 -226.9
4 128 36.4% 36.3% 64.3 456.1 391.8
5 256 38.9% 38.9% 136.2 84.6 -51.6
6 512 38.8% 38.8% 52.7 98.3 45.6

Figure 7: Queue Statistics for LANL Simulations.

We also computed the balance of trade for each of
the queues in the cluster. The last three columns of Figure
7 show the number of node hours that jobs submitted
elsewhere in the system ran on that queue, the number of
node hours that jobs submitted to it were run elsewhere,
and the net balance of trade. The results show that four of
the six queues have a negative balance of trade and that
two of them have a positive balance of trade. Interest-
ingly, the two queues that had the greatest reduction in
their mean queuing delay also had negative balance of
trade. However, they had a larger percentage of their jobs
run remotely than all other queues. So even though they
gave more cycles than they consumes, the load balancing
features of grid participation were significant.

3.3 Benefits of Clustering Large Machines
We also wished to investigate how well our system

would work for a cluster of clusters. To do this, we need
data from a collection of clusters. However, our available
trace data only covers a limited number of computer cen-
ters, and is often for different types of clusters (e.g., SP-2
vs. CM-5 nodes). To provide a comparison of several
similar clusters working together, we decided to use job
submission data from the Cornell Theory Center (an IBM
SP with over 300 nodes), and use traces from different
months to represent different clusters. To do this we se-
lected ten one-month intervals of data, and then simulated
a ten-node cluster of clusters for the first eight days of the
trace.

We treated the system as a two-level calendar sched-
uling system with the first level manager running 336
nodes, and the second-level manger running a cluster with
a total of 3,360 nodes. Any jobs that requests more than
112 nodes (1/3 of a single cluster) or whose duration was
at least 12 hours, we promoted to the second-level man-
ager to be placed in any one of the ten clusters. We con-
strained those jobs sent to the second level scheduler to be
run on a single cluster to ensure that the performance of a
job would not be altered by running part of the job on

7

different clusters with unknown bandwidth between them.
The mean weighted job delay when using two-level man-
agement is shown in Figure 8. In addition, we also simu-
lated the behavior of the cluster as if they were independ-
ently scheduled using our imprecise calendar scheduler.
The first pair of bars shows the results for the entire clus-
ter. The mean delay is reduced from 10.6 to 8.6, a tangi-
ble improvement of a 19%. The remaining ten pairs of
bars show the queuing delay for each cluster. For six of
the clusters the mean job delay is reduced. For two of the
clusters, the mean queuing delay increased modestly.
However, for two clusters, five and seven, the mean
queuing delay more than doubled.

To understand the reason that nodes five and seven
experienced increased queuing delay under a confedera-
tion of clusters compared with remaining isolated, we
looked at the characteristics of the jobs for that cluster
compared to the other ones. The summary of job charac-
teristics is shown in Figure 9. Node seven had the highest
overall utilization when jobs we run just on their submit-
ting node. Also, notice that the biggest slowdown comes
for those jobs that consume between 10 and 100 seconds
of time (as shown in the lower right corner of Figure 8).
These are jobs that are too short to be considered for
submission to the upper levels of the cluster.

We also looked at the breakdown of queuing delay by
job size. This data is shown in the three other bar charts in
Figure 8. For medium and large jobs (100 to 1,000 sec-
onds and over 1,000 second) there is relatively little

variation between mean queuing delays of the clusters.
However, for the 10-100 second jobs we see a fairly high
variation in the mean queuing time. This is to be expected
since, the load balancing achieved by scheduling the
cluster of clusters as a unit only applies to larger jobs that
get processed by the second level manager.

It is well known that having a single queue with mul-
tiple servers reduces queuing delays. However, it is inter-
esting to see that in the simulation of the confederation of
ten 336 node clusters where the mean number of nodes
per job is less than eleven, that we were able to achieve a
significant reduction in the mean queuing delay. This in-
dicates that even among large clusters there is efficiency
to be gained by being part of a computational grid.

We also looked at the balance of trade between the
clusters. The right half of Figure 9 shows these results.
For each cluster, we report the number of CPU hours sup-
plied to other clusters’ jobs, CPU hours of jobs for that
cluster that were executed on other clusters, the net bal-
ance, number of hours spent executing local jobs, and the
utilization of the cluster. It is interesting that although,
only just over 2,000 jobs were eligible for execution on
other clusters (out of a total job pool of over 17,000),
these jobs represent 58% of the node hours in the work-
load. As a result, the majority of time for five of the ten
clusters was spent running jobs from other clusters. The
simulation studies have demonstrated the potential of im-
precise calendars across a collection of clusters to im-

All Jobs

0

5

10

15

20

25

30

All 1 2 3 4 5 6 7 8 9 10

Cluster Number

M
ea

n
Jo

b
D

el
ay

Separate

Combined

Jobs over 1,000 seconds

0
1
2
3
4
5
6
7

All 1 2 3 4 5 6 7 8 9 10
Cluster Number

M
ea

n
 J

o
b

 D
el

ay

Separate

Combined

Jobs 100 to 1,000 seconds

0

10

20

30

40

50

All 1 2 3 4 5 6 7 8 9 10
Cluster Number

M
ea

n
 J

o
b

 D
el

ay Separate

Combined

Jobs 10 to 100 seconds

0
10
20
30
40
50
60
70

All 1 2 3 4 5 6 7 8 9 10
Cluster Number

M
ea

n
 J

o
b

 D
el

ay Separate

Combined

Figure 8: Cluster of Clusters.

8

prove the performance of parallel jobs. Both large and
small clusters can benefit from this approach.

Two Level Combined Queues
#

Avg.

Util Supply Use Balance Local Util.

1 34.5% 32,001 10,605 21,395 15,698 67.7%

2 72.9% 28,168 31,493 (3,326) 24,162 74.2%

3 79.3% 25,588 34,713 (9,125) 25,816 72.9%

4 70.8% 27,098 32,713 (5,615) 21,319 68.7%

5 55.2% 22,493 16,054 6,439 26,082 68.9%

6 65.4% 26,152 28,778 (2,626) 21,162 67.1%

7 63.6% 25,882 20,516 5,366 28,026 76.5%

8 72.9% 27,489 32,055 (4,566) 23,562 72.4%

9 61.2% 22,881 21,111 1,770 25,570 68.7%

10 77.3% 26,949 36,662 (9,713) 22,306 69.9%

All 65.3% 264,701 264,701 0 25,813 70.7%

Figure 9: Cluster of Cluster Job Results.

4. Related Work
Many non-FCFS policies have been proposed to al-

low small jobs to be accommodated without having to
wait for large jobs to clear the queue[4, 7, 8]. However,
these schedulers can result in arbitrary delays due to jobs
moving ahead of each other. Feitelson and Weil [2] pro-
vide an alternative way to backfill jobs that does not have
this limitation. Our system differs in that we used slotted
time and allow clusters of clusters to support a general
grid environment.

Another system that matches idle resources with re-
quests is the Condor system[5]. Condor uses Classified
Ads[6] to match resource suppliers and consumers. Their
approach provides a flexible way to describe node attrib-
utes such as memory and processing speed. However, it is
designed for sequential programs whereas imprecise cal-
endars are designed for parallel programs.

Proportional-share scheduling[1] has been proposed
to fairly allocate resources on a cluster of computers. It
uses a variation on lottery scheduling to assign tickets to
both parallel and sequential tasks. Our imprecise calen-
dars are complementary to this approach. Imprecise cal-
endars provide a batch scheduler that is designed to move
jobs around the system, and to help control the number of
active jobs at one time, while proportional-share sched-
uling can be used to decide which active processes to exe-
cute.

5. Conclusions
We have presented imprecise calendars, a new way to

organize and manage the queues for clusters of high per-

formance distributed systems. Imprecise calendars permit
the easy and efficient sharing of resources between differ-
ent clusters of computers that are part of a computational
grid. In addition, we showed how they can be used to
provide specific time reservations for applications. By
using temporal and spatial compression of data, we are
able to efficient represent the schedules of large clusters.
We also described the algorithms and policies for ma-
nipulation of imprecise calendars.

We presented a series of simulation studies that com-
pare our approach to previous batch scheduling systems
for both a single cluster and collection of clusters up to
over 3,000 nodes. For these large clusters, imprecise cal-
endars provide an effective way to load balance the col-
lection of clusters.

Acknowledgements
We thank Dror Feitelson for supplying the job

workload data used in this paper. This work was sup-
ported in part by NSF awards ASC-9703212 & ASC-
9711364, and DOE Grant DE-FG02-93ER25176.

References
1. A. C. Arpaci-Dusseau and D. E. Culler, "Extending Propor-

tional-Share Scheduling to a Network of Workstations," In-
ternational Conference on Parallel and Distributed Proc-
essing Techniques and Applications (PDPTA’97). June, 1997,
Las Vegas, Nevada.

2. D. G. Feitelson and A. M. a. Weil, "Utilization and Predict-
ability in Scheduling the IBM SP2 with Backfilling," 2th Intl.
Parallel Processing Symposium. April 1998, Orlando, Flor-
ida, pp. 542-546.

3. I. Foster and C. Kesselman, eds. The Grid: Blueprint for a
New Computing Infrastructure. 1998, Morgan-Kaufmann:
San Francisco.

4. D. Lifka, "The ANL/IBM SP Scheduling System," Job
Scheduling Strategies for Parallel Processing. 1995,
Springer-Verlag (LNCS 949), pp. 295-303.

5. M. Litzkow, M. Livny, and M. Mutka, "Condor - A Hunter of
Idle Workstations," International Conference on Distributed
Computing Systems. June 1988, pp. 104-111.

6. R. Raman, M. Livny, and M. Solomon, "Matchmaking: Dis-
tributed Resource Management for High Throughput Com-
puting," Seventh IEEE International Symposium on High
Performance Distributed Computing. July 1998, Chicago, pp.
140-146.

7. D. D. Sharma and D. K. Pradham, "Job Scheduling in Mesh
Multicomputers," ICPP. April 1994, Boca Raton, Fl,.vol.II,
pp. 251-258.

8. J. Skovira, W. Chan, H. Zhou, and D. Lifka, "The EASY -
LoadLeveler API Project," Job Scheduling Strategies for
Parallel Processing. 1996, Springer-Verlag (LNCS 1162),
pp. 41-47.

	Introduction
	Imprecise Calendars
	System Components
	Calendar information
	Assigning tasks
	Calendars and Job Managers

	Simulation Study
	Slot Size and Duration
	Comparison with Partitioned Scheduler
	Benefits of Clustering Large Machines

	Related Work
	Conclusions

