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Abstract

As distributed real-time applications gain in popularity,
a key challenge is to allocate resources so that diverse real-
time requirements (including non-real-time applications),
distributed application components and varying workloads
can all be accommodated without violating timeliness con-
straints. We examine the problem of resource allocation
in distributed soft real-time systems, where both network
and CPU resources are consumed. The timeliness con-
straints of applications are expressed through utility func-
tions, which compute “benefit” as a function of end-to-end
latency. We present LLA (Lagrangian Latency Assignment),
a scalable and efficient distributed algorithm which maxi-
mizes aggregate utility by computing an optimal trade-off
between end-to-end latency and allocated resources. The
algorithm runs continuously and adapts to both workload
and resource variations. LLA is guaranteed to converge if
the workload and resource requirements stabilize. We eval-
uate the quality of results and convergence characteristics
under various workloads, using both simulation and real-
world experimentation.

1. Introduction

Recent years have witnessed the emergence of dis-
tributed real-time systems as a platform for enterprise ap-
plications seeking to respond rapidly to real world events.
Representative examples include program trading, risk
management, medical alerting, patient monitoring, airline
ticket pricing and environmental monitoring. The common
theme across all these applications is that they leverage dis-
tributed and heterogeneous resources to continuously pro-
cess and analyze real-world data in real-time and to build
accurate models used for prediction or prevention.

Ensuring that the real-time requirements of distributed
applications are satisfied is challenging. First of all, due to
technology convergence, applications with a diversified set
of real-time demands share the same infrastructure. Thus,
a scheduling algorithm should be flexible in accommodat-
ing different quality of service requirements and in quanti-
fying the importance of applications relative to each other.
Second, the available resources are not dedicated and may
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change over time due to failures. Workloads may also vary,
typically because communication is triggered by real world
events. Over-provisioning is not feasible since it has sig-
nificant cost in terms of hardware, space, power and human
resources. Instead, it is preferable to manage the scheduling
of existing resources dynamically.

In this paper we present LLA (Lagrangian Latency As-
signment), a distributed feedback-based optimization algo-
rithm to control the scheduling parameters for soft real-time
applications in a distributed system, such that the aggre-
gate system utility is maximized. There has been much
recent work in the real-time community on feedback con-
trol approaches for scheduling sets of distributed applica-
tions. However, this research (see Section 7 for a detailed
comparison) is typically limited to adjusting the aggregate
CPU utilization on servers to ensure that all the distributed
applications are schedulable. It does not take into account
flexible application deadlines, different levels of importance
for applications or network bandwidth resources. LLA, on
the other hand, incorporates limits on both CPU and net-
work bandwidth, and in general can accommodate any sim-
ilar resource constraints. Moreover, our approach specifies
the utility of the system as a non-increasing function of the
latency of each application, which implicitly expresses the
application importance with respect to other applications as
well as the importance of meeting a particular latency re-
quirement.

The optimization problem is solved on-line, in a dis-
tributed manner, using the “price” of resources to coordi-
nate the resource consumption by different applications. As
the optimization is constantly running, the system is adap-
tive, and adjusts to both workload and resource variations.
The algorithm is guaranteed to converge if the workload
and resource requirements stabilize. Our optimization ap-
proach is model-based. For each application and resource
used by that application, we predict the latency at that re-
source (the latency slice contributing to the end-to-end la-
tency) as a continuous function of the scheduling parameter.
The scheduling parameter is a proportion of the resource al-
located (i.e., we assume proportional share scheduling), but
no particular implementation is mandated. The model itself
can be constructed on-line, and iteratively improved as the
system is running, as we show in our experiments.

We make the following contributions. We present a
framework for unifying diverse real-time requirements, us-



ing utility functions as metrics to measure application im-
portance, into an objective for the system to achieve (§2,§3).
We propose LLA, a distributed algorithm that continually
optimizes the system utility, by adjusting scheduling param-
eters, and which takes into account feedback of workload,
resource and model changes (§4). Using both simulation
and a prototype implementation, we show that LLA con-
verges fast, is scalable and has the ability to improve latency
models at runtime (§5,86).

2. Programming Model

We consider distributed real-time applications that can
be modeled using the typical task and subtask model, with
the generalization that multiple jobs in a subtask can be re-
leased without waiting for previous jobs to finish. This gen-
eralization captures real-life workloads with bursty arrivals.
The context for our model is a distributed system composed
of nodes interconnected by links. Each node and link pro-
vides a set of resources for which applications compete in
order to meet timeliness constraints. For example, nodes
provide CPU, whereas links provide network bandwidth.

Applications are defined similar to an end-to-end task
model [34] in which there are a set of rasks, T = {T;}, each
of which consists of a set of subtasks, S; = {T,~ j}. Subtasks
may utilize different resources. For simplicity of exposition
and without loss of generality, we impose the restriction that
each subtask consumes exactly one resource.

Subtasks may also specify properties which describe
how a resource will be utilized, for example worst case ex-
ecution time (WCET). Note that an application consisting
of computation and communication will be modeled uni-
formly in terms of subtasks: computation is modeled as
subtasks which consume processor resources; and commu-
nication is modeled as subtasks which consume network re-
sources.

Tasks are dispatched/released in response to triggering
events which are signals with an arrival pattern and optional
data. For example, a triggering event may be a periodic
signal at a constant rate. The arrival patterns of triggering
events are included in task specifications, or measured at
runtime, for scheduling purposes.

The release of subtasks is constrained by a precedence
relation called a subtask graph, which is a directed acyclic
graph of subtasks with a unique root. The root is called the
start subtask, and the leaf nodes are called end subtasks.
Edges in the graph represent precedence, either in the form
of data transmission or logical ordering constraints. For-
mally, the subtask graph, G;, for task 7; is denoted by the
relation G; C S; X S; where G; is acyclic. A path p in G;j is
defined to be a sequence of subtasks Ti,, Tip, ..., T;; where
each adjacent pair (7jx,Tjy) € Gi, Tiq is the unique root of
Gi, and T;, is a leaf node of G;. We denote by %Z; all paths in
the subtask graph of a task i.

We use the term job to distinguish separate instances of
a released subtask. As mentioned earlier, jobs of a sub-
task can be released concurrently or overlap. Regardless of
overlap, precedence constraints across subtasks must still
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Figure 1. A task 7 consists of a subtask
graph and a set of triggering events. When
a triggering event occurs, the first subtask
in the subtask graph becomes eligible for re-
lease. The job sets and jobs resulting from
two task releases are shown in the time-line
on the right.
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be observed. The set of jobs which correspond to a par-
ticular task release are called a job set and represent an in-
stance of the subtask graph. Formally, a job set J;; repre-

sents the j/* instance of task 7; and consists of a set of jobs
Jij = { Jix :Tx € 5,}. Figure 1 illustrates these concepts.
Task execution is subject to timeliness constraints which we
describe below.

2.1. Timeliness Constraints

The timeliness constraint for a task limits the total la-
tency incurred by a job set dispatched for the task. The la-
tency for a job set is defined as the interval between the dis-
patch time of the root subtask and the completion time of all
eligible end subtasks. We specify this timeliness constraint
using a utility function which is a non-increasing function
that maps job set latency to a utility value. The maximum
allowable latency may be limited by a critical time beyond
which latency may not extend regardless of utility. Thus,
critical time is analogous to a deadline.

Utility functions are a generalization of simple deadlines
where, in addition to defining absolute constraints (e.g., la-
tency must not exceed the critical time), the shape of the
function can be used to derive trade-offs between latency
(i.e., resource allocation) and benefit to the application.
Thus, our goal is to satisfy all application deadlines (i.e.,
critical times) while maximizing utility.

The latency (and hence utility) of a job set depends on
the latency experienced by the individual jobs within the set.
The latency experienced by an individual job depends on re-
source allocation and may vary with application parameters.
Task specifications are expected to define properties which
help to determine the latency for jobs (e.g., worst case or av-
erage case execution time). Specifications could be derived
or corrected from runtime measurements. We can combine
these specifications (including trigger event specifications)
together with a model of resources to derive the predicted
latency for a job.

When job latency is worst case, we can formalize utility
computation as follows (we consider other than worst case
in an extended version of the paper [22]). Let 7; be a task
with subtasks ; and subtask graph G;. For a subtask s € §;,



let 1at, be the worst case latency for any release of s given
current resource allocations.

The (worst case) latency of a path, p € 2, is the sum of
the latencies of each subtask in the path: }.c,lat;. We
define the critical path as the path with the maximum la-
tency among all possible paths in a subtask graph. Thus,
the (worst case) latency of a job set is the latency of the crit-
ical path. Therefore, the utility for a task 7; is given by the
function:

U; = fi(max ) 1lat 1
i = filmax ;P ) M

That is, utility is computed from the worst possible la-

tency experienced for the task.

3. Optimization Problem

Our goal is to find the latencies for each subtask in the
system such that we achieve optimal value for the sum of
utilities across all tasks. We express this goal as a con-
strained optimization problem.

3.1. Optimization

Let R be the set of all resources. Every resource is char-
acterized by a share function to map subtasks to resource
shares and an availability value. The resource availability,
B, € [0, 1], represents the fraction of the resource available
to our competing tasks. We define the share function later
in this section.

Each subtask is part of exactly one task and will utilize
exactly one resource. We denote all subtasks associated
with either a particular task or resource by S; where i rep-
resents the task or the resource, depending on the context.
Similarly, all resources where a task i executes are denoted
by R;. Furthermore, unless we explicitly need to distinguish
among separate instances of the same subtask or task, we
use interchangeably the terms job and subtask, respectively
Jjob set and task. For every task i, C; is the critical time (i.e.,
deadline) of the task. Every subtask s has a predicted la-
tency (laty). The latency is determined by the resource the
subtask utilizes using both subtask properties (e.g., WCET)
and resource properties (e.g., lag in scheduling, share as-
signment).

Our objective is to maximize the total utility of the sys-
tem, defined as the sum of utilities across all tasks:

max Z U; 2

ieT
There are two different constraints:

Resource Constraint. Each subtask competing for a re-
source receives a share of the resource. To model the corre-
spondence between a subtask, its latency and its share, we
define, for each resource r, the function share, : S, x Rt —
[0,1]. The resource constraint states that the sum of re-
source shares allocated to each subtask must be lower than
the fraction of available resource:

Z share,(s,lats) <B,,Vre R 3)
SES,

Critical Time Constraint. To ensure that a task instance
finishes in time, the end-to-end latency for each path in the
subtask graph must be smaller than its critical time.

ZlatSSCi,ViE‘T,pGLP,' 4)
sep

3.2. Discussion

The utility of a task represents the benefit derived from
completion of the task. Following the model of time-utility
functions proposed by Jensen et al. [9], utilities are non-
increasing functions that map the end-to-end task latencies
to a benefit value. We assume that utility functions are con-
cave and continuously differentiable when latency is less
than the critical time.

Equation 1 defines the task utility in terms of the crit-
ical path in the subtask graph. However, since the algo-
rithm continuously adjusts the scheduling parameters to
reflect the best possible allocation, the critical path may
change. This behavior may make the objective function
non-concave and may prevent the algorithm from finding
a single optimal allocation. Therefore, to make the problem
tractable, we propose two variations of the utility function
of a task 7;: sum and path-weighted. The sum utility of
T; is a function of the sum of the latencies of each subtask
belonging to 7;. The path-weighted utility of T; is a func-
tion of the weighted sum of the latencies of each subtask
belonging to 7;. The weight of each subtask s is propor-
tional to the number of paths that s belongs to. We believe
that these variations are flexible enough to allow for a close
approximation of the optimal allocation. As we show in
Section 5, the critical path obtained when maximizing the
path-weighted utility is always less than 1% smaller than
the critical time (i.e., the maximum possible critical path).

We use a proportional share (PS) mechanism to map
subtasks to share requirements because it provides perfor-
mance isolation between subtasks [29]. Thus, we prevent
poorly behaved subtasks from consuming more than their
allotment of share.

4. Distributed Optimization Algorithm

In this section we describe LLA (Lagrangian Latency As-
signment). LLA is a distributed algorithm, based on the La-
grange multiplier theory, that assigns latencies to all sub-
tasks in the system such that the total system utility is opti-
mal.

4.1. Overview

We assume there exists a task controller for each task in
the system. Each controller determines the resource share
and latencies for all subtasks that belong to the task. Task
controllers may execute on dedicated nodes or may occupy
the resources where the start subtasks of each task execute.

We say that the system is congested whenever at least
one of the constraints defined by Equations 3 and 4 is vio-
lated. We identify two types of congestion, depending on



the type of constraint that is not respected. Resource con-
gestion occurs when a resource cannot schedule all subtasks
executing locally (i.e. the sum of their shares is greater than
B,) and path congestion occurs when a path in the subtask
graph cannot finish execution before its critical time.

At any moment, we can make the utility of a task higher
by decreasing the latency of any of the subtasks on the crit-
ical path of the task. This may potentially create congestion
in the system, both in a direct and an indirect way. First, de-
creasing the latency of a subtask makes the share allocated
to the subtask bigger, which can lead to resource conges-
tion. The only way to control the resource congestion is to
give a smaller share to at least one of the other subtasks ex-
ecuted on the resource. However, decreasing the share of a
subtask makes the individual latency of the subtask bigger
and, if the subtask is on a critical path, can delay the as-
sociated task beyond its critical time. Thus, decreasing the
latency can also create path congestion in the system. To
guarantee that no congestion occurs, a task controller would
have to be coordinated with all the other task controllers,
which is impractical in real systems. We use the concept of
price [14, 19] to solve the problem in a distributed setting.
A price is associated with each resource and each path and
indicates the level of congestion in the resource or the path.
Each resource! computes a price value and sends it to the
controllers of the tasks that have subtasks executing at the
resource. Each controller computes prices for all paths in
the associated tasks. Based on the received resource prices
and the local path prices, a controller can calculate new la-
tencies for the subtasks in its task.

LLA solves the optimization problem iteratively. A sin-
gle iteration consists of latency allocation and price com-
putation. Latency allocation predicts the optimal latencies
at a certain time, given fixed resource and path prices. Price
computation computes new values for the prices, given con-
stant latencies for all subtasks in the system. The algorithm
iterates indefinitely but the allocations may be only enacted
periodically or when significant changes occur.

4.2. Latency Allocation

The latency allocation algorithm runs at each task con-
troller and computes new latencies for all subtasks in the
task, based on feedback from the resources where these sub-
tasks run and from the paths to which they belong. Laten-
cies are computed using the Lagrangian [5] of the original
optimization problem (Equations 2,3 and 4):

L(latsnurakp) = ZUi

ieT
— Y () share;(s,lats)—B,)
reR SES:

- Y M) iat-0) 6))
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where u, and A, are the Lagrange multipliers and can be
interpreted as the price per unit of resource r and path p,

!Prices for link resources are computed by one of the endpoints of the
link.

respectively. We will simply refer to u, as resource price
and to A, as path price.

We assume that the utility functions, expressed in terms
of subtask latencies, are concave and continuously differen-
tiable, in the region where the critical time constraint is sat-
isfied (Equation 4). We also assume that the share functions
are strictly convex and continuously differentiable, since in-
creasing latency leads to diminishing returns in terms of de-
creasing share (and vice versa). This implies that if the util-
ity functions were expressed in terms of share allocation,
they would be strictly concave and continuously differen-
tiable. This strict concavity, along with the fact that the
resource constraints and critical time constraints are con-
vex sets, means that finding the maximum for the objective
function is equivalent to finding the maximum for the La-
grangian (dual problem) [5]. Thus, instead of solving the
original optimization problem, we solve the following al-
ternative problem for each task i, given specific values for
yrand A

D(uy,Ap) = ngxL(latS,,u,,?up)

Li={laty,Vse S}, re R,pe B (6)

Based on the earlier assumptions, the objective function
in Equation 6 is strictly concave and continuously differen-
tiable. The maximum is found by setting its derivative with
respect to each laty € £; to 0:

oL oU;

o B ol
dlat, OJdlatg p;_’p » Hr

dshare,(s,lats)
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where i is the task containing subtask s and r is the resource
utilized by subtask s.

The latency allocation step is performed by executing the
following algorithm at the controller of each task:

Latency Allocation
OUTPUT: Latencies laty, Vie T,Vs€ S, att =1,2,...
1: Receive the resource price values y,, Vr € &;.
2: Compute the path price values A, Vp € P,.
3: Compute new latencies lat by setting the derivative
w.r.t. lat, of the Lagrangian to 0.
4: Send lat; to the resource where the corresponding sub-
task s is executed.

4.3. Price Computation

Prices reflect the congestion of resources and paths. At
every iteration, the newly computed latencies may poten-
tially affect the schedulability of subtasks on resources or
the end-to-end latencies of paths and thus may change the
levels of congestion. Consequently, the resource and path
prices need to be readjusted. The price computation consists
of determining new values for the resource and path prices,
given the latencies computed in the previous step. Resource
prices are computed by each resource locally, while path
prices are computed by the controller of the task to which
the path belongs. We use price adjustment algorithms sim-
ilar to those described by Low et al. [19]. They are based
on the gradient projection method: prices are adjusted in



a direction opposite to the gradient of the objective func-
tion of the dual problem (Equation 6). The component of
the gradient corresponding to the prices y, gTD’ represents

the available fraction of resource r. Similarly, aaTD is the

available time the end-to-end latency of path p can afford to
increase (i.e., slack of the path).

The resulting formulas for adjusting resource and link
prices are:

wit+1) = w@)—vB,— Z share,(s,latg))(8)
SES,
Yses, Lats

M) = RO-p1-=220) o)

where r € R, i€ T,p € P; and v,, Y, are step sizes, with
Yr¥p € [0,00). The step sizes control how aggressive the
price updates are and implicitly, how much latencies vary.
Intuitively, large step sizes trigger more aggressive updates
and speed up the convergences, but may lead to oscillations.
On the other hand, smaller step sizes slow the algorithm
significantly, but produce less oscillations. In Section 5 we
show how to adaptively choose step sizes based on resource
congestion.

The resource price computation algorithm is shown be-
low (the path price computation is similar):

Resource Price Computation

OUTPUT: Resource price y,, for resource r, att = 1,2, ...
1: Receive the computed latencies of all subtasks at r
2: Compute a new resource price u, based on Eq 8
3: Send the price u, to the controllers of tasks that have
subtasks running at r

4.4. Discussion

For the experiments conducted in this paper, the latency
for subtasks is the worst-case latency. The share function is
modeled on the worst case execution time of subtasks (cy),
latency of the subtask (laty), and the resource lag (/) due
to PS scheduling. The share can be computed as:

cs+ 1,

share,(s,lats) = Tat (10)
ats

Since the worst case execution time and the lag are fixed,
the share varies only with the latency.

5. Simulation Experiments

In this section, we evaluate our optimization algorithm
through simulation. We observe convergence properties by
measuring algorithm performance over several workloads
and using different formulations of the utility function.

5.1. Workload

We have constructed several test workloads by specify-
ing a set of tasks and their characteristics.

The basic test workload has three tasks, as shown in Fig-
ure 2. Each of the three tasks is intended to mirror one type
of distributed application with real-time requirements. The
first task follows a push-based model similar to the pub-
lish/subscribe and multicast paradigms. In such a model,

a distributed computation consists of a few nodes produc-
ing information and propagating it to all interested nodes.
The second task represents a complex pull-based model em-
ployed by applications such as sensor-based systems or RSS
feeds. The distributed computation starts with a node re-
questing information, aggregating it and sending it to other
nodes. Finally, the third task is meant to represent a sim-
pler pull-based model used in client-server applications. All
three tasks are triggered by periodic events occurring every
100ms. Their end-to-end deadlines (critical times) are re-
spectively 45, 76 and 53ms. Every task consists of several
subtasks, each utilizing a different resource—either CPU or
network bandwidth. The parametrization of the subtasks is
given in Table 1. Ignore the rows corresponding to latency
and critical path for now. We chose the parameters such that
all resources are close to congestion: for every resource r,
the sum of the shares received by each subtask running on r
is close to B,. The performance of LLA when resources are
close to congestion constitutes a lower bound for its per-
formance with all other schedulable workloads. We exper-
iment with both utility variations discussed in Section 3.2:
sum and path-weighted.

5.2. Convergence

First we focus on the convergence properties of the al-
gorithm. We use the path-weighted variation for the utility

function:
Ui = fi(} ws x 1aty) 1)
SES;

The weight wy of a subtask is equal to the number of
paths in the task that the subtask belongs to. To map la-
tency to benefit we use a simple linear continuous function:
fi(lat) = k*C; — 1at, where k > 1. In the experiments, we
chose k = 2. Other values of k and other shapes of the util-
ity yield similar results. We run the simulation four times,
each time stopping it after 500 iterations. An iteration con-
sists of a latency allocation run by each task controller and
a resource allocation run at each resource. We measure the
global value of the utility after each step. Since we want
a fair trade-off between resource allocation and latency, we
assume that the resource and path step sizes (Y, and v,) are
equal to each other and denote them simply by y. At first,
we assign fixed values to the step size. Later, we show how
to adaptively change the value of . We experimented with
several different values of the step size. Figure 3 depicts the
system utility for three of them: 0.1, 1, and 10 (ignore the
line corresponding to adaptive 7y for now).

When the step size is high (y = 10), the value of the util-
ity oscillates with high amplitude around 50. If we decrease
the step size (y < 10), the utility converges. The number
of iterations needed to achieve convergence depends on the
value of . When y = 0.1, the stabilization occurs after
more than 1000 iterations (not shown in the figure), while
for v =1, convergence is achieved after around 500 iter-
ations. Thus, larger values of the step size lead to faster
convergence, but they also make the oscillations larger. To
turn this trade-off to our advantage, we should start with
large step size values to ensure fast convergence. Then, we
should decrease Y to minimize the size of the fluctuations.
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TASK 1 TASK 2 TASK 3
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Resource |0 1 2 3 4 5 6 0 1 2 4 5 6 3 7/0 1 2 4 6 7
Exectime | 2 3 4 5 4 3 2 2 4 3 6 7 5 2 3|3 2 2 3 4 4
Latency 9.7 13.8 19.5 14.4 21.4 10.5 19.2 |10.3 15.0 15.1 19.3 12.8 16.6 5.1 9.3 9.9 7.9 6.2 9.8 10.3 8.7
Crit.Time 45 76 53
Crit.Path 44.9 75.6 52.8

Table 1. Task Parameters and Optimization Results (Execution time, latency, critical time and critical

path are measured in milliseconds)

We have implemented the following heuristic, based on
experimentation, to adaptively change the value of the step
sizes for resources and paths:

1. start with a fixed value for 7y

2. at each iteration, if resource r is congested, double the
step size associated with r, as well as the step sizes of
all paths that traverse r

3. as soon as r becomes uncongested, revert the step sizes
to the initial values

As long as a resource is congested, we increase multi-
plicatively the step sizes associated with it to speed up the
convergence of the algorithm. When the resource becomes
uncongested, we need more fine-grained updates to deter-
mine the convergence point, therefore we make the step
sizes small again. We experimented with different starting
values for the step size and we obtained the best results for
Y= 1. We compare these results with those for fixed step
size in Figure 3. The utility stabilizes faster and to a better
value when the heuristic for adaptive y was used. In Table 1
we show the subtask latencies and the task end-to-end la-
tencies corresponding to the optimal utility. Each task com-
pletes execution before its critical time is reached. We also
tested the algorithm using the sum variation for the utility
function but the results were not different in terms of con-
vergence properties. In an extended version of the paper
[22] we show that the algorithm maintains its convergence
properties as we scale the number of tasks that execute si-
multaneously in the system.

6. System Implementation

In this section, we describe a prototype implementation
of our approach and its evaluation under a sample workload.
In particular, we describe a mechanism for accommodat-
ing differences between predicted (i.e., modeled) and actual
performance.

6.1. Prototype

In order to test our approach under more realistic con-
ditions, we have implemented a Java prototype which uses
LLA to assign resources for Java-based tasks. The proto-
type executes on a virtual machine which supports the Real-
Time Specification for Java (RTSJ) and includes IBM’s
Metronome Real-Time Garbage Collector [4]. The virtual
machine executes atop IBM’s Linux with Real-Time sup-
port IBM-RTLinux), which has been further modified to
allow share scheduling of the CPU. The share scheduling
support in the kernel implements a modified version of Sur-
plus Fair-Share Scheduling [7].

6.2. Workload

The workload consists of four tasks, each with three sub-
tasks, which are linearly dependent 2. Each of the subtasks
in a task runs on a different CPU resource, and there are a
total of three CPU resources in the system. Therefore each
CPU resource has 4 subtasks competing for it, one from

2We use a smaller workload than the simulation experiments due to the
lack of machine availability.



each task. The subtasks are characterized using WCET, and
a periodic arrival rate. Tasks 1, 2 have identical character-
istics, and similarly tasks 3, 4 are identical. All subtasks of
tasks 1, 2 have WCET of 5ms, and arrival rate of 40/sec-
ond, and tasks 3, 4 have subtasks with WCET of 13ms, and
arrival rate of 10/second. All tasks have the same utility
function, f;(1lat) = —lat, with tasks 1, 2 having a critical
time of 105ms, and tasks 3, 4 a critical time of 800ms. For
the remainder of this discussion, we will refer to tasks 1, 2
as the fast tasks and tasks 3, 4 as the slow tasks.

Based on the arrival rate and WCET, the minimum share
needed by each subtask of the fast tasks is 0.2 (Sej[())n 5 X 5ms)
and that by each slow subtask is 0.13. This is the share
needed to keep up with the workload (otherwise jobs will
queue up in an unbounded manner). So the sum of the min-
imum shares at each CPU is 0.2%240.13 %2 = 0.66 (66%),
and this is also the CPU utilization due to this workload. In
addition, a share of 0.1 was given to the Metronome garbage
collector. The network was not a constraint in this experi-
ment.

6.3. Online Model Error Correction

The share function for each subtask is the one described
earlier in equation 10, with a resource lag of 5ms. This share
function is not always accurate. One important source of
inaccuracy is that the release time of jobs for different sub-
tasks sharing the same resource may not be synchronized,
which leads to over-prediction of latency. To overcome this
we use a simple additive error correction model, and do ex-
ponential smoothing of the error value. The samples for
error correction were collected periodically, and high per-
centile samples (greater than 90th percentile) were used.

6.4. Experimental Results

The goal is to demonstrate: (1) the optimization algo-
rithm running in a real system, (2) the effectiveness of
model error correction, and (3) the ability of the optimizer
to change its allocation based on model error correction.

The optimizer runs continuously until the utility im-
provement from the previous iteration is below 1%. When
the utility stabilizes, we run the optimization once a minute.
To improve latency estimates, we perform error correction
after every iteration. The computation overhead induced by
the optimizer is rather small (below 1% of the total com-
putation); the only observable overhead appears at the start
of the optimization when there are large improvements in
utility between iterations.

We start the experiment without model error correc-
tion, and let the optimizer compute share allocations based
purely on the theoretical model. To meet the critical time
constraint of the fast tasks the optimizer has to give them
a higher share of the CPUs, and the remainder is allocated
to the slow tasks. All the fast subtasks get the same share
and similarly for the slow subtasks. A representative sub-
task is shown for each in figure 4. At time 277, shown by
the vertical line in the figure, we enable error correction.
At this instant the share of fast subtasks is 0.26 and slow
subtasks is 0.19. Subsequently, the optimizer realizes that

it can meet the critical time constraint of the fast tasks with
a lower share, and eventually adjusts the allocation down to
the minimum share for these subtasks (0.2 share). The re-
maining share is allocated to the slow subtasks (0.25 share).
The percentage change in share allocation, due to error cor-
rection, is —23% and +32% for fast and slow subtasks re-
spectively. The marginal resource cost of increasing the
utility of the slow tasks is lower than that of the fast tasks,
hence the former get a higher share. Note that the error
value continues to fluctuate, however it exhibits some sta-
bility in its mean after the shares converge. This shows that
additive error correction is not a perfect model (though pos-
sibly adequate), but despite that, the optimization algorithm
converges to the optimal.

7 Related Work

Research related to our distributed optimization algo-
rithm can be categorized as: deadline slicing in real-
time systems, schedulability analysis and feedback-control
scheduling, and network flow optimization.

Deadline slicing techniques [23, 11, 10, 8, 30, 6, 12] try
to find the deadlines that optimize a predefined measure of
schedulability. These algorithms work with a fixed end-to-
end deadline, limited characterizations of tasks (e.g., peri-
odic tasks, with WCET), and are offline. Our algorithm pro-
duces an optimal latency assignment through on-line opti-
mization. The objective function reflects different task im-
portance and latency requirements.

Meeting deadline requirements has traditionally relied
on proper scheduling and schedulability analysis tech-
niques. Static and dynamic allocation algorithms guarantee
schedulability by relying on a priori information about sys-
tem resources [17, 18], through admission control and plan-
ning [27, 35] or by combining task scheduling with dead-
line slicing. [25, 26, 2]. Feedback-control scheduling al-
gorithms [31, 20, 3, 28, 32] continuously monitor and ad-
just the deadlines based on system feedback. Our work is
most closely related to that of Lu er al. [21, 34], in which
utilization-based schedulability [1] is applied to schedule
end-to-end tasks on a distributed platform. Lu ef al. pro-
pose both centralized and distributed algorithms that con-
trol the invocation rate of tasks in order to adjust utilization
of resources. Rate control can be considered a form of ad-
mission control, and is complementary to our approach of
controlling latency (as opposed to rate). However, we con-
sider much broader task behavior by allowing flexibility in
latency sampling (i.e. percentiles), and task elasticity and
importance (based on utility).

Several approaches for optimizing a system-wide utility
function have been proposed in the area of network flow
optimization [19, 14, 15, 16, 13, 33]. For practical reasons,
distributed algorithms are highly desirable, often based on
the dual decomposition [5, 24]. Our work is also based on
dual decomposition, but defines system utility as a func-
tion of task latency (relevant for soft real-time applications)
rather than flow rate. This formulation results in a some-
what different optimization problem, namely, we have non-



linear resource constraints due to the use of share schedul-
ing and mapping latencies to shares.

8. Conclusions

In this paper we have framed the problem of latency
assignment for soft real-time distributed applications as a
utility optimization problem. Our framework allows us to
accommodate flexible timeliness requirements, using vari-
ous utility function shapes, and different percentiles of end-
to-end latency. Moreover, this allows the system to make
trade-offs based on different importance levels of appli-
cations. We have presented a novel distributed optimiza-
tion algorithm that continuously optimizes the system, us-
ing feedback of resource congestion and latency constraints,
and demonstrated fast convergence and scalability using
both simulations and real system experiments.
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