
Virtual memory

Program and data use virtual addresses

Virtual address maps to
Physical address in RAM

OR
Disk address

Process called memory mapping
or address translation

Fig 7.20

Principles same as cache, but different historical roots mean different terminology
Virtual memory block ---> page
Virtual memory miss ---> page fault

Virtual memory also simplifies the process of loading a program in memory
relocation: program can be loaded anywhere

Virtual memory: addressing

Fig 7.21
Instructions use virtual address
Virtual page number (upper 20 bits) translated to physical page number for memory

Note that the physical address has fewer bits (30 in the example)
Different number of virtual and physical pages
How big is physical memory? As big as we can afford.
How big is virtual memory? As big as the architecture can support.
One of biggest system design mistakes: too few address bits

"Nobody will ever need more than 640K" (W. Gates)
(Source: urban legend)

Page offset (lower 12 bits) remains same

Location within page
Number of bits: determined by page size

12 bits for 4K page

Virtual memory: design issues

Design issues for VM are related to HUGE cost of a miss (page fault)
Accessing disk may take MILLIONS of clock cycles

SRAM: 5-25ns
DRAM: 60-120ns
Disk: 10-20 million ns

 - Pages should be large enough to cover the cost of page fault
transfer time is much less than access time
4KB to 16KB common
newer systems: 32KB - 64KB

 - Reducing page fault rate has high priority
fully-associative page placement

 - Page faults can be handled in software
overhead is small compared to cost of disk access
use clever algorithms to minimize page faults

 - Write-through is too slow
use write-back to store modified data

Virtual memory: page management

Optimizing page placement: reduces page faults
Fully-associative: map any virtual page to any physical page
Operating system can afford to use sophisticated algorithms and data structures

to keep track of page usage
Problem with fully-associative mapping: need to search entire set of pages

Full searching is impractical: use page table

Stored in memory
Contains the physical page number for every virtual page number
Each program has its own page table
To assist accessing page table, hardware has page table register

Points to start of page table
Valid bit is used as in cache
Note that page table is indexed by virtual page number: no tags needed

Fig 7.22

Virtual memory: page fault

Page fault: valid bit for virtual page is 0
Operating system gets control, finds required page and puts it in memory

Virtual address does not directly tell where page is on disk
Operating system has data structure to keep track of where pages are located

May be part of page table or separate
Example of single table:

Fig 7.23

Virtual memory: page table

How large is the page table for 32-bit address range?
Assume 4K block size
Number of table entries:

 232 addresses / 212 addresses per block = 220 blocks

Each table entry:
18 bits of address + valid bit: use 4 bytes

Total bytes
4 * 220 = 4MB

Each program (process) has its own page table
Suppose 50 processes running on a system:

200MB of memory used for page tables!
Alternatives to storing entire page table

 - Let page table grow as memory usage grows
 - But, stack and heap grow from opposite directions:

Have 2 tables which each grow with memory usage
 - Use a hash function on the virtual address

Only need as many entries as number of physical pages
Called inverted page table

Lookup process more complicated
 - Allow page table to be paged

Could result in paging loop, but can keep page tables in OS address space
 - Multiple levels of page tables

Top level: blocks of pages (64-256), called segments

Virtual memory: TLB

How much does a page fault cost?
Time to determine page is not in memory plus time to read the page from disk

How much does a page hit cost?
1 memory access to find page physical address + 1 memory access for data
Cost of memory access has doubled!

Solution: cache the page table
Translation lookaside buffer

Contains most recently used page table entries
Associativity

Small (128-256 entries): fully associative
Large: direct-mapped or small associativity

Idea: Locality in memory references means super-locality in page references
Table entries

Tag holds virtual page number
Data entry holds physical page address
Also valid and dirty bits

Look up virtual page number in TLB
Hit: use physical page address to locate page
Miss: can be handled in hardware or software

May be missing entry in TLB or page fault
Load page table entry in TLB and try again
If miss, then page fault

Fig 7.24

Memory: performance

Memory hierarchy can have important effect on performance
Inner loop of matrix multiply:

for (i = 0; i < 500; i++)

for (j = 0; j < 500; j++)

for (k = 0; k < 500; k++)

x[i][j] = x[i][j] + y[i][k] * z[k][j];

Running time on Silicon Graphics system with MIPS R4000 processor
and 1MB secondary cache: 77.2 seconds

If loop order reversed so i is innermost: 44.2 seconds
Only difference: order of accessing data
Other compiler optimizations: less than 10 seconds!

Memory: performance

Why memory will be even more important to performance in the future:

Fig 7.35

Improvement in access time relative to 1980:
DRAM: 9% per year
Slow CPU: 15% per year to 1985, then 25% per year
Fast CPU: 25% per year to 1985, then 40% per year

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

