Fall 2003 Kruskal and Scolnik
CMSC 311
Solutions to Midterm II
Problem 1.
add $s0, $zero, $zero # $s0 = 0; counts number of 28’s
lw $s2, 240($zero) # $s2 = length of array
beq $s2, $zero, done # if array length = 0 then done
sll $s2, §s2, 2 # multiply array length by 4 to obtain number of bytes
lw $s1, 236($zero) # $sl = starting address of array
add $s3, $s0, $s1 # $s3 is address after last number in array
addi $s4, $zero, 28 # $s4 = 28 is number being searched for
loop: Iw $t1, 0($s0) # load next number in array
bne $t1, $s4, skip # skip if number # 28
addi $s0, $s0, 1 # increment number of 28’s
skip: addi $sl, $s1, 4 # address of next number in array
bne $sl1, $s3, loop # loop if next address still in bounds
done: sw 8s0, 244($zero) # store number of 28’s

NOTE: Instead of

bne $t1, $s4, skip # skip if number # 28
addi $s0, $s0, 1 # increment number of 28’s
we could use the pseudo-instruction
seq $t2, $t1, $s4 # $t2 is set to 1 if number is 28; 0 otherwise
add $s0, $s0, $t2 # increment number of 28’s if number equals 28

The seq pseudo-instruction substitutes two MIPS instruction for the one bne instruc-
tion, but avoids a potential branch.

Problem 2. The routine splits $s2 into left and right halves. A pair of bits are peeled off
the right ends of the two halves, one from each. The pair of bits are pasted into the
result $s1. In preparation for the next pair of bits, the two halves are each shifted
right one bit position and $s1 is rotated right two bit positions.

andi $sl1, $zero, $zero # initialize $s1 to 0
andi $t1, $s2, 216 — 1 # $t1 is right half of $s2
st $t0, $s2, 15 # $t0 is left half of $s2 shifted left 1 bit
addi $t 5 $zero, 16 # counter for number of passes
loop: andi $t2, $t1, 2 # get next bit of left side (from right to left)
or $s1, $s1, $t2 # put bit into result
andi $t2, $t0, 1 # get next bit of right side (from right to left)
or $s1, 8$s1, $t2 # put bit into result
sl §t1, $t1, 1 # shift down bits of left side
srl $t0 $t0, 1 # shift down bits of right side
ror $s1, $s1, 2 # prepare for next two bits; pseudo-instruction
addi $t5, $t5, -1 # decrement counter
bne $t5, $zero, loop

Problem 3. Form the three values

To D 21 T1 D T2 To D T3

Use them as inputs to a 3 x 1 multiplexer selected by %11¢.

a®b = ab VvV abd

So a @ b needs two AND gates and a NOR gate.
A 3 x 1 multiplexer needs three AND gates and an OR gate.

Problem 4. We need two bits to control the inputs to the shift register. We can use the
leftmost bit, call it L, in the shift register as one control bit: The output L will be
0 until the leftmost 1 shifts into the leftmost position at which point it will be 1 for
exactly one clock cycle. The final right shift will make L 0 again (forever).

A T flip-flop with input from L will stay 0 until one clock cycle after L flips to 1, and
then stay 1 (forever).

The following table gives the necessary inputs i1%¢ for the shift register given the
outputs of L and of the T flip-flop, which we call Q.

o~
.

Q

L 1 %
0 0|1 O
1 00 1
0 1710 O
Using minterms, we get
ihn=LQ ivc = LQ
i i
clock
— Shift Register
i
|

Problem 5.

00

01

01, 11

01

110
10

00, 11

{

00

I

101
10

20

21

D; Dy

b

v

vi

Lo

Z1

v Vo

V2

To Vo

T
D,

Vo T1 Zo

V Vo v1 U9 ZT1 Tg V V2 V1

Vo V1 Vg T1 X

U1 Vo T1 To

Vo T1 To V (%)

\Y Vg U1

V2 V1 Vg T1 X

D,

V2

<1

= wg V1)

(or 2

