
Jump instructions

Instruction Semantics
j offset # PC <-- PC31-28 :: IR25-0 :: 00 jump to target address
jr $rs # PC <-- R[s] jump to address in $rs
jal offset # R[31] = PC + 4 save return address in $ra

PC <-- PC31-28 :: IR25-0 :: 00 jump to target address
jalr $rs # R[31] = PC + 4 save return address in $ra

PC <-- R[s] jump to address in $rs

Formats
What's different about j, jal? No regs specified.

offset: usually 16-bit 2C immediate, except j and jal 26-bit UB (J-type)
Note that type refers to FORMAT, not function, so branch instrs are not J-type
What type are jr and jalr?
Since registers have to be specified, jr and jalr are R-type

Addressing: pseudo-direct
doesn't specify 32-bit address directly
allows you to access how much of all possible word-aligned addresses?

Jumping to arbitrary word-aligned addresses
j and jal still don't allow you to access all possible word-aligned addresses
jr and jalr refer to a register, which specifies the entire 32 bit instruction

Instruction formats: J-type

J-type: jump
 j target # jump to target address

000010 01000 01001 01010 00000 100001
b31-26 b25-0
opcode target
semantics:

PC <- PC31-28 :: IR25-0 :: 00

update the PC by using:
 - upper 4 bits of the program counter
 - 26 bits of the target (lower 26 bits of instruction register)
 - two 0's
(creates a 32-bit address)

Why 2 0's?

Jump: subroutine calls

main: subroutine:
jal offset addi . . .

next ori . . .

blah

. . .

jr $r31

Jump: subroutine calls

main: subroutine:
jal offset addi . . .

next ori . . .

blah

. . .

jr $r31

What happens if a jal call is made while in a subroutine?
return address overwritten with a new return address
must place the return address onto the stack (memory)

Jump: subroutine calls

main: subroutine:
jal offset addi . . .

sll $0, $0, 0 ori . . .

next blah

. . .

jr $r31

What happens if a jal call is made while in a subroutine?
return address overwritten with a new return address
must place the return address onto the stack (memory)

It turns out that the return address is PC + 8, not PC + 4
jump instructions have to be followed by a branch delay slot instruction
purpose of avoiding stalling in pipelines

Labels

Branch Instructions and Labels
Do we want to have to compute the value of the offset for a branch instruction? No.

too much work
subject to error
may need to change if instructions are added or removed

better way:
 beq $r1, $r2, L1 # (0) If R[1] == R[2] goto L1

 addi $r1, $r1, 1 # (1) R[1]++

 addi $r2, $r2, 1 # (2) R[2]++

L1: add $r1, $r1, $r2 # (3) R[1] = R[1] + R[2]

L1 is a label referring to the address of the instruction where it is located
The assembler computes the offset

target instruction - (branch instruction + 1).

The same rule applies even if you branch backwards
Why compute branch instruction + 1?

Once the instruction is fetched, PC is incremented to PC + 4,
next instruction in memory

This kind of address computation is called PC-relative
Jump Instructions and Labels

Jump instructions also jump to labels (at least, j and jal)
Assembler figures out the appropriate addresses using pseudo-direct addressing.
Disadvantage compared to PC-relative addressing: It's harder to relocate the code

Instruction Types

Arithmetic

Logical

Data Transfer

Compare/Branch

Jump

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

