
Decoder

Function: sets exactly one of n outputs to 1, based on unsigned binary value
Input: ceil (lg n)
Output: n bits (exactly one is 1, rest are 0)

Example: 3-8 decoder
Inputs: 3 bits representing UB number
Output: 1 bit corresponding to the value of the UB number is set to 1

Black box:
z0

x0 z1
z2

x1 z3
z4

x2 z5
z6
z7

Truth table:

x2 x1 x0 z7 z6 z5 z4 z3 z2 z1 z0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Boolean expressions for each output:
z0 = \x2\x1\x0 z4 = x2\x1\x0
z1 = \x2\x1x0 z5 = x2\x1x0
z2 = \x2x1\x0 z6 = x2x1\x0
z3 = \x2x1x0 z7 = x2x1x0

Decoder

Decoder vs. DEMUX
3-8 decoder: 3 data inputs, 8 outputs
1-8 DEMUX: 1 data input, 3 control inputs, 8 outputs

Add enable control bit to decoder:
e = 0: all outputs are 0
e = 1: behaves like regular decoder

Data inputs of a decoder correspond to the control bits of a DEMUX
Enable input of a decoder corresponds to the data bit of a DEMUX
The two circuits are identical.

Encoder

Encoder is reverse of decoder
8-3 encoder

8 inputs, exactly one has value 1
3 output bits, representing which input was equal to 1 (binary representation of input)
Example: input: x5 = 1 output: z2z1z0 = 101

Simplified truth table:
Input == 1 z2 z1 z0

x0 0 0 0 Minterms are rather large
x1 0 0 1 (from full truth table):
x2 0 1 0 z2 = \x0\x1\x2\x3x4\x5\x6\x7 +

x3 0 1 1 \x0\x1\x2\x3\x4x5\x6\x7 +

x4 1 0 0 \x0\x1\x2\x3\x4\x5x6\x7 +

x5 1 0 1 \x0\x1\x2\x3\x4\x5\x6x7
x6 1 1 0

x7 1 1 1

However, we can take advantage of the fact that exactly one input is 1:
z2 = x4 + x5 + x6 + x7 Example: x5 = 1

z1 = x2 + x3 + x6 + x7 z2z1z0 = 101

z0 = x1 + x3 + x5 + x7 (UB for 5)

Priority Encoder

We can't always assume that only one input will be 1.
Priority encoder: assumes that at least one input will be 1.

Which input to encode? Use priority scheme
Larger subscripts could have higher priority
Smaller subscripts could have higher priority

Assume larger subscripts have priority
Boolean expressions no longer necessarily valid

Suppose x4 and x3 are both equal to 1
Then z2z1z0 = 111, but the result should be 100, since 4 has higher priority

What does it mean that 4 has the highest priority?
All of the higher inputs must be 0, and the lower inputs don't matter:

 \x7\x6\x5x4
Negate all literals with higher priority, and leave out lower ones

Replace each term in original expressions
 z2 = x7 + \x7x6 + \x7\x6x5 + \x7\x6\x5x4
 z1 = x7 + \x7x6 + \x7\x6\x5\x4x3 + \x7\x6\x5\x4\x3x2
 z0 = x7 + \x7\x6x5 + \x7\x6\x5\x4x3 + \x7\x6\x5\x4\x3\x2x1

This can be further simplified.
If x7 is the highest priority 1, then it doesn't matter if the other terms are 0 or not.

 z2 = x7 + x6 + \x6x5 + \x6\x5x4

Similarly, if x6 is the highest priority 1, then \x6 is not necessary in the other 2 terms.
 z2 = x7 + x6 + x5 + \x5x4

We can also eliminate \x5 in the last term.
 z2 = x7 + x6 + x5 + x4

(Notice that this expression gives back the original form.)
In the expression for z1, however, we need to keep \x5 and \x4:

 z1 = x7 + x6 + \x5\x4x3 + \x5\x4x2
Likewise, for z0, we need to keep \x6, \x4, and \x2:

 z0 = x7 + \x6x5 + \x6\x4x3 + \x6\x4\x2x1
In general, we need to keep the negation of any literal which doesn't appear

as a higher-priority value.

What if all inputs are 0?
We can encode the output as 000, and x0 will have the highest priority by default.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

