
Complete implementation

MIPS-lite
arithmetic/logical: add, sub, and, or, slt
memory access: lw, sw
branch/jump: beq, j

Combine datapaths for
instruction fetch (Fig. 5.5)
R-type operations (Fig. 5.7)
Load and store (Fig. 5.9)
Branch (Fig. 5.10)
Jump (to be added)

Add control signals
Version 1: execute each instruction in 1 clock cycle
Version 2: execute each instruction in multiple (shorter) clock cycles

Combining datapaths: R-type and memory

Version 1: execute instruction in 1 clock cycle
No datapath resource can be used more than once in a single instruction
If needed more than once, must be duplicated

Separate instruction, data memory
Some resources can be shared between different instruction types

Need to have multiple inputs
Control signal to select which to use: multiplexor

Arithmetic-logical (R-type) and memory access (load/store) are similar in some ways
Differences

Second operand input to ALU:
Register contents for R-type
Sign-extended immediate value (offset) for load/store

Value stored in destination register:
ALU output for R-type
Data memory value for load

To combine datapaths:
Select source of second ALU operand
Select source of data to write to register

Use 2 MUXes with control inputs
ALUsrc for ALU
MemtoReg for register write

Fig. 5.11

Combining datapaths: instruction fetch

Can add instruction fetch:

Fig. 5.12
Need separate adder in order to:

increment PC
perform ALU operation in same clock cycle

Combining datapaths: branch

Add branch:

Fig. 5.13

Additional MUX
uses PCSrc input to select:

incremented PC or (PC + immediate) from second adder
output goes to update PC

Need to keep separate adder to compute branch address

Control unit

How to control the datapath?
Need to generate the control signals for MUXes, registers, and memory

Look at instruction formats
R-type 000000 $rs $rt $rd shamt function

b31-26 b25-21 b20-16 b15-11 b10-6 b5-0

memory 35 or 43 $rs $rt address
b31-26 b25-21 b20-16 b15-0

branch 4 $rs $rt address

b31-26 b25-21 b20-16 b15-0
Observations:

Opcode is always in upper 6 bits: Op[5-0], function in lower 6 bits: F[5-0]
Use to select operation to perform

Registers to read ($rs, $rt) always in bits 25-21 and 20-16
Use as indexes to register file for read

Base register for load/store always in bits 25-21
Offset always in bits 15-0
Destination register may be in 2 places:

bits 15-11 for R-type
bits 20-16 for load
Use as index to register file to write: need MUX to select

Control unit

New features: Fig. 5.17
Instruction bit numbers for register numbers, opcode, function
MUX to select destination register

RegDst: selects $rd or $rt to write data
ALU control: uses function code and ALUOp to generate ALU operation selection

What is ALUOp? 2-bit code generated by main control (stay tuned)
Note that the values of RegDst, ALUSrc, and PCSrc are reversed in this diagram.

The version in the current printing of the text is correct.

Control unit: main

Registers
opcode Main Memory

Control MUXes
ALUOp

ALU control
function

Main control unit generates
Write signals for registers and memory
Control input for MUXes
ALUOp input (2 bits)

Multiple levels of control: reduces size of main control unit

Control unit: ALU

ALU operation selection: function depends on type of instruction
R-type: function determined by function field from instruction
Load/store: add to compute memory address
Branch: subtract to compare operands

(Main control) (Instruction)
Instruction ALUOp Function ALU control
lw, sw 00 xxxxxx 010 add

beq 01 xxxxxx 110 subtract

add 10 100000 010 add

sub 10 100010 110 subtract

and 10 100100 000 and

or 10 100101 001 or

slt 10 101010 111 set on less than

Fig. 5.15 shows complete truth table for generating these ALU control bits

Control unit: main

Main control signals
ALUOp: 2 bits based on op code used as input by ALU control
RegDst: selects from instruction bits 20-16 or 15-11 ($rt or $rd)

for destination register to write data
RegWrite: enables writing of destination register
ALUSrc: selects second input of ALU

0: Read data 2 from register file
1: sign-extended immediate from instruction

PCSrc: selects input to update PC
0: PC + 4 from adder
1: PC + offset from branch target calculation (other adder)

MemRead: data is read from data memory
MemWrite: data is written to data memory
MemtoReg: selects data to send to register file to write

0: ALU result
1: data read from memory

Can set all of these based only on opcode, except PCSrc
Should be set based on beq instruction AND ALU ouput is 0
Control unit generates Branch signal, which is ANDed with ALU Zero output

Datapath with control

How to set control bits? Fig. 5.19
Could use Boolean equations or truth tables, but depends only on opcodes

Fig. 5.20
Implementation in gates, using input from opcode bits, in Fig. C.5:

Opcode
bits

Control signals

Datapath: R-type

1. Fetch instruction and increment PC Fig. 5.21
2. Obtain operands from register file, based on source register numbers
3. Perform ALU operation, using ALU control to select, ALUSrc = 0
4. Select output from ALU using MemtoReg = 0
5. Write back to destination register (RegWrite = 1, RegDst = 1 for $rd)
Note that this entire path is combinational, but the values are generated in the order shown.

1

2
3

4

5

Datapath: memory access (load)

1. Fetch instruction and increment PC Fig. 5.21
2. Obtain base register operand (Read data 1) from register file
3. Perform addition of register value with sign-extended immediate operand in ALU,

using ALU control to select operation, ALUSrc = 1 to select immediate
4. Use ALU result as address for data memory
5. Use MemtoReg = 1 to select Read data and write back to destination register

Controls: RegWrite = 1, RegDst = 0 for $rt
How would this have to change for a store instruction?

1

2

3

4

5

Datapath: memory access (store)

1. Fetch instruction and increment PC Fig. 5.21
2. Obtain base register (Read data 1) and data (Read data 2) from register file

3. Perform addition of register value with sign-extended immediate operand in ALU,
using ALU control to select operation, ALUSrc = 1 to select immediate

4. Use ALU result as address for data memory
5. Using MemWrite = 1, write data operand to memory address

Note that MemtoReg and RegDst are don't cares

1

2

3

4

5

Datapath: branch

1. Fetch instruction and increment PC Fig. 5.21
2. Read 2 registers from register file for comparison
3. ALU subtracts data values, using ALU control to select operation and ALUSrc = 0
4. Generate branch address: add (PC + 4) to sign-extended offset, shifted left by 2

why shifted by 2? what control signal values?
5. Use Zero output from ALU (and Branch control) to determine which result to use to update PC

If equal, use branch address
else use incremented PC

Note that this is all happening simultaneously in 1 clock cycle (adder separate from ALU)

1

2

3

4 5

Datapath: jump

Jump is still missing
Recall format:

000010 target

b31-26 b25-0

Compare to branch:
computes target address differently

PC <- PC31-28 :: IR25-0 :: 00

update the PC by using:
 - upper 4 bits of the program counter
 - 26 bits of the target (lower 26 bits of instruction register)
 - two 0's
(creates a 32-bit address)

unconditional

Datapath: jump

Shift instruction bits 25-0 left 2 bits to create 28 bit value Fig. 5.29
Combine with bits 31-28 of (PC + 4) to produce 32-bit jump address
Additional MUX uses Jump control to select instruction address

0: Incremented PC or branch target
1: Jump address

Datapath: critical path

Why don't we use single-cylcle datapath? Too slow!
Clock cycle time must be as long as the longest path: load instruction

Fig. 5.21

5 functional units: PC, instruction memory, register file, ALU, data memory, plus 2 MUXes

1

2

3

4

5

Datapath: performance

Single-cycle performance
Suppose operation times are:

Memory: 2 nanoseconds
ALU/adders: 2 ns
Register file (read or write): 1 ns

Assume MUXes, control units, PC access, sign-extend have no delay
How long must the clock cycle be?

Instruction Inst Reg ALU Data Reg Total Distribution
type mem read op mem write
R-type 2 1 2 0 1 6 44% 2.64

load 2 1 2 2 1 8 24% 1.92

store 2 1 2 2 0 7 12% 0.84

branch 2 1 2 0 0 5 18% 0.9

jump 2 0 0 0 0 2 2% 0.04

With single-cycle, clock period must be 8 ns 6.34

But, not all instructions are loads! Suppose distribution of instruction types shown.
If we could vary the instruction time, the average would be:

(6 * 44%) + (8 * 24%) + (7 * 12%) + (5 * 18%) + (2 * 2%) = 6.3
This is 27% faster!

Datapath: performance

Average instruction time could be less if we didn't have to use load instruction
to determine cycle time

But that's not actually the longest instruction time!
What about multiply and divide, or even floating-point operations?

Need separate, slower ALUs
Assume: 8 ns for floating-point add, 16 ns for floating-point multiply

Instruction Inst Reg ALU Data Reg Total Distribution
type mem read op mem write
R-type 2 1 2 0 1 6 27% 1.6200

load 2 1 2 2 1 8 31% 2.4800

store 2 1 2 2 0 7 21% 1.4700

branch 2 1 2 0 0 5 5% 0.2500

jump 2 0 0 0 0 2 2% 0.0400

FP add 2 1 8 0 1 12 7% 0.8400

FP multiply 2 1 16 0 1 20 7% 1.4000

8.1

Average is 8.1 ns, which is only 8.1/20 = 41% of the single-cycle time
In other words, variable cycle could be about 2.5 times faster!

Variable clock cycle is impractical, but we can break up the instructions into
shorter cycles, then only use the parts needed for any given instruction

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

