
Computer organization

Levels of abstraction

Assembler Simulator Applications

C C++ Java High-level language
SOFTWARE

add lw ori Assembly language

Goal 0000 0001 0000 1001 0101 Machine instructions/Data
HARDWARE

CPU Memory I/O Functional units
CMSC311

Multiplexor Adder Register Components

Combinational Sequential Circuits

You are here AND OR XOR Gates

Transistors Wires Electronics

Electrons Atomic units

Datapath and control

Objective
Implement hardware to execute simple instruction set
MIPS-lite

arithmetic/logical: add, sub, and, or, slt
memory access: lw, sw
branch/jump: beq, j

Concepts
Stored program

memory stores both program instructions and data
simplifying assumption: data and instruction memory separate

Instruction set architecture (ISA)
load-store architecture

operations can be performed only on data in registers
CPU

Datapath: performs operations on data (i.e., ALU)
Control: tells datapath, memory, etc. what to do

Instruction execution steps

1. IF (Instruction Fetch)
address of instruction to be executed is in PC (program counter, a hidden register)
instruction is copied from memory to IR (instruction register, another hidden register)

2. D (Decode the instruction, Fetch Operands)
determine what operation to perform (opcode, function)
get operand values
add

get 2 operands from registers
addi

get 1 operand from register, 1 from instruction itself (sign-extended immediate)
3. ALU (Perform the operation)

arithmetic, logical, etc.
action performed by ALU circuits

4. MEM (Memory access)
MIPS: only load or store instructions

5. WB (Write Back)
result of third step is written to the appropriate register

6. PC Update (Program Counter Update)
normally, PC <- PC + 4
branch or jump: some other address

Datapath

Datapath: flow of data during instruction execution

Fig. 5.1

Process
PC gives address of next instruction to (instruction) memory
Memory gives instruction contents to IR (instruction register, not shown)
IR gives

Register numbers (2 source, 1 destination) to registers
Immediate data to ALU

Registers give data to
ALU
(Data) memory

ALU processes operands and gives result to

Register (arithmetic/logical result)
Memory (as data address for load or store)

Data memory gives data to registers (if load)
What's missing from this picture?

How to update the PC?
Could have counter to increment, but what about branches and jumps?
Use ALU to compute branch address, but need more control

Where do register addresses come from?
How do we control register read/write?
What about immediate operands?
How to determine what operation for ALU to perform?

Datapath

Datapath: flow of data during instruction execution

Fig. 5.1

Components
Registers: sequential circuits
Register file: group of registers (32 in MIPS)
ALU: combinational circuit
Memory: to be defined later

Instructions
Data

Control (not shown): selects operands and tells what to do with them

Register file

Need a group of registers to store operands (32 in MIPS)
Registers are very fast memory, part of the CPU
Why not use only registers for all data?
Costs more to make registers than RAM
More registers mean more circuits to control them, therefore slower

Consider 32 integer registers inside a black box called a register file
Set of registers with combinational logic to select

Instruction to run:
 add $1, $2, $3 # R[1] <- R[2] + R[3]

Fetch operands:
Need values in registers 2 and 3

To tell the register file which registers to use:
Need a value from 0 to 31

How many bits? ceil(lg(32)) = 5 bits
Need to specify 5 bits for each register

Where to get the 10 bits for register numbers?
From the instruction itself
IR (instruction register)

Hidden register containing the instruction currently being executed

Register file: black box

Encoding for the instruction
000000 00010 00011 00001 00000 100000

b31-26 b25-21 b20-16 b15-11 b10-6 b5-0
opcode $rs $rt $rd shamt function

Good ISA design helps:
Can get the desired bits for the source registers without doing much decoding.
Once the ten bits are sent from the IR as ADDRESS inputs to the register file,

the register file produces 64 bits of DATA output
Implementation as a black box:

Notice that we haven't said anything yet about
HOW the address inputs
are turned into data outputs

Register file: writing

Reading from a register file is only part of the story
Writing to a register file

Control input called write enable (WE)
When WE = 1, then we want to write to the register file
Once we add R[2] to R[3], we need to save the result to destination register R[1]
Require 5 bits to indicate the destination register (DST addr)

Can come from IR: bits B15-11 are used for destination register (R-type)
Need 32 bits of data to write to the register (DST data)

Data comes from the output of the ALU
How the register file looks now:

Summary:
Inputs

SRC 1 Addr: index of the first source register (5 bits)
SRC 2 Addr: index of the second source register (5 bits)
DST Addr: index of the destination register (5 bits)
DST Data: data to be written to the destination register (32 bits)
WE: DST Data is written to the register at index DST Addr only when WE = 1.

Outputs
SRC 1 Data: contents of the first source register, as specified by SRC 1 Addr.
SRC 2 Data: contents of the second source register,

as specified by SRC 2 Addr.

Register file: implementing

Example: register file with 4 registers
Each parallel-load register

Input
32-bit data, x31-0

1 control bit, c
clock

Output
32-bit data, z31-0

When c = 1, the register parallel loads, i.e., z31-0 = x31-0.
When c = 0, it holds the value.
In order to organize the registers into a register file, we need the concept of a bus:

composed of multiple wires

Wire

Wire: transmits a one-bit signal
Connected device can write 0 or 1 to the wire
At most 1 device can write to a wire at any given time

Result is undefined if:
More than 1 device attempts to write to the wire
No device is writing to the wire

More than 1 device can read from the wire
Wire has no memory: signal must be continuously asserted to be valid

Example: 4 devices
D1 is writing to the wire
D2, D3, D4 are reading from the wire

Assume each device has 2 connections to the wire (1 to read, 1 to write)
What are the devices?

ALU, registers, gates, flip-flops, etc.

Bus

Bus consists of 1 or more wires
Real computer has multiple buses, for example: data, address, control
Size of bus: number of wires

B31-0 can be used to indicate 32 wires in the bus
B20-16 can be used to indicate a subset of wires

Slash indicates multiple wires and the number indicates how many
Bus allows any number of devices to connect, but only 1 may write at any given time
Why use bus?

Alternative: connect all pairs of devices
Requires order of N2 connections

Register file: implementing

Register file uses combinational logic with a set of registers
We attach the outputs of each register to two buses, using tri-state buffers for each.

How to select the right registers?
SRC 1 addr and SRC 2 addr
How many bits for 4 registers? ceil(lg(4)) = 2 bits

Register file: implementing

What device to use?
2 bits of input (register number)
4 bits of output, of which exactly one should have the value 1

(tri-state buffer control)
2-4 decoder

2 bits of input (UB)
1 bit of output

What about destination register?

Register file: implementing

Destination register
DST Addr: destination register address
DST Data: data to store in destination register
Write Enable (WE) indicates when to write the destination register

WE = 1: write to the register specified by DST Addr
WE = 0: don't do anything
2 bits of DST Addr tell which register to write
Want control input c of destination register to be 1 when WE = 1,

all other registers must have c = 0
What device to use?

2-4 decoder with enable or 1-4 DeMUX
choose decoder

parts list:
four parallel load registers
two 2-4 decoders
one 2-4 decoder with enable
eight tri-state buffers
three buses

anything else?

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

