
Integers

So far, we've seen how to convert numbers between bases.
How do we represent particular kinds of data in a certain (32-bit) architecture?
We will consider

integers
floating point
characters

What do we know about integers?
They can be represented in binary using the digits (bits) 0 or 1
The value N can be represented using K bits.

K = ceil (lg N)
Suppose we have 32 bits.
Then our numbers will be of the form

i = 31

N = sum (bi * 2
i) where bi = 0 or 1

i = 0

This is called unsigned binary representation.

Integers: unsigned binary

How many possible values are there for 32-bit unsigned binary representation?
There are 232 different representations, so there are about 4 billion possible values
Why 4 billion?
Why do we say possible values?

Minimum value: 0
Maximum value: 232 - 1 (approximately 4 billion)

In general, for N bits, the max value is 2N - 1
Why -1, since there are 2N representations?

Think of array of size 2N. What is the largest index?
What is 2N?
1 followed by N 0's (N+1 bits).
(22 = 100, 23 = 1000, 24 = 10000, etc.)

Why do we use unsigned values? Anything which is only positive or zero.
Memory address
Array index
ASCII character

What if we need to have negative values?
Need different representation.

Integers: signed magnitude

Signed magnitude
Reserve one particular bit for the sign.
Sign bit: If msb is 0, then positive value, if msb is 1, then negative value.

Converting base 10 to N-bit signed magnitude (SM):
1. Ignoring sign, convert base 10 value to binary.
2. If less than (N-1) bits, pad rest of bits to (N-1) with 0.
3. If negative, set msb to 1.

Converting N-bit SM to base 10:
1. Convert lower (N-1) bits to base 10.
2. If msb is 1, put minus sign in front of number.

Example:
Convert 3 in base 10 to 4-bit SM:

binary value: 11
using 3 bits: 011
with sign bit: 0011

Convert -3 in base 10 to 4-bit SM:
binary value: 11
using 3 bits: 011
with sign bit: 1011

What about 15?
binary value: 1111
However, this is already 4 bits, and the sign bit needs to be 0 for positive value.

Range of values for SM
How many possible values (i.e., representations)?

2N for N bits
Maximum value

2N-1 - 1 for (N-1) bits
Minimum value

 -(2N-1 - 1) for (N-1) bits

Total values, including 0:
2 *(2N-1 -1) + 1 = 2N - 1

What happened to the extra value?
There are actually 2 zeroes!
positive zero: N 0's
negative zero: 1 followed by (N-1) 0's

So, total number of representations is 2N, but total number of values is 1 less.
Disadvantage of SM: 2 zeroes adds complexity to hardware.
Addition

It would be nice if we could use the same hardware for signed or unsigned addition.
However, that is not the case for signed magnitude.
Consider adding -1 and -1 in 4-bit SM

1001 + 1001 = 0010 in 4 bits, since the carry from the msb is lost.
This gives a result of +2, which is incorrect.

One way around this is to ignore the sign bit in doing the addition,
then use the sign bit for the result.

However, that doesn't work if the sign bits are different.
The sign bit of the result will depend on the relative magnitudes.
The magnitude of the result will be the difference in the magnitudes.
For example, (-5) + 3 is -2, but 5 + (-3) is +2.

Negation
Negating a value means giving it the opposite sign.
This is easy with SM, since we simply flip the sign bit.

negative value: sign bit 1 --> 0
positive value: sign bit 0 --> 1

Integers: 1's complement

Another way to represent negative values:
Negate (flip) each bit.

Use the operator ~ to represent flipping each bit.
~B is B with all of its bits flipped.

This is called 1's complement (1C).
Example: 11ten is 01011 in 5-bit unsigned binary. Call this number B.

 B = 01011
 -B = 10100

Converting from base 10 to N-bit 1C
1. Ignoring sign, convert value to unsigned N-bit value.
2. If sign is negative, negate (flip) all bits.

1C to base 10
1. If sign bit (msb) is 1, flip all bits.
2. Convert N-bit unsigned value to base 10, using negative value if sign bit was 1.

Range of values
Number of positive values (including +0): 2N-1

Number of negative values (including -0): 2N-1

Total number of different values: 2N - 1
Negation

To negate a number, flip all bits.
Problems

2 zeroes, as in signed magnitude
addition is complicated, but easier than in signed magnitude

Since it has the same problems as SM, why look at 1C?
Because it leads to a better representation.

Integers: 2's complement

2's complement (2C) may not be intuitively obvious, but it has nice properties
Negation

1. flip all bits
2. add 1 (ignoring any carry out of the msb)
Example: 11ten is 01011 in 5-bit unsigned binary. Call this number B.

1. flip bits: 10100 ~B
2. add 1: + 1

10101 -B
What do we get if we add this to the original number?

01011 B
 + 10101 + -B

00000 0
If we negate B (-B) using 2C and negate again (--B) we get the original value B back.

1. flip bits: 01010 ~(-B)
2. add 1: + 1

01011 B
Other ways to do N-bit 2C negation:

1. Find the rightmost 1 bit, then flip all the higher bits (bits to the left).
 Example: 01011
 Rightmost 1 bit is b0

 flip bits to the left: 10101
Why does this work?

Consider N-bit value value: B = bN-1bN-2 . . . 1 0 . . . 0
where bk is 1 and all bi are 0 for i < k

If we create the negation -B by flipping the bits to the left of bk, then
 -B = ~bN-1~bN-2 . . . 1 0 . . . 0

What happens when we add these 2 numbers?
For each bi, i < k, the sum of the bits is 0 + 0 = 0

For bit k, the sum of the bits is 1 + 1 = 10, so the result is 0 with carry 1
Now, for i > k, each bit is either 0 or 1 in B and the opposite in -B
So, the result is 1 + 0 + carry bit 1 for a result of 0 and a carry 1
For the leftmost bit position N-1, the result is 0, and the final carry is ignored.
Therefore, the result consists of all 0's, which must be true for B + (-B)

2. Subtract B from value: 1 followed by N 0's.
 Example: 01011
 subtract from 100000: 100000

- 01011
10101

Odometer (Ferris Bueller) view: Ferris Bueller's Day Off
Consider a 4-digit decimal odometer.
What is the largest milage it can show?

9999
What happens if we go 1 more mile?

0000
Now, think of starting at 0000 and going backward, like Ferris:

Go back 1 mile, and the odometer reads 9999, 2 miles 9998, and so forth.
N-bit 2's complement is really like a binary odometer:

Go forward from 00 . . . 0 for positive numbers.
Go backward for negative numbers.

What's really going on here mathematically?
What is the value of 1 followed by N 0's? 2N

So, N-bit 2C is really based on arithmetic modulo 2N

This is why 2C has nice properties for doing arithmetic.
Advantages of 2C representation:

Only 1 zero
Add using same hardware as unsigned binary
Subtract by taking complement and adding.

Why is there only 1 zero?
Consider the 5-bit positive zero 00000

1. flip bits: 11111

2. add 1: + 1
00000

This is negative 0, but it has the same representation :)
Range of values:

Maximum positive number: 2N-1 - 1
Minimum negative number: - (2N-1)
Total number of values (including 0): 2N

Converting from base 10 to N-bit 2C
1. Convert to N bits UB
2. If number has minus sign, negate:

flip bits
add 1

Converting from N-bit 2C to base 10
1. If msb is 1 (negative number), negate
2. Convert result (or original value) as UB to base 10
3. If number was negative, insert minus sign

Conclusion: 2C rules!
Most computer representations of signed integers use 2C.

Integers: excess/bias

One disadvantage of 2C:
Can't sort values just using the bit representation.
Would look like negative numbers were greater than positive numbers.

Another idea:
Consider the unsigned values for a 3-bit representation

representation value excess-4
000 0 -4
001 1 -3
010 2 -2
011 3 -1
100 4 0
101 5 1
110 6 2
111 7 3

Represent negative values, but keep the values in representation order
First half of the representations for negative, second half for positive
This is called excess, or biased, representation.
Each value is shifted by a constant amount; in this case the bias is 4.
Since there are 3 bits, the bias value is 2(3-1) = 4
In general, for an N-bit representation, we will have half of the values negative

and half of the values non-negative if the bias is 2N-1.
However, the bias could be any number < 2N - 2

if the range of values includes both positive and negative numbers.
Range of values: N-bit excess K

Number of values: 2N

Minimum negative value: -K
Maximum positive value: 2N -1 - K

Converting base 10 to excess K
Add K to the number

Convert to unsigned binary
Converting excess K to base 10

Convert unsigned binary value to base 10
Subtract K

Disadvantage: Can't use unsigned binary hardware to do addition.
Excess notation is used as part of floating point representation.

Integers: BCD

Since people think in decimal, it may be convenient to use a decimal-like representation.
Binary coded decimal (BCD) uses unsigned binary to represent each decimal digit.
How many bits are needed?

4 bits per decimal digit: ceil (lg 10) = 4
Since 4 bits can represent 16 values, 6 values are unused for every digit.
Advantages

Decimal input/output doesn't require complicated conversion.
Fewer problems with repeating fractions.

Example:
Represent 1739ten in BCD:

decimal 1 7 3 9
BCD 0001 0111 0011 1001

Some early computers used BCD representation, and many calculators still use BCD.
Since calculators can be much slower than computers, they can use hardware which

operates on 4 bits at a time.
Negative values are represented using 10's complement (similar to 2C).

Integers: Sign extension

We may need to change the number of bits used to represent a number.
For example, C has int, short int, and long int to represent integers.
The language doesn't specify the exact size of each form, but

sizeof (short int) <= sizeof (int) <= sizeof (long int)
How do we cast from one kind of int to a larger number of bits?

ints are represented in N-bit 2C
To convert a number from N bits to N + K bits in 2C notation,

copy (extend) the sign bit from bit N-1 to bit N + K -1
If the value is positive, all the higher-order bits will become 0;

if the value is negative, all the higher-order bits will become 1.
All of the other bits (location N-2, . . . , 0) remain unchanged.

Example:
 3ten is 0011 in 4 bits
In 8 bits, it becomes 00000011 (the zero sign bit is extended to the left).
 -3ten is 1101 in 4 bits
In 8 bits, it becomes 11111101 (the one sign bit is extended to the left).

Casting to a shorter representation
May lose value

32-bit to 16-bit: upper 16 bits are chopped off
Unsigned binary

No sign bit, so extend with 0's

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

