More than you ever wanted to know about

Java Generics



GENERICS: A YOUNG LADY’S
ILLUSTRATED PRIMER IN FOUR SLIDES



Java 1.4: Life Before Generics

Java code used to look like this:

List 1listOfFruits = new ArraylList();

1listOfFruits.add(new Fruit(“Apple”));

Fruit apple = (Fruit) listOfFruits.remove(9);
listOfFruits.add(new Vegetable(“Carrot”)); // Whoops!

Fruit orange = (Fruit) listOfFruits.remove(®); // Run-time error

Problem: Compiler doesn’t know listOfFruits
should only contain fruits



A Silly Solution

We could make our own fruit-only list class:

class FruitList {
void add(Fruit element) { .. }
Fruit remove(int index) { .. }

But what about when we want a vegetable-only

list later? Copy-paste? Lots of bloated,
unmaintainable code?



Java 1.5: Now We're Talking

Now, Java code looks like this:

List<Fruit> 1listOfFruits = new ArraylList<Fruit>();
listOfFruits.add(new Fruit(“Apple”));

Fruit apple = listOfFruits.remove(9);

listOfFruits.add(new Vegetable(“Carrot”)); // Compile-time error

Hooray! Compiler now knows listOfFruits
contains only Fruits

* So remove() must return a Fruit
* And add() cannot take a Vegetable



You guys remember this, right?

Here’s how we’d write that generic List class:

class List<T> {
void add(T element) { .. }
T remove(int index) { .. }

¥

Problem solved! Simply invoke List<Fruit>,
List<Vegetable>, and so on. I'm sure you’ve
written code like this before, so let’s move to...



THE FUN STUFF



Abandon All Hope...

* Generics implement parametric polymorphism
— Parametric: The type parameter (e.g., <T>)...
— Polymorphism: ...can take many forms

* However, if we're going to program with

narameterized types, we need to understand
now the language rules apply to them

* Java generics are implemented using type
erasure, which leads to all sorts of wacky
issues, as we’ll see



Subtyping

Since Apple is a subtype of Object, is List<Apple>
a subtype of List<Object>?

List<Apple> apples = new ArraylList<Apple>();
List<Object> objs = apples; // Does this compile?

Seems harmless, but no! If that worked, we
could put Oranges in our List<Apple> like so:

objs.add(new Orange()); // OK because objs is a List<Object>
Apple a = apples.remove(@); // Would assign Orange to Apple!



An Aside: Subtyping and Java Arrays

* Java arrays actually have the subtyping
problem just described (they are covariant)

* The following obviously wrong code compiles,
only to fail at run-time:

Apple[] apples = new Apple[3];
Object[] objs = apples; // The compiler permits this!
objs[@] = new Orange(); // ArrayStoreException

* Avoid mixing arrays and generics (trust me)



Wildcard Types

So, what is List<Apple> a subtype of?

The supertype of all kinds of lists is List<?>,
the List of unknown

The ? is a wildcard that matches anything

We can’t add things (except null) to a List<?>,
since we don’t know what the List is really of

But we can retrieve things and treat them as
Objects, since we know they are at least that



Bounded Wildcards

* Wildcard types can have upper and lower
bounds

e A List<? extends Fruit> is a List of items that
have unknown type but are all at least Fruits

— So it can contain Fruits and Apples but not Peas

* A List<? super Fruit> is a List of items that
have unknown type but are all at most Fruits

— So it can contain Fruits and Objects but not Apples



Bounded Wildcards Example

class WholesaleVendor<T> {
void buy(int howMany, List<? super T> fillMeUp) { .. }
void sell(List<? extends T> emptyMe) { .. }

¥

WholesaleVendor<Fruit> vendor = new WholesaleVendor<Fruit>();
List<Food> stock = ..;
List<Apple> overstockApples = ..;

// I can buy Food from the Fruit vendor:
vendor.buy (100, stock);

// I can sell my Apples to the Fruit vendor:
vendor.sell(overstockApples);



Josh Bloch’s Bounded Wildcards Rule

* Use <? extends T> when parameterized
instance is a T producer (for reading/input)

* Use <? super T> when parameterized instance
is a T consumer (for writing/output)




Generic Methods

* You can parameterize methods too. Here’s a
signature from the Java API:

static <T> void fill(List<? super T> list, T obj);

* Easy enough, yeah? Try this one on for size:

static <T extends Object & Comparable<? super T>> T
max(Collection<? extends T> coll);

* You don’t need to explicitly instantiate generic
methods (the compiler will figure it out)



How Generics are Implemented

 Rather than change every JVM between Java 1.4
and 1.5, they chose to use erasure

* After the compiler does its type checking, it
discards the generics; the JVM never sees them!

* |t works something like this:
— Type information between angle brackets is thrown
out, e.g., List<String> = List

— Uses of type variables are replaced by their upper
bound (usually Object)

— Casts are inserted to preserve type-correctness



Pros and Cons of Erasure

* Good: Backward compatibility is maintained,
so you can still use legacy non-generic libraries

* Bad: You can’t find out what type a generic
class is using at run-time:

class Example<T> {
void method(Object item) {
if (item instanceof T) { .. } // Compiler error!
T anotherItem new T(); // Compiler error!
T[] itemArray = new T[10]; // Compiler error!



Using Legacy Code in Generic Code

e Say | have some generic code dealing with Fruits,
but | want to call this legacy library function:

Smoothie makeSmoothie(String name, List fruits);

* | can pass in my generic List<Fruit> for the fruits
parameter, which has the raw type List. But why?
That seems unsafe... makeSmoothie() could stick
a Vegetable in the list, and that would taste
nasty!



Raw Types and Generic Types

List doesn’t mean List<Object>, because then we
couldn’t pass in a List<Fruit> (subtyping,
remember?)

List doesn’t mean List<?> either, because then we
couldn’t assign a List to a List<Fruit> (which is a
legal operation)

We need both of these to work for generic code
to interoperate with legacy code

Raw types basically work like wildcard types, just
not checked as stringently
— These operations generate an unchecked warning



The Problem with Legacy Code

e “Calling legacy code from generic code is
inherently dangerous; once you mix generic
code with non-generic legacy code, all the
safety guarantees that the generic type system
usually provides are void. However, you are
still better off than you were without using
generics at all. At least you know the code on
vour end is consistent.” — Gilad Bracha, Java
Generics Developer



My Advice on Generics

* Don’t try to think about generic code
abstractly; make an example instantiation in
vour head and run through scenarios using it

* Generics are a valuable tool to ensure type
safety, so use them! Let the compiler help you

 However, generics also complicate syntax, and
they can generate some nasty errors that are a
pain to understand and debug



An Analogy: Functions

* Problem: | want to perform the same
computation on many different input values
without writing the computation over and over.

e Solution: Write a function! Use a variable to
represent the input value, and write your code to
perform the computation on this variable in a
way that does not depend on its value. Now you
can call the function many times, passing in
different values for the variable. Easy stuff.



Generics Provide Another Abstraction

* Problem: | want to use the same class (or method) with
objects of many different types without writing the
class over and over or sacrificing type safety.

e Solution: Generify the class! Use a variable T to
represent the input type, and write your code to
operate on objects of type T in a way that does not
depend on the actual value of T. Now you can
instantiate the class many times, passing in different
types for T.

* See? It’s not so bad. Generics just allow you to abstract
over types instead of values.



