CMSC 433 — Programming Language

Technologies and Paradigms
Spring 2006

Visitor Design Pattern

Visitor: Implementing Analyses

+ Often want to implement multiple analyses on the
same kind of object data
— Book example: computing with Menus

— Project example: Generating code for and analyzing an
Abstract Syntax Tree (AST) in a compiler

* One solution: implement each analysis as a
method in each object

Abstract Syntax Trees

public interface Node { }

public class Number extends Node {
public int n;

public class Plus extends Node {
public Node left;
public Node right;

Traversing Abstract Syntax Trees

public interface Node {
public int sum();

}

public class Number extends Node {
public int n;
public int sum() { return n; }

}

public class Plus extends Node{
public Node left;
public Node right;

public int sum() { return left.sum() +
right.sum(); } }

Naive approach (not a visitor)

hod Node

One metho TypeCheckl)

Jor each GenerateCode()

analysis PrettyPrint()
VariableRefNode AssignmentNode
TypeCheck() TypeCheck()
GenerateCode() GenerateCode()
PrettyPrint() PrettyPrint()

Tradeoffs with this Approach

* Follows idea “objects are responsible for themselves”
* But many analyses will occlude the object’s main code

» Result 1s classes that are hard to maintain

+ Alternatively, can define a separate visitor class

— A visitor encapsulates the operations to be performed
on an entire structure, e.g., all elements of a parse tree

» Allows operations to be separate from structure

— But doesn’t necessarily require putting all of the
structure traversal code into each visitor/operation

Sample Visitor class

NodeVisitor

VisitAssignment{AssignmentiNode)
VisitVarnableRef{VariableRefNode)

I |

TypeCheckingVisitor CodeGeneratingVisitor

VisitAssignment{AssignmentNode) VisitAssignment{AssignmentNecde)
VisitVariableRef{VariableRefNede) VisitVariable Ref{VariableRefNede)

How to perform traversal?

* Now that we have a visitor class, how do we apply
its analysis to the objects of interest?

— Add accept(visitor) method to each structure class, that
will invoke the given visitor on this

— Builds on Java’s dynamic dispatch

— Use an iteration algorithm (like an Iterator) to call
accept() on each relevant object

Sample visited objects

Program O—-J Node
Accept{NodeVisitor)
AssignmentNode VariableRefNode

Accept(NodaVisitor v) ? Accepl{NodeVisitor v) ?
i i
i 1

v—>V|5ilAss»gnmenl[this)ﬁ v—>VisitVa riableHel(thxs)H

Vistor Interaction

aNodeStructure aAssignmentNode aVariableRefNode aTypeCheckingVisitor

VisitAssignment(aAssignmentNode)
(aTypeChecking
Visitor)

someOperation()

Accept (aTypeCheckingVisitor)

VisitVariableRef

someQOperation()

Sample Visitor Class

public interface Visitor {
public void visitNumber (Number n) ;
public void visitPlus(Plus p);

public class SumVisitor implements Visitor {
int sum;
public void visitNumber (Number n) { sum += n; }
public void visitPlus(Plus p) {
p.left.accept(this);
p.right.accept (this) ;

Change to AST Classes

public interface Node {
public void accept(Visitor v);

}
public class Number extends Node {

public void accept(Visitor v) {v.visitNumber (this) ;}
}

public class Plus extends Node {

public void accept(Visitor v) {v.visitPlus(this)}
}

13

Visitor pattern

* Name
— Visitor or double dispatching
* Applicability

— Related objects must support different operations and
actual op depends on both the class and the op type

— Distinct and unrelated operations pollute class defs

— Key: object structure rarely changes, but ops changed
often

14

Visitor Pattern Structure

» Define two class hierarchies

— One for object structure
* AST in compiler, Menus and Menultems

in book example

— One for each operation family, called visitors

* One for typechecking, code generation, pretty printing in compiler
* One for printing menus, figuring out the per/item average cost, etc.

15

Structure of Visitor Pattern

Cllenl '—. Visitor
VisitCt

[
ConcreteVisitort ConcreteVisitor2
VisitCt teEl) VisitCor El El
VisitCe lemer VisitConcreteEl

4-| Objs Element
Accept(Visitor)

I—A—l

C

[

OperationA{)

Accept(Visitor v) =)
OperationB() !
I

Accept{Visitorv) @
:
T
'

V- >VisntConcreleEIemenlA(!hls)H

v-=VisitConcreteEl IememB(lhis)H

16

Visitor Pattern Consequences

Adding new operations is easy
— Add new op subclass with method for each concrete elt class
— Easier than modifying every element class
Gathers related operations and separates unrelated ones
Adding new concrete elements is difficult
— Must add a new method to each concrete Visitor subclass
Allows visiting across class hierachies
— Iterator needs a common superclass (i.e., composite pattern)

Visitor can accumulate state rather than pass it as
parameters .

Double-Dispatch

» Accept code is always trivial

— Just dynamic dispatch on argument, with runtime type
of structure node taking into account in method name

» A way of doing double-dispatch

— Traversal routine takes two arguments, the visitor and
the object to traverse

 o.accept(aVisitor) will dispatch on the actual identity of o (the object
being considered)

« ...and accept will internally dispatch on the identity of aVisitor (the
object visiting it)

Using Overloading in a Visitor

* You can name all of the visitXXX (XXX x)
methods just visit (XXX x)

— Calls to Visit (AssignmentNode n)
and Visit(VariableRefNode n) distinguished by
compile-time overload resolution

Visitors Can Forward Common Behavior

—_
o

» Useful for composites
— If subclasses of a particular object all treated the same
— Can have visit(SubClass) call visit(SuperClass)

* For example

— visit(BinaryPlusOperatorNode)
can just forward call to superclass
visit(BinaryOperatorNode)

20

State 1n a Visitor Pattern

A visitor can contain state
— E.g., the results of typechecking the program so far

class TypeCheckingVisitor extends Visitor {
private TypeMap map;
void visit(VariableDefNode n) { ..
map.add(n,t)
e}
}
 Or visitors pass around a separate state object
— Impacts the type of the Visitor superclass

21

Implementing Traversal

* Who is responsible for traversing object structure?

» Plausible answers:
— Visitor
* But, must replicate traversal code in each concrete visitor

— Object structure

» Define operation that performs traversal while applying visitor object
to each component

— Iterator

* Iterator sends message to visitor with current element as arg

22

Traversals

+ It’s sometimes preferable to try to keep traversal separate
from the Visitor
— E.g., use an Iterator
— Thus traversal and analysis can evolve independently

* But can also do it within node or visitor class. Several
solutions here:
— acceptAndTraverse methods

+ traverse from within accept()
— Separating processing from traversal

* Visit/process methods

— Traversal visitors applying an operational visitor

23

Accept and Traverse Example

* (Class BinaryPlusOperatorNode {
void accept(Visitor v) {
v.visit(this);
lhs.accept(v);
rhs.accept(v);

b

24

acceptAndTraverse Methods

» Accept method could be responsible for traversing
children
— Assumes all visitors have same traversal pattern
» E.g., visit all nodes in pre-order traversal
— Could provide previsit and postvisit methods to allow
for more complicated traversal patterns
» Still visit every node

» Can’t do out of order traversal
* In-order traversal requires inVisit method

25

Visitor/Process Methods

* Can have two parallel sets of methods in visitors
— Visit() methods
— Process() methods

* How it works: the visit() method on a node:

— Calls process() method of visitor, passing node as an
argument

— Calls accept() on all children of the node (passing the
visitor as an argument)
» Allows finer-grained subtyping of Visitor classes
that include traversal
— Subclass a visitor, and just change the process method 2

Preorder Visitor

* Class PreorderVisitor {
void visit(BinaryPlusOperatorNode n) {
process(n);
n.lhs.accept(this);
n.rhs.accept(this);

b

27

Visit/Process, Continued

* (Can define a PreorderVisitor

— Extend it, and just redefine process method

» Except for the few cases where something other than preorder
traversal is required

* (Can define other traversal visitors as well
— E.g., PostOrderVisitor

28

Traversal Visitors Applying an

Operational Visitor

* Define a Preorder traversal visitor
— Takes an operational visitor as an argument when
created
* Perform preorder traversal of structure
— At each node

» Have node accept operational visitor
» Have each child accept traversal visitor

29

PreorderVisitor with Payload

* Class PreorderVisitor {
Visitor payload;
PreorderVisitor(Visitor p) { payload =p; }
void visit(BinaryPlusOperatorNode n) {
payload.visit(n);
n.lhs.accept(this);
n.rhs.accept(this);

b

30

