15-213

“The course that gives CMU its Zip!”

Dynamic Memory Allocation |
Nov 5, 2002

Topics
= Simple explicit allocators
o Data structures
® Mechanisms
e Policies

class2l.ppt

Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap Memory

Explicit vs. Implicit Memory Allocator

m Explicit: application allocates and frees space
e E.g., mallocand freeinC

= Implicit: application allocates, but does not free space
e E.g. garbage collection in Java, ML or Lisp

Allocation

= In both cases the memory allocator provides an abstraction of
memory as a set of blocks

m Doles out free memory blocks to application
Will discuss simple explicit memory allocation today

3 15-213, F'02

Harsh Reality

Memory Matters

Memory is not unbounded
= |t must be allocated and managed
= Many applications are memory dominated

e Especially those based on complex, graph algorithms

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of memory system can
lead to major speed improvements

-2- 15-213, F'02

Process Memory Image

kernel virtual memory T r:::ll’%rg J:v's'ble to
tesp —p STCK
Memory mapped region for
Allocators request shared libraries
additional heap memory
from the operating
system using the sbrk f «— the “brk” ptr
function. - .
run-time heap (via malloc)
uninitialized data (.bss)
initialized data (.data)
program text (.text)
4 0 15-213, F'02

Malloc Package

#include <stdlib.h>

void *malloc(size_t size)

m If successful:

e Returns a pointer to a memory block of at least size bytes, (typically)

aligned to 8-byte boundary.
o If size == 0, returns NULL

m If unsuccessful: returns NULL (0) and sets errno.

void free(void *p)
m Returns the block pointed at by p to pool of available memory

= p must come from a previous call to malloc or realloc.

void *realloc(void *p, size_ t size)

m Changes size of block p and returns pointer to new block.

m Contents of new block unchanged up to min of old and new size.

Assumptions

Assumptions made in this lecture
= Memory is word addressed (each word can hold a pointer)

15-213, F'02

D Free word
Allocated block Free block
(4 words) (3 words) D Allocated word

15-213, F'02

Malloc Example

void foo(int n, int m) {
int i, *p;

/* allocate a block of n ints */

if ((p = (int *) malloc(n * sizeof(int))) == NULL) {

perror ("malloc") ;
exit (0) ;

}

for (i=0; i<n; i++)
pli] = i;

/* add m bytes to end of p block */

if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL)

perror ("realloc") ;
exit(0);

}

for (i=n; i < n+m; i++)
pli] = i;

/* print new array */

for (i=0; i<n+m; i++)
printf ("$d\n", p[il);

free(p); /* return p to available memory pool */

} 3, F02
Allocation Examples
pl = malloc(4)
EEEEEEEEEEEEEEEEE
p2 = malloc(5)
LTI T Tl
p3 = malloc(6)
LTI PET |
free (p2)
LT[P |
p4 = malloc(2)
LT [P
15-213, F02

Constraints Goals of Good malloc/free

Applications: Primary goals
m Can issue arbitrary sequence of allocation and free requests m Good time performance for malloc and free
m Free requests must correspond to an allocated block © Ideally should take constant time (not always possible)
e Should certainly not take linear time in the number of blocks
Allocators m Good space utilization
= Can’t control number or size of allocated blocks e User allocated structures should be large fraction of the heap.
= Must respond immediately to all allocation requests e Want to minimize “fragmentation”.

®j.e., can’t reorder or buffer requests
m Must allocate blocks from free memory
®j.e., can only place allocated blocks in free memory

m Must align blocks so they satisfy all alignment requirements
@8 byte alignment for GNU malloc (1ibc malloc) on Linux boxes

Some other goals
m Good locality properties
o Structures allocated close in time should be close in space
o “Similar” objects should be allocated close in space

. . = Robust
= Can only manipulate and modify free memory ® Can check that free (p1) is on a valid allocated object p1
= Can’t move the allocated blocks once they are allocated e Can check that memory references are to allocated space
®j.e., compaction is not allowed
—9- 15-213, F102 -10- 15-213, F'02

Performance Goals:

Performance Goals: Throughput Peak Memory Utilization

Given some sequence of malloc and free requests:
= Ry Ry ooy Ry oo s Ry Given some sequence of malloc and free requests:
= R, R, ... Ry .., R4

Want to maximize throughput and peak memory
utilization. Def: Aggregate payload P,:
® malloc (p) results in a block with a payload of p bytes..

m After request R, has completed, the aggregate payload P, is
the sum of currently allocated payloads.

m These goals are often conflicting

Throughput: Def: Current heap size is denoted by H,
= Number of completed requests per unit time m Assume that H, is monotonically nondecreasing
= Example: _ Def: Peak memory utilization:
e 5,000 malloc calls and 5,000 free calls in 10 seconds m After k requests, peak memory utilization is:
e Throughput is 1,000 operations/second. o U, =(max_P,) / H,

-11- 15-213, F'02 -12- 15-213, F'02

Internal Fragmentation

Poor memory utilization caused by fragmentation.
m Comes in two forms: internal and external fragmentation

Internal fragmentation
m For some block, internal fragmentation is the difference between
the block size and the payload size.
block
A
~ —~
Internal V

// Internal
. — payload / fragmentation
fragmentation % A g

m Caused by overhead of maintaining heap data structures, padding
for alignment purposes, or explicit policy decisions (e.g., not to
split the block).

m Depends only on the pattern of previous requests, and thus is easy
to measure.

—13— 15-213, F'02

Implementation Issues

® How do we know how much memory to free just
given a pointer?

® How do we keep track of the free blocks?

® What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

® How do we pick a block to use for allocation -- many
might fit?

® How do we reinsert freed block?
PO

free (p0)

15— Pl = malloc(l) 15-213, F'02

External Fragmentation

Occurs when there is enough aggregate heap memory, but no single
free block is large enough

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)
LTI [P |

p4 = malloc(6)

oops!

External fragmentation depends on the pattern of future requests, and
thus is difficult to measure.

14— 15-213, F'02

Knowing How Much to Free

Standard method

m Keep the length of a block in the word preceding the block.
o This word is often called the header field or header

= Requires an extra word for every allocated block

PO = malloc(4) P

N
Block size data
|

—16— 15-213, F'02

0

free (p0)

Keeping Track of Free Blocks

Method 1: Implicit list using lengths -- links all blocks

5 4 6 2

Method 2: Explicit list among the free blocks using
pointers within the free blocks

/\
[s|A7| [[al e [1] [[2]7]

Method 3: Segregated free list
m Different free lists for different size classes

Method 4: Blocks sorted by size

m Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

17— 15-213, F'02

Implicit List: Finding a Free Block

First fit:
m Search list from beginning, choose first free block that fits

p = start;

while ((p < end) || \\ not passed end
(*p & 1) || \\ already allocated
(*p <= len)); \\ too small

m Can take linear time in total number of blocks (allocated and free)
m |n practice it can cause “splinters” at beginning of list

Next fit:
m Like first-fit, but search list from location of end of previous search
m Research suggests that fragmentation is worse

Best fit:
m Search the list, choose the free block with the closest size that fits
m Keeps fragments small --- usually helps fragmentation
m Will typically run slower than first-fit

19— 15-213, F'02

Method 1: Implicit List

Need to identify whether each block is free or allocated
m Can use extra bit

m Bit can be put in the same word as the size if block sizes are
always multiples of two (mask out low order bit when
reading size).

1 word
: a = 1: allocated block

stze a a = 0: free block

Format of size: block siz

faIIoclz:Itedkand payload €: bloc €

ree blocks payload: application data

(allocated blocks only)
optional
padding
— 18— 15-213, F'02

Implicit List: Allocating in Free Block

Allocating in a free block - splitting

m Since allocated space might be smaller than free space, we
might want to split the block

4 4 6 2
p

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1; // add 1 and round up

int oldsize = *p & -2; // mask out low bit

*p = newsize | 1; // set new length

if (newsize < oldsize)

* (p+tnewsize) = oldsize - newsize; // set length in remaining

} // part of block

addblock (p, 2)

4 4 4 2 2
—20- 15-213, F'02

Implicit List: Freeing a Block

Simplest implementation:

= Only need to clear allocated flag
void free block(ptr p) { *p = *p & -2}

m But can lead to “false fragmentation”

4 4 4 2 2
A
free (p) P
4 4 4 2 2
malloc (5) Oops!

There is enough free space, but the allocator won’t be able to
find it

21— 15-213, F'02

Implicit List: Bidirectional Coalescing

Boundary tags [Knuth73]
m Replicate size/allocated word at bottom of free blocks
m Allows us to traverse the “list” backwards, but requires extra space
= Important and general technique!

1 word
Header) size a

a = 1: allocated block
Format of a = 0: free block
allocated and payload and o)
free blocks padding size: total block size

payload: application data

Boundary tag —» . | a (allocated blocks only)
(footer)

— 23— 15-213, F'02

Implicit List: Coalescing

Join (coelesce) with next and/or previous block
if they are free

m Coalescing with next block

void free block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated
4 4 4 2 2
A
free (p) P
4 4 6 2

» m But how do we coalesce with previous block?; ;5 r.

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
. allocated allocated free free
;)Ioccll(being __,
ree allocated free allocated free

_2o4— 15-213, F'02

Constant Time Coalescing (Case 1) Constant Time Coalescing (Case 2)

m1 1 m 1 m1 1 m |1
mi 1 mi 1 mi 1 mi 1
n 1 n 0 n 1 n+m2 0
— —
n 1 n 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+m2 0
—-25- 15-213, F02 -26— 15-213, F'02
Constant Time Coalescing (Case 3) Constant Time Coalescing (Case 4)
m1 0 ntml | 0 mi 0 n+mi+m2 | 0
mi 0 mi 0
n 1 n 1
— —
n 1 n+mi 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+fmi+m2 | 0

—-27 - 15-213, F'02 —-28-— 15-213, F'02

Summary of Key Allocator Policies

Placement policy:
m First fit, next fit, best fit, etc.
m Trades off lower throughput for less fragmentation

e Interesting observation: segregated free lists (next lecture) approximate
a best fit placement policy without having the search entire free list.

Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

Coalescing policy:
= Immediate coalescing: coalesce adjacent blocks each time free is
called
= Deferred coalescing: try to improve performance of free by
deferring coalescing until needed. e.g.,
e Coalesce as you scan the free list for malloc.
e Coalesce when the amount of external fragmentation reaches some

threshold.
—29— 15-213, F'02

Implicit Lists: Summary

® Implementation: very simple
@ Allocate: linear time worst case
® Free: constant time worst case -- even with coalescing

® Memory usage: will depend on placement policy
m First fit, next fit or best fit

Not used in practice for malloc/free because of linear
time allocate. Used in many special purpose
applications.

However, the concepts of splitting and boundary tag
coalescing are general to all allocators.

—-30-— 15-213, F'02

