
Dynamic Memory Allocation I
Nov 5, 2002

Dynamic Memory Allocation I
Nov 5, 2002

TopicsTopics

! Simple explicit allocators

" Data structures

" Mechanisms

" Policies

class21.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Harsh RealityHarsh Reality

Memory MattersMemory Matters

Memory is not unboundedMemory is not unbounded

! It must be allocated and managed

! Many applications are memory dominated

" Especially those based on complex, graph algorithms

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious

! Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform

! Cache and virtual memory effects can greatly affect program

performance

! Adapting program to characteristics of memory system can

lead to major speed improvements

– 3 – 15-213, F’02

Dynamic Memory AllocationDynamic Memory Allocation

Explicit vs. Implicit Memory Explicit vs. Implicit Memory AllocatorAllocator

! Explicit: application allocates and frees space
" E.g., malloc and free in C

! Implicit: application allocates, but does not free space
" E.g. garbage collection in Java, ML or Lisp

AllocationAllocation

! In both cases the memory allocator provides an abstraction of
memory as a set of blocks

! Doles out free memory blocks to application

Will discuss simple explicit memory allocation todayWill discuss simple explicit memory allocation today

Application

Dynamic Memory Allocator

Heap Memory

– 4 – 15-213, F’02

Process Memory ImageProcess Memory Image

kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%esp

memory invisible to
 user code

the “brk” ptr

Allocators request
additional heap memory
from the operating
system using the sbrk
function.

– 5 – 15-213, F’02

Malloc PackageMalloc Package

#include <#include <stdlibstdlib.h>.h>

void *void *mallocmalloc(size_t size)(size_t size)

! If successful:
" Returns a pointer to a memory block of at least size bytes, (typically)

aligned to 8-byte boundary.

" If size == 0, returns NULL

! If unsuccessful: returns NULL (0) and sets errno.

void free(void *p)void free(void *p)

! Returns the block pointed at by p to pool of available memory

! p must come from a previous call to malloc or realloc.

void *void *reallocrealloc(void *p, size_t size)(void *p, size_t size)

! Changes size of block p and returns pointer to new block.

! Contents of new block unchanged up to min of old and new size.

– 6 – 15-213, F’02

Malloc ExampleMalloc Example
void foo(int n, int m) {
 int i, *p;

 /* allocate a block of n ints */
 if ((p = (int *) malloc(n * sizeof(int))) == NULL) {
 perror("malloc");
 exit(0);
 }
 for (i=0; i<n; i++)
 p[i] = i;

 /* add m bytes to end of p block */
 if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL)
{
 perror("realloc");
 exit(0);
 }
 for (i=n; i < n+m; i++)
 p[i] = i;

 /* print new array */
 for (i=0; i<n+m; i++)
 printf("%d\n", p[i]);

 free(p); /* return p to available memory pool */
}

– 7 – 15-213, F’02

AssumptionsAssumptions

Assumptions made in this lectureAssumptions made in this lecture

! Memory is word addressed (each word can hold a pointer)

Allocated block

(4 words)
Free block

(3 words)

Free word

Allocated word

– 8 – 15-213, F’02

Allocation ExamplesAllocation Examples

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

– 9 – 15-213, F’02

ConstraintsConstraints

Applications:Applications:

! Can issue arbitrary sequence of allocation and free requests

! Free requests must correspond to an allocated block

AllocatorsAllocators

! Can’t control number or size of allocated blocks

! Must respond immediately to all allocation requests

"i.e., can’t reorder or buffer requests

! Must allocate blocks from free memory

"i.e., can only place allocated blocks in free memory

! Must align blocks so they satisfy all alignment requirements

"8 byte alignment for GNU malloc (libc malloc) on Linux boxes

! Can only manipulate and modify free memory

! Can’t move the allocated blocks once they are allocated

"i.e., compaction is not allowed
– 10 – 15-213, F’02

Goals of Good malloc/freeGoals of Good malloc/free

Primary goalsPrimary goals

! Good time performance for malloc and free

" Ideally should take constant time (not always possible)

" Should certainly not take linear time in the number of blocks

! Good space utilization

" User allocated structures should be large fraction of the heap.

" Want to minimize “fragmentation”.

Some other goalsSome other goals

! Good locality properties

" Structures allocated close in time should be close in space

" “Similar” objects should be allocated close in space

! Robust

" Can check that free(p1) is on a valid allocated object p1

" Can check that memory references are to allocated space

– 11 – 15-213, F’02

Performance Goals: ThroughputPerformance Goals: Throughput

Given some sequence of Given some sequence of malloc malloc and free requests:and free requests:

! R0, R1, ..., Rk, ... , Rn-1

Want to maximize throughput and peak memoryWant to maximize throughput and peak memory
utilization.utilization.

! These goals are often conflicting

Throughput:Throughput:

! Number of completed requests per unit time

! Example:

" 5,000 malloc calls and 5,000 free calls in 10 seconds

" Throughput is 1,000 operations/second.

– 12 – 15-213, F’02

Performance Goals:
Peak Memory Utilization
Performance Goals:
Peak Memory Utilization

Given some sequence of Given some sequence of mallocmalloc and free requests: and free requests:
! R0, R1, ..., Rk, ... , Rn-1

Def: Aggregate payload Def: Aggregate payload PPkk::
! malloc(p) results in a block with a payload of p bytes..

! After request Rk has completed, the aggregate payload Pk is
the sum of currently allocated payloads.

Def: Current heap size is denoted by Def: Current heap size is denoted by HHkk

! Assume that Hk is monotonically nondecreasing

Def: Peak memory utilization:Def: Peak memory utilization:
! After k requests, peak memory utilization is:

" Uk = (maxi<k Pi) / Hk

– 13 – 15-213, F’02

Internal FragmentationInternal Fragmentation

Poor memory utilization caused by Poor memory utilization caused by fragmentationfragmentation..

! Comes in two forms: internal and external fragmentation

Internal fragmentationInternal fragmentation

! For some block, internal fragmentation is the difference between
the block size and the payload size.

! Caused by overhead of maintaining heap data structures, padding
for alignment purposes, or explicit policy decisions (e.g., not to
split the block).

! Depends only on the pattern of previous requests, and thus is easy
to measure.

payload
Internal
fragmentation

block

Internal
fragmentation

– 14 – 15-213, F’02

External FragmentationExternal Fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

oops!

Occurs when there is enough aggregate heap memory, but no single
free block is large enough

External fragmentation depends on the pattern of future requests, and

thus is difficult to measure.

– 15 – 15-213, F’02

Implementation IssuesImplementation Issues

"" How do we know how much memory to free justHow do we know how much memory to free just
given a pointer?given a pointer?

"" How do we keep track of the free blocks?How do we keep track of the free blocks?

"" What do we do with the extra space when allocatingWhat do we do with the extra space when allocating
a structure that is smaller than the free block it isa structure that is smaller than the free block it is
placed in?placed in?

"" How do we pick a block to use for allocation -- manyHow do we pick a block to use for allocation -- many
might fit?might fit?

"" How do we reinsert freed block?How do we reinsert freed block?

p1 = malloc(1)

p0

free(p0)

– 16 – 15-213, F’02

Knowing How Much to FreeKnowing How Much to Free
Standard methodStandard method

! Keep the length of a block in the word preceding the block.

"This word is often called the header field or header

! Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size data

5

– 17 – 15-213, F’02

Keeping Track of Free BlocksKeeping Track of Free Blocks

Method 1Method 1: : Implicit listImplicit list using lengths -- links all blocks using lengths -- links all blocks

Method 2Method 2: : Explicit listExplicit list among the free blocks using among the free blocks using
pointers within the free blockspointers within the free blocks

Method 3Method 3: : Segregated free listSegregated free list
! Different free lists for different size classes

Method 4Method 4: Blocks sorted by size: Blocks sorted by size
! Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

– 18 – 15-213, F’02

Method 1: Implicit ListMethod 1: Implicit List

Need to identify whether each block is free or allocatedNeed to identify whether each block is free or allocated

! Can use extra bit

! Bit can be put in the same word as the size if block sizes are

always multiples of two (mask out low order bit when

reading size).

size

1 word

Format of
allocated and

free blocks
payload

a = 1: allocated block
a = 0: free block

size: block size

payload: application data

(allocated blocks only)

a

optional
padding

– 19 – 15-213, F’02

Implicit List: Finding a Free BlockImplicit List: Finding a Free Block

First fit:First fit:

! Search list from beginning, choose first free block that fits

! Can take linear time in total number of blocks (allocated and free)

! In practice it can cause “splinters” at beginning of list

Next fit:Next fit:

! Like first-fit, but search list from location of end of previous search

! Research suggests that fragmentation is worse

Best fit:Best fit:

! Search the list, choose the free block with the closest size that fits

! Keeps fragments small --- usually helps fragmentation

! Will typically run slower than first-fit

p = start;
while ((p < end) || \\ not passed end
 (*p & 1) || \\ already allocated
 (*p <= len)); \\ too small

– 20 – 15-213, F’02

Implicit List: Allocating in Free BlockImplicit List: Allocating in Free Block

Allocating in a free block - Allocating in a free block - splittingsplitting

! Since allocated space might be smaller than free space, we

might want to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // add 1 and round up
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 2)

– 21 – 15-213, F’02

Implicit List: Freeing a BlockImplicit List: Freeing a Block

Simplest implementation:Simplest implementation:

! Only need to clear allocated flag

 void free_block(ptr p) { *p = *p & -2}

! But can lead to “false fragmentation”

There is enough free space, but the allocator won’t be able to
find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5)
Oops!

– 22 – 15-213, F’02

Implicit List: CoalescingImplicit List: Coalescing

Join (Join (coelescecoelesce) with next and/or previous block) with next and/or previous block
if they are freeif they are free

! Coalescing with next block

! But how do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6

void free_block(ptr p) {

 *p = *p & -2; // clear allocated flag

 next = p + *p; // find next block

 if ((*next & 1) == 0)

 *p = *p + *next; // add to this block if

} // not allocated

– 23 – 15-213, F’02

Implicit List: Bidirectional CoalescingImplicit List: Bidirectional Coalescing

Boundary tagsBoundary tags [Knuth73] [Knuth73]

! Replicate size/allocated word at bottom of free blocks

! Allows us to traverse the “list” backwards, but requires extra space

! Important and general technique!

size

1 word

Format of

allocated and
free blocks

payload and
padding

a = 1: allocated block
a = 0: free block

size: total block size

payload: application data
(allocated blocks only)

a

size aBoundary tag

 (footer)

4 4 4 4 6 46 4

Header

– 24 – 15-213, F’02

Constant Time CoalescingConstant Time Coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being

freed

Case 1 Case 2 Case 3 Case 4

– 25 – 15-213, F’02

m1 1

Constant Time Coalescing (Case 1)Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

– 26 – 15-213, F’02

m1 1

Constant Time Coalescing (Case 2)Constant Time Coalescing (Case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0

– 27 – 15-213, F’02

m1 0

Constant Time Coalescing (Case 3)Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

– 28 – 15-213, F’02

m1 0

Constant Time Coalescing (Case 4)Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

– 29 – 15-213, F’02

Summary of Key Allocator PoliciesSummary of Key Allocator Policies

Placement policy:Placement policy:

! First fit, next fit, best fit, etc.

! Trades off lower throughput for less fragmentation

" Interesting observation: segregated free lists (next lecture) approximate

a best fit placement policy without having the search entire free list.

Splitting policy:Splitting policy:

! When do we go ahead and split free blocks?

! How much internal fragmentation are we willing to tolerate?

Coalescing policy:Coalescing policy:

! Immediate coalescing: coalesce adjacent blocks each time free is
called

! Deferred coalescing: try to improve performance of free by

deferring coalescing until needed. e.g.,

" Coalesce as you scan the free list for malloc.

" Coalesce when the amount of external fragmentation reaches some

threshold.
– 30 – 15-213, F’02

Implicit Lists: SummaryImplicit Lists: Summary

"" Implementation: Implementation: very simplevery simple

"" Allocate: Allocate: linear time worst caselinear time worst case

"" Free: Free: constant time worst case -- even with coalescingconstant time worst case -- even with coalescing

"" Memory usage: Memory usage: will depend on placement policywill depend on placement policy

! First fit, next fit or best fit

Not used in practice for Not used in practice for mallocmalloc/free because of linear/free because of linear
time allocate. Used in many special purposetime allocate. Used in many special purpose
applications.applications.

However, the concepts of splitting and boundary tagHowever, the concepts of splitting and boundary tag
coalescing are general to coalescing are general to allall allocatorsallocators..

