Lecture Notes CMSC 420

W Case 2(21) _Case2(b)_ N

Figure 87: Case 2.

Lecture X02: BB-trees

Reading: This is not covered in our readings.

BB-trees: We introduced B-trees earlier, and mentioned that they are good for storing data on
disks. However, B-trees can be stored in main memory as well, and are an alternative to AVL
trees, since both guarantee O(logn) wost case time for dictionary operations (not amortized,
not randomized, not average case). Unfortunately, implementing B-trees is quite a messy
programming task in general. BB-trees are a special binary tree implementation of 2-3 trees,
and one of their appealing aspects is that they are very easy to code (arguably even easier
than AVL trees).

Recall that in a 2-3 tree, each node has either 2 or 3 children, and if a node has j children,
then it has j — 1 key values. We can represent a single node in a 2-3 tree using either 1 or 2
nodes in a binary tree, as illustrated below.

S
joy

Figure 88: Binary representation of 2-3 tree nodes.

When two nodes of a BB-tree are used to represent a single node of a 2-3 tree, this pair of
nodes is called pseudo-node. When we represent a 2-3 tree using this binary representation,
we must be careful to keep straight which pairs of vertices are pseudo-nodes. To do this, we
create an additional field in each node that contains the level of the node in the 2-3 tree. The
leaves of the 2-3 tree are at level 1, and the root is at the highest level. Two adjacent nodes
in a BB-tree (parent and right child) that are of equal level form a single pseudo-node.

The term “BB-tree” stands for “binary B-tree”. Note that in other textbooks there is a data
structure called a “bounded balance” tree, which also goes by the name BB-tree. Be sure
you are aware of the difference. BB-trees are closely related to red-black trees, which are a
binary representation of 2-3-4 trees. However, because of their additional structure the code
for BB-trees is quite a bit simpler than the corresponding code for red-black trees.

As is done with skip-lists, it simplifies coding to create a special sentinel node called nil.

1Copyright, David M. Mount, 2001

29 -1



Lecture Notes CMSC 420

Rather than using null pointers, we store a pointer to the node nil as the child in each leaf.
The level of the sentinel node is 0. The left and right children of nil point back to nil.

The figure below illustrates a 2-3 tree and the corresponding BB-tree.

Figure 89: BB-tree corresponding to a 2-3 tree.

Note that the edges of the tree can be broken into two classes, vertical edges that correspond
to 2-3 tree edges, and horizontal edges that are used to join the two nodes that form a pseudo-
node.

BB-tree operations: Since a BB-tree is essentially a binary search tree, find operations are no
different than they are for any other binary tree. Insertions and deletions operate in essentially
the same way they do for AVL trees, first insert or delete the key, and then retrace the search
path and rebalance as you go. Rebalancing is performed using rotations. For BB-trees the two
rotations go under the special names skew() and split. Their intuitive meanings are:

skew(p) : replace any horizontal left edge with a horizontal right edge by a right rotation at
p.
split(p): if a pseudo-node is too large (i.e. more than two consecutive nodes at the same

level), then split it by increasing the level of every other node. This is done by making
left rotations along a right path of horizontal edges.

Here is their implementation. Split only splits one set of three nodes.
BB-tree Utilities skew and split

BBNode skew(BBNode p) {
if (p.left.level == p.level) {
q = p.left
p.left = q.right
q.right = p
return q
b
else return p
b
BBNode split(BBNode p) {
if (p.right.right.level == p.level) {
q = p.right
p.right = q.left
q.left = p
q.level++
return q

29 -2



Lecture Notes CMSC 420

}

else return p

Insertion: Insertion performs in the usual way. We walk down the tree until falling out, and insert
the new key at the point we fell out. The new node is at level 1. We return up the search
path and rebalance. At each node along the search path it suffices to perform one skew and
one split.

]
]

o
@J
S
w”"e
BOR

NG
\°\

2 .

14

oRoloNOROYRT

Figure 90: BB-tree insertion.

BB-Tree Insertion

BBNode insert(int x, BBNode t) {

if (t == nil) { // empty tree
t = new BBNode(x,1,nil,nil) // new node a level 1
}
else {
if (x < t.data)
t.left = insert(x, t.left) // insert on left
else if (x > t.data)
t.right = insert(x, t.right) // insert on right
else // duplicate key
...error: duplicate key...
t = skew(t) // rebalance
t = split(t)
}

29 -3



Lecture Notes CMSC 420

return t

Deletion: As usual deletion is more of a hassle. We first locate the node to be deleted. We replace
it’s key with an appropriately chose key from level 1 (which need not be a leaf) and proceed to
delete the node with replacement key. We retrace the search path towards the root rebalancing
along the way. At each node p that we visit there are a number of things that can happen.

(a) If p’s child is 2 levels lower, then p drops a level. If p is part of a pseudo-node of size 2,
then both nodes drop a level.

(b) Apply a sufficient number of skew operations to align the nodes at this level. In general
3 may be needed: one at p, one at p’s right child, and one at p’s right-right grandchild.

(¢) Apply a sufficient number of splits to fix things up. In general, two may be needed: one
at p, and one at p’s right child.

32 oW - N - B S oW

OROLONONOND) TROIOROROI®

0 Dnﬂ '

. . decrease level

L™ delete(t)

(O8]

(3]

HONROLGIONOMR®
RO,

Figure 91: BB-tree deletion.

Important note: We use 3 global variables: nil is a pointer to the sentinel node at level 0,
del is a pointer to the node to be deleted, repl is the replacement node. Before calling
this routine from the main program, initialize del = nil.

29 -4



Lecture Notes

CMSC 420

BB-Tree Deletion

BBNode delete(int x, BBNode t) {

if (¢t !'= nil) { // search tree for repl and del

repl = t
if (x < t.data)
t.left = delete(x, t.left)

else {
del = ¢
t.right = delete(x, t.right)
}
if (t == repl) { // if at bottom remove item
if ((del != nil) && (x == del.data)) {
del.data = t.data
del = nil
t = t.right // unlink replacement
delete repl // destroy replacement
}
else
...error: deletion of nonexistent key...
}

// lost a level?
else if ((t.left.level < t.level - 1) ||
(t.right.level < t.level - 1)) {
t.level-- // drop down a level
if (t.right.level > t.level) {
t.right.level = t.level

}
t = skew(t)
t.right = skew(t.right)
t.right.right = skew(t.right.right)
t = split(t)
t.right = split(t.right)
}
}
return t

29 -5



