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Lecture 1: Course Introduction and Background

Algorithms and Data Structures: The study of data structures and the algorithms that ma-
nipulate them is among the most fundamental topics in computer science. Most of what
computer systems spend their time doing is storing, accessing, and manipulating data in one
form or another. Some examples from computer science include:

Networking: Suppose you need to multicast a message from one source node to many other
machines on the network. Along what paths should the message be sent, and how can
this set of paths be determined from the network’s structure?

Information Retrieval: How does a search engine like Google store the contents of the Web
so that the few pages that are most relevant to a given query can be extracted quickly?

Compilers: You need to store a set of variable names along with their associated types.
Given an assignment between two variables we need to look them up in a symbol table,
determine their types, and determine whether it is possible to cast from one type to the
other (say because one is a subtype of the other).

Computer Graphics: You are designing a virtual reality system for an architectural building
walk-through. Given the location of the viewer, what portions of the architectural design
are visible to the viewer?

In many areas of computer science, much of the content deals with the questions of how to
store, access, and manipulate the data of importance for that area. In this course we will
deal with the first two tasks of storage and access at a very general level. (The last issue of
manipulation is further subdivided into two areas, manipulation of numeric or floating point
data, which is the subject of numerical analysis, and the manipulation of discrete data, which
is the subject of discrete algorithm design.) An good understanding of data structures is
fundamental to all of these areas.

What is a data structure? Whenever we deal with the representation of real world objects in
a computer program we must first consider a number of issues:

Modeling: the manner in which objects in the real world are modeled as abstract mathemat-
ical entities and basic data types,

Operations: the operations that are used to store, access, and manipulate these entities and
the formal meaning of these operations,

Representation: the manner in which these entities are represented concretely in a com-
puter’s memory, and

Algorithms: the algorithms that are used to perform these operations.

Note that the first two items above are essentially mathematical in nature, and deal with the
“what” of a data structure, whereas the last two items involve the implementation issues and
the “how” of the data structure. The first two essentially encapsulate the essence of an abstract
data type (or ADT). In contrast the second two items, the concrete issues of implementation,
will be the focus of this course.

For example, you are all familiar with the concept of a stack from basic programming classes.
This a sequence of objects (of unspecified type). Objects can be inserted into the stack by
pushing and removed from the stack by popping. The pop operation removes the last unremoved
object that was pushed. Stacks may be implemented in many ways, for example using arrays
or using linked lists. Which representation is the fastest? Which is the most space efficient?
Which is the most flexible? What are the tradeoffs involved with the use of one representation
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over another? In the case of a stack, the answers are all rather mundane. However, as data
structures grow in complexity and sophistication, the answers are far from obvious.

In this course we will explore a number of different data structures, study their implementa-
tions, and analyze their efficiency (both in time and space). One of our goals will be to provide
you with the tools that you will need to design and implement your own data structures to
solve your own specific problems in data storage and retrieval.

Course Overview: In this course we will consider many different abstract data types, and we will
consider many different data structures for storing each type. Note that there will generally
be many possible data structures for each abstract type, and there will not generally be a
“best” one for all circumstances. It will be important for you as a designer of data structures
to understand each structure well enough to know the circumstances where one data structure
is to be preferred over another.

How important is the choice of a data structure? There are numerous examples from all areas
of computer science where a relatively simple application of good data structure techniques
resulted in massive savings in computation time and, hence, money.

Perhaps a more important aspect of this course is a sense of how to design new data structures.
The data structures we will cover in this course have grown out of the standard applications of
computer science. But new applications will demand the creation of new domains of objects
(which we cannot foresee at this time) and this will demand the creation of new data structures.
It will fall on the students of today to create these data structures of the future. We will see
that there are a few important elements which are shared by all good data structures. We will
also discuss how one can apply simple mathematics and common sense to quickly ascertain
the weaknesses or strengths of one data structure relative to another.

Algorithmics: It is easy to see that the topics of algorithms and data structures cannot be separated
since the two are inextricably intertwined. So before we begin talking about data structures, we
must begin with a quick review of the basics of algorithms, and in particular, how to measure
the relative efficiency of algorithms. The main issue in studying the efficiency of algorithms is
the amount of resources they use, usually measured in either the space or time used. There
are usually two ways of measuring these quantities. One is a mathematical analysis of the
general algorithm being used, called an asymptotic analysis, which can capture gross aspects
of efficiency for all possible inputs but not exact execution times. The second is an empirical
analysis of an actual implementation to determine exact running times for a sample of specific
inputs, but it cannot predict the performance of the algorithm on all inputs. In class we will
deal mostly with the former, but the latter is important also.

There is another aspect of complexity, that we will not discuss at length (but needs to be
considered) and that is the complexity of programming. Some of the data structures that
we will discuss will be quite simple to implement and others much more complex. The issue
of which data structure to choose may be dependent on issues that have nothing to do with
run-time issues, but instead on the software engineering issues of what data structures are
most flexible, which are easiest to implement and maintain, etc. These are important issues,
but we will not dwell on them excessively, since they are really outside of our scope.

For now let us concentrate on running time. (What we are saying can also be applied to
space, but space is somewhat easier to deal with than time.) Given a program, its running
time is not a fixed number, but rather a function. For each input (or instance of the data
structure), there may be a different running time. Presumably as input size increases so does
running time, so we often describe running time as a function of input/data structure size
n, denoted T'(n). We want our notion of time to be largely machine-independent, so rather
than measuring CPU seconds, it is more common to measure basic “steps” that the algorithm
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makes (e.g. the number of statements executed or the number of memory accesses). This will
not exactly predict the true running time, since some compilers do a better job of optimization
than others, but its will get us within a small constant factor of the true running time most
of the time.

Even measuring running time as a function of input size is not really well defined, because, for
example, it may be possible to sort a list that is already sorted, than it is to sort a list that is
randomly permuted. For this reason, we usually talk about worst case running time. Over all
possible inputs of size n, what is the maximum running time. It is often more reasonable to
consider expected case running time where we average over all inputs of size n. We will usually
do worst-case analysis, except where it is clear that the worst case is significantly different
from the expected case.

Review of Asymptotics: There are particular bag of tricks that most algorithm analyzers use to
study the running time of algorithms. For this class we will try to stick to the basics. The
first element is the notion of asymptotic notation. Suppose that we have already performed
an analysis of an algorithm and we have discovered through our worst-case analysis that

T(n) = 13n% + 42n% + 2nlogn + 3v/n.

(This function was just made up as an illustration.) Unless we say otherwise, assume that
logarithms are taken base 2. When the value n is small, we do not worry too much about this
function since it will not be too large, but as n increases in size, we will have to worry about
the running time. Observe that as n grows larger, the size of n® is much larger than n?, which
is much larger than nlog n (note that 0 < log n < n whenever n > 1) which is much larger than
/1. Thus the n3 term dominates for large n. Also note that the leading factor 13 is a constant.
Such constant factors can be affected by the machine speed, or compiler, so we may ignore
it (as long as it is relatively small). We could summarize this function succinctly by saying
that the running time grows “roughly on the order of n3”, and this is written notationally as
T(n) € O(n?).

Informally, the statement 7'(n) € O(n®) means, “when you ignore constant multiplicative
factors, and consider the leading (i.e. fastest growing) term, you get n3”. This intuition can
be made more formal, however. (It is not the most standard one, but is good enough for most
uses and is the easiest one to apply.)

Definition: T'(n) € O(f(n)) if limp—.oo T'(n)/f(n) is either zero or a constant (but not o).

For example, we said that the function above T'(n) € O(n®). Using the definition we have

T(n) lim 13n3 4 4202 + 2nlogn + 3/n
n—oo f(n) n—oo n3
) 42 2logn 3
= nlgl;()(l3+7+ 2 er)
= 13

Since this is a constant, we can assert that T'(n) € O(n?).

The O notation is good for putting an upper bound on a function. Notice that if T'(n) is O(n?)
it is also O(n?), O(n®), etc. since the limit will just go to zero. We will try to avoid getting
bogged down in this notation, but it is important to know the definitions. To get a feeling
what various growth rates mean here is a summary.

T(n) € O(1) : Great. This means your algorithm takes only constant time. You can’t beat
this.



Lecture Notes CMSC 420

T(n) € O(loglogn) : Super fast! For all intents this is as fast as a constant time.

T(n) € O(logn) : Very good. This is called logarithmic time. It is the running time of binary
search and the height of a balanced binary tree. This is about the best that can be achieved
for data structures based on binary trees. Note that log 1000 &~ 10 and log 1, 000, 000 ~ 20
(log’s base 2).

T(n) € O((logn)*) : (where k is a constant). This is called polylogarithmic time. Not bad,
when simple logarithmic time is not achievable. We will often write this as O(logk n).

T(n) € O(nP) : (where 0 < p < 1 is a constant). An example is O(y/n). This is slower than

polylogarithmic (no matter how big & is or how small p), but is still faster than linear
time, which is acceptable for data structure use.

T(n) € O(n) : This is called linear time. It is about the best that one can hope for if your
algorithm has to look at all the data. (In data structures the goal is usually to avoid this
though.)

T(n) € O(nlogn) : This one is famous, because this is the time needed to sort a list of numbers.
It arises in a number of other problems as well.

T(n) € O(n?) : Quadratic time. Okay if n is in the thousands, but rough when n gets into the
millions.

T(n) € O(n*): (where k is a constant). This is called polynomial time. Practical if k is not
too large.

T(n) € O(2™),0(n™),0(n!) : Ezponential time. Algorithms taking this much time are only
practical for the smallest values of n (e.g. n < 10 or maybe n < 20).



