Lecture Notes CMSC 420

Lecture 12: B-trees

Read: Section 4.7 of Weiss and 5.2 in Samet.

B-trees: Although it was realized quite early it was possible to use binary trees for rapid searching,
insertion and deletion in main memory, these data structures were really not appropriate for
data stored on disks. When accessing data on a disk, an entire block (or page) is input at
once. So it makes sense to design the tree so that each node of the tree essentially occupies
one entire block. Although it is possible to segment binary trees in a clever way so that many
neighboring nodes are squeezed into one disk block it is difficult to perform updates on the
tree to preserve this proximity.

An alternative strategy is that of the B-tree, which solves the problem by using multiway trees
rather than binary trees. Standard binary search tree have two pointers, left and right, and a
single key value k that is used to split the keys in the left subtree from the right subtree. In a
j-ary multiway search tree node, we have j child pointers, pi,ps,...,p;, and j — 1 key values,
ki1 <ky <...<kE;j_1. We use these key values to split the elements among the subtrees. We
assume that the data values k located in subtree pointed to be p; satisfy k;, < k < k;41, for
1 < i < j. For convenience of notatoin, we imagine that there are two sentinel keys, kg = —c0
and k; = +oco. See the figure below.
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Figure 35: Binary and 4-ary search tree nodes.

B-trees are multiway search trees, in which we achieve balance by constraining the “width” of
each node. As with all other balanced structures, we allow for a certain degree of flexibility in
our constraints, so that updates can be performed efficiently. A B-tree is described in terms of
a parameter m, which controls the maximum degree of a node in the tree, and which typically
is set so that each node fits into one disk block.

Our definition differs from the one given in Weiss. Weiss’s definition is more reasonable for
actual implementation on disks, but ours is designed to make the similarities with other search
trees a little more apparent. For m > 3, B-tree of order m has the following properties:

o The root is either a leaf or has between 2 and m children.

e Each nonleaf node except the root has between [m/2] and m (nonnull) children. A node
with j children contains 7 — 1 key values.

e All leaves are at the same level of the tree, and each leaf contains between [m/2] — 1 to
m — 1 keys.

So for example, when m = 4 each internal node has from 2 to 4 children and from 1 to 3 keys.
When m = 7 each internal node has from 4 to 7 children and from 3 to 6 keys (except the
root which may have as few as 2 children and 1 key). Why is the requirement on the number
of children not enforced on the root of the tree? We will see why later.

The definition in the book differs in that all data is stored in the leaves, and the leaves are
allowed to have a different structure from nonleaf nodes. This makes sense for storing large
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data records on disks. In the figure below we show a B-tree of order 3. In such a tree each
node has either 2 or 3 children, and hence is also called a 2-3 tree. Note that even though we
draw nodes of different sizes, all nodes have the same storage capacity.

Figure 36: B-tree of order 3, also known as a 2-3 tree.

Height analysis: Consider a B-tree (of order m) of height h. Since every node has degree at most
m, then the tree has at most m” leaves. Since each node contains at least one key, this means
that n > m". We assume that m is a constant, so the height of the tree is given asymptotically
by

1
h<log,n= L- ¢ O(logn).
lgem

This is very small as m gets large. Even in the worst case (excluding the root) the tree
essentially is splitting m /2 ways, implying that

h<l 87 51ogn)

0 n=———— ogn).

Thus, the height of the tree is O(logn) in either case. For example, if m = 256 we can store
100,000 records with a height of only three. This is important, since disk accesses are typically
many orders of magnitude slower than main memory accesses, it is important to minimize the
number of accesses.

Node structure: Unlike skip-lists, where nodes are typically allocated with different sizes, here
every node is allocated with the maximum possible size, but not all nodes are fully utilized. A
typical B-tree node might have the following Java class structure. In this case, we are storing
integers as the elements. We place twice as many elements in each leaf node as in each internal
node, since we do not need the storage for child pointers.

const int M = ... // order of the tree

class BTreeNode {

int nChildren; // number of children
BTreelode child [M]; // children
int key [M-11; // keys

+;

Search: Searching a B-tree for a key x is a straightforward generalization of binary tree searching.
When you arrive at an internal node with keys k1 < ky < ... < k;_; search (either linearly
or by binary search) for # in this list. If you find z in the list, then you are done. Otherwise,
determine the index ¢ such that k; < « < ki11. (Recall that kg = —o0 and k; = +00.) Then
recursively search the subtree p;. When you arrive at a leaf, search all the keys in this node.
If it is not here, then it is not in the B-tree.
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Insertion: To insert a key into a B-tree of order m, we perform a search to find the appropriate
leaf into which to insert the node. If the leaf is not at full capacity (it has fewer than m — 1
keys) then we simply insert it and are done. (Note that when m is large this is the typical
case.) Note that this will involve sliding keys around within the leaf node to make room for
the new entry. Since m is assumed to be a constant, this constant time overhead is ignored.

Otherwise the node overflows and we have to take action to restore balance. There are two
methods for restoring order in a B-tree.

Key rotation: In spite of this name, this is not the same as rotation in AVL trees. This

method is quick and involves little data movement. Unfortunately, it is not always ap-
plicable. Let’s let p be the node that overflows. We look at our immediate left and right
siblings in the B-tree. (Note that one or the other may not exist). Suppose that one of
them, the right sibling say, has fewer than the maximum of m — 1 keys. Let ¢ denote this
sibling, and let &k denote the key in the parent node that splits the elements in ¢ from
those in p.
We take the key k from the parent and make it the minimum key in ¢. We take the
maximum key from p and use it to replace k in the parent node. Finally we transfer
the rightmost subtree from p to become the leftmost subtree of ¢ (and readjust all the
pointers accordingly). At this point the tree is balanced and no further rebalancing is
needed. An example of this is shown in the following figure. We have shown all the child
links (even at the leaf level where they would not normally be used) to make clearer how
the update works at any level of the tree. Key rotation to the right child is analogous.

key rotation
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Figure 37: Key rotation.

Node split: If both siblings are full, then key rotation is not possible. Recall that a node
can have at most m — 1 keys and at least [m/2] — 1 keys. Suppose after inserting the
new key we have an overfull node with m keys, k1 < ko < ... < k,,. We split this node
into three groups: one with the smallest [(m — 1)/2] keys, a single central element, and
one with the largest |(m — 1)/2] keys. We copy the smallest group to a new B-tree node,
and leave the largest in the existing node. We take the extra key and insert it into the
parent.

At this point the parent may overflow, and so we repeat this process recursively. When the
root, overflows, we split the root into two nodes, and create a new root with two children.
(This is why the root is exempt from the normal number of children requirement.) See
the figure below for an example. This shows an interesting feature of B-trees, namely
that they seem to grow from the root up, rather than from the leaves down.

To see that the new nodes are of proper size it suffices to show that

CREE
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Figure 38: Node split.

The upper bound (< m) holds for any integer m. To see the lower bound, we observe
that if m is odd then

— -1 = ——

2

2

[mw_l m+1 m—1 {mz—lJ.

If m is even then

m m m— 2 m—1
[ﬂ_lf?_lf 2 { 2 J

So we actually have equality in each case.

Deletion: As in binary tree deletion we begin by finding the node to be deleted. We need to find a

suitable replacement for this node. This is done by finding the largest key in the left child (or
equivalently the smallest key in the right child), and moving this key up to fill the hole. This
key will always be at the leaf level. This creates a hole at the leaf node. If this leaf node still
has sufficient capacity (at least [m/2] — 1 keys) then we are done. Otherwise we need restore
the size constraints.

Suppose that after deletion the current node has [m/2] — 2 keys. As with insertion we first
check whether a key rotation is possible. If one of the two siblings has at least one key more
than the minimum, then rotate the extra into this node, and we are done.

Otherwise we know that at least one of our neighbors (say the left) has exactly [m/2] —1 keys.
In this case we need to perform a node merge. This is the inverse of a node split. We combine
the contents of the current node, together with the contents of its sibling, together with the
key from the parent that separates these two. The resulting node has

(1F1=2) (5]

total keys. We will leave it as an exercise to prove that this is never greater than m — 1.
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Note that the removal of a key from the parent’s node may cause it to underflow. Thus, the
process needs to be repeated recursively. In the worst case this continues up to the root. If
the root looses its only key then we simply remove the root, and make its root’s only child the
new root of the B-tree.

An example of deletion of 16 where m = 3 (meaning each node has from 1 to 2 keys) is shown
in the figure below. (As before, we have shown all the child links, even at the leaf level, where
they are irrelevant in order to make clearer how the operation works at all levels.)
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Figure 39: Deletion of key 16.
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