Lecture Notes CMSC 420

Lecture 14: Leftist and Skew Heaps
Reading: Sections 6.6 and 6.7 in Weiss.

Leftist Heaps: The standard binary heap data structure is an simple and efficient data structure
for the basic priority queue operations insert (x) and x = extractMin(). It is often the case
in data structure design that the user of the data structure wants to add additional capabilities
to the abstract data structure. When this happens, it may be necessary to redesign components
of the data structure to achieve efficient performance.

For example, consider an application in which in addition to insert and extractMin, we want
to be able to merge the contents of two different queues into one queue. As an application,
suppose that a set of jobs in a computer system are separate queues waiting for the use of two
resources. If one of the resources fails, we need to merge these two queues into a single queue.

We introduce a new operation Q = merge(Q1, Q2), which takes two existing priority queues
@1 and @2, and merges them into a new priority queue, Q). (Duplicate keys are allowed.) This
operation is destructive, which means that the priority queues ()1 and Q)2 are destroyed in order
to form Q. (Destructiveness is quite common for operations that map two data structures into
a single combined data structure, since we can simply reuse the same nodes without having to
create duplicate copies.)

We would like to be able to implement merge () in O(logn) time, where n is the total number
of keys in priority queues @1 and (5. Unfortunately, it does not seem to be possible to do
this with the standard binary heap data structure (because of its highly rigid structure and
the fact that it is stored in an array, without the use of pointers).

We introduce a new data structure called a leftist heap, which is fairly simple, and can provide
the operations insert (x), extractMin(), and merge(Q1,Q2). This data structure has many
of similar features to binary heaps. It is a binary tree which is partially ordered, which means
that the key value in each parent node is less than or equal to the key values in its children’s
nodes. However, unlike a binary heap, we will not require that the tree is complete, or even
balanced. In fact, it is entirely possible that the tree may be quite unbalanced.

Leftist Heap Property: Define the null path length, npl(v), of any node v to be the length of
the shortest path to a descendent has either 0 or 1 child. The value of npl(v) can be defined
recursively as follows.

1) — —1 if v = null,
npl(v) = 1 + min(npl(v.left), npl(v.right)) otherwise.

We will assume that each node has an extra field, v.npl that contains the node’s npl value.
The leftist property states that for every node v in the tree, the npl of its left child is at least
as large as the npl of its right child. We say that the keys of a tree are partially ordered if each
node’s key is greater than or equal to its parent’s key.

Leftist heap: [s a binary tree whose keys are partially ordered (parent is less than or equal
to child) and which satisfies the leftist property (npl(left) > npl(right)). An example is
shown in the figure below, where the npl values are shown next to each node.

Note that any tree that does not satisfy leftist property can always be made to do so by
swapping left and right subtrees at any nodes that violate the property. Observe that this
does not affect the partial ordering property. Also observe that satisfying the leftist heap
property does not imply that the tree is balanced. Indeed, a degenerate binary tree in which

1Copyright, David M. Mount, 2001

14 -1



Lecture Notes CMSC 420

Figure 40: Leftist heap structure (with npl values shown).

is formed from a chain of nodes each attached as the left child of its parent does satisfy this
property.

The key to the efficiency of leftist heap operations is that there exists a short (O(logn) length)
path in every leftist heap (namely the rightmost path). We prove the following lemma, which
implies that the rightmost path in the tree cannot be of length greater than O(logn).

Lemma: A leftist heap with » > 1 nodes on its rightmost path has has at least 2" — 1 nodes.

Proof: The proof is by induction on the size of the rightmost path. Before beginning the
proof, we begin with two observations, which are easy to see: (1) the shortest path in any
leftist heap is the rightmost path in the heap, and (2) any subtree of a leftist heap is a
leftist heap. For the basis case, if there is only one node on the rightmost path, then the
tree has at least one node. Since 1 > 2! — 1, the basis case is satisfied.

For the induction step, let us suppose that the lemma is true for any leftist heap with
strictly fewer than r nodes on its rightmost path, and we will prove it for a binary tree
with exactly r nodes on its rightmost path. Remove the root of the tree, resulting in two
subtrees. The right subtree has exactly » — 1 nodes on its rightmost path (since we have
eliminated only the root), and the left subtree must have a at least » — 1 nodes on its
rightmost path (since otherwise the rightmost path in the original tree would not be the
shortest, violating (1)). Thus, by applying the induction hypothesis, it follows that the
right and left subtrees have at least 2"~ — 1 nodes each, and summing them, together
with the root node we get a total of at least

22 -1 +1=2"~1
nodes in the entire tree.

Leftist Heap Operations: The basic operation upon which leftist heaps are based is the merge
operation. Observe, for example, that both the operations insert() and extractMin() can
be implemented by using the operation merge(). (Note the similarity with splay trees, in
which all operations were centered around the splay operation.)

The basic node of the leftist heap is a LeftHeapNode. Each such node contains an data field
of type Element (upon which comparisons can be made) a left and right child, and an npl
value. The constructor is given each of these values. The leftist heap class consists of a single
root, which points to the root node of the heap. Later we will describe the main procedure
merge (LeftHeapNode hl, LeftHeapNode h2), which merges the two (sub)heaps rooted at hq

14 -2



Lecture Notes CMSC 420

and ho. For now, assuming that we have this operation we define the main heap operations.
Recall that merge is a destructive operation.
Leftist Operations

void insert(Element x) {
root = merge(root, new LeftHeapNode(x, null, null, 0))

}
Element extractMin() {
if (root == null) return null // empty heap
Element minItem = root.data // minItem is root’s element

root = merge(root.left, root.right)
return minItem

}

void merge (LeftistHeap Q1, LeftistHeap Q2) {
root = merge(Ql.root, Q2.root)

}

Leftist Heap Merge: All that remains, is to show how merge(hl, h2) is implemented. The
formal description of the procedure is recursive. However it is somewhat easier to understand
in its nonrecursive form. Let hq and hy be the two leftist heaps to be merged. Consider the
rightmost paths of both heaps. The keys along each of these paths form an increasing sequence.
We could merge these paths into a single sorted path (as in merging two lists of sorted keys
in the merge-sort algorithm). However the resulting tree might not satisfy the leftist property.
Thus we update the npl values, and swap left and right children at each node along this path
where the leftist property is violated. A recursive implementation of the algorithm is given
below. It is essentially the same as the one given in Weiss, with some minor coding changes.

Merge two leftist heaps

LeftHeapNode merge (LeftHeapNode hi, LeftHeapNode h2) {

if (h1l == null) return h2 // if one is empty, return the other
if (h2 == null) return hi
if (hi.data > h2.data) // swap so hl has the smaller root

swap(hl, h2)

if (hi.left == null) // h1 must be a leaf in this case
hi.left = h2
else { // merge h2 on right and swap if needed

hi.right = merge(hl.right, h2)
if (hil.left.npl < hi.right.npl) {
swap(hl.left, hi.right) // swap children to make leftist
}
hi.npl = hi.right.npl + 1 // update npl value
}

return hi

For the analysis, observe that because the recursive algorithm spends O(1) time for each node
on the rightmost path of either hi or hg, the total running time is O(logn), where n is the
total number of nodes in both heaps.

This recursive procedure is a bit hard to understand. A somewhat easier 2-step interpretation
is as follows. First, merge the two right paths, and update the npl values as you do so. Second,

14 -3



Lecture Notes CMSC 420

walk back up along this path and swap children whenever the leftist condition is violated. The
figure below illustrates this way of thinking about the algorithm. The recursive algorithm just
combines these two steps, rather than making the separate.

Swap subtrees if 0
left.npl < right.npl

Figure 41: Example of merging two leftist heaps (2-step interpretation.

Skew Heaps: Recall that a splay tree is a self-adjusting balanced binary tree. Unlike the AVL tree,
which maintains balance information at each node and performs rotations to maintain balance,
the splay tree performs a series of rotations to continuously “mix-up” the tree’s structure, and
hence achieve a sort of balance from an amortized perspective.

A skew heap is a self-organizing heap, and applies this same idea as in splay trees, but to the
leftist heaps instead. As with splay trees we store no balance information with each node (no
npl values). We perform the merge operation as described above, but we swap the left and
right children from every node along the rightmost path. (Note that in the process the old
rightmost path gets flipped over to become the leftmost path.) An example is given in Weiss,
in Section 6.7.

It can be shown that if the heap contains at most n elements, then a sequence of m heap
operations (insert, extractMin, merge) starting from empty heaps takes O(mlogn) time. Thus
the average time per operation is O(logn). Because no balance information is needed, the code

14 -4



Lecture Notes CMSC 420

is quite simple.

14 -5



