Lecture Notes CMSC 420

Lecture 22: Memory Management
Reading: Chapter 3 in Samet’s notes.

Memory Management: One of the major systems issues that arises when dealing with data struc-
tures is how storage is allocated and deallocated as objects are created and destroyed. Although
memory managementis really a operating systems issue, we will discuss this topic over the next
couple of lectures because there are a number interesting data structures issues that arise. In
addition, sometimes for the sake of efficiency, it is desirable to design a special-purpose mem-
ory management system for your data structure application, rather than using the system’s
memory manager.

We will not discuss the issue of how the runtime system maintains memory in great detail.
Basically what you need to know is that there are two principal components of dynamic memory
allocation. The first is the stack. When procedures are called, arguments and local variables
are pushed onto the stack, and when a procedure returns these variables are popped. The
stacks grows and shrinks in a very predictable way. Variables allocated through new are stored
in a different section of memory called the heap. (In spite of the similarity of names, this heap
has nothing to do with the binary heap data structure, which is used for priority queues.) As
elements are allocated and deallocated, the heap storage becomes fragmented into pieces. How
to maintain the heap efficiently is the main issue that we will consider.

There are two basic methods of doing memory management. This has to do with whether
storage deallocation is done explicitly or implicitly. Explicit deallocation is what C++ uses.
Objects are deleted by invoking delete, which returns the storage back to the system. Objects
that are inaccessible but not deleted become unusable waste. In contrast Java uses implicit
deallocation. It is up to the system to determine which objects are no longer accessible and
reclaim their storage. This process is called garbage collection. In both cases there are a
number of choices that can be made, and these choices can have significant impacts on the
performance of the memory allocation system. Unfortunately, there is not one system that is
best for all circumstances. We begin by discussing explicit deallocation systems.

Explicit Allocation/Deallocation: There is one case in which explicit deallocation is very easy
to handle. This is when all the objects being allocated are of the same size. A large contiguous
portion of memory is used for the heap, and we partition this into blocks of size b, where b is
the size of each object. For each unallocated block, we use one word of the block to act as a
next pointer, and simply link these blocks together in linked list, called the available space list.
For each new request, we extract a block from the available space list and for each delete we
return the block to the list.

If the records are of different sizes then things become much trickier. We will partition memory
into blocks of varying sizes. Each block (allocated or available) contains information indicating
how large it is. Available blocks are linked together to form an available space list. The main
questions are: (1) what is the best way to allocate blocks for each new request, and (2) what
is the fastest way to deallocate blocks for each delete request.

The biggest problem in such systems is the fact that after a series of allocation and deallo-
cation requests the memory space tends to become fragmented into small blocks of memory.
This is called external fragmentation, and is inherent to all dynamic memory allocators. Frag-
mentation increases the memory allocation system’s running time by increasing the size of the
available space list, and when a request comes for a large block, it may not be possible to
satisfy this request, even though there is enough total memory available in these small blocks.
Observe that it is not usually feasible to compact memory by moving fragments around. This

1Copyright, David M. Mount, 2001

22 -1

Lecture Notes CMSC 420

is because there may be pointers stored in local variables that point into the heap. Moving
blocks around would require finding these pointers and updating them, which is a very expen-
sive proposition. We will consider it later in the context of garbage collection. A good memory
manager is one that does a good job of controlling external fragmentation.

Overview: When allocating a block we must search through the list of available blocks of memory
for one that is large enough to satisfy the request. The first question is, assuming that there
does exist a block that is large enough to satisfy the request, what is the best block to select?
There are two common but conflicting strategies:

First fit: Search the blocks sequentially until finding the first block that is big enough to
satisfy the request.

Best fit: Search all available blocks and use the smallest one that is large enough to fulfill
the request.

Both methods work well in some instances and poorly in others. Some writeups say that first
fit is prefered because (1) it is fast (it need only search until it finds a block), (2) if best fit
does not exactly fill a request, it tends to produce small “slivers” of available space, which
tend to aggravate fragmentation.

One method which is commonly used to reduce fragmentation is when a request is just barely
filled by an available block that is slightly larger than the request, we allocate the entire block
(more than the request) to avoid the creation of the sliver. This keeps the list of available blocks
free of large numbers of tiny fragments which increase the search time. The additional waste
of space that results because we allocate a larger block of memory than the user requested is
called internal fragmentation (since the waste is inside the allocated block).

When deallocating a block, it is important that if there is available storage we should merge
the newly deallocated block with any neighboring available blocks to create large blocks of free
space. This process is called merging. Merging is trickier than one might first imagine. For
example, we want to know whether the preceding or following block is available. How would
we do this? We could walk along the available space list and see whether we find it, but this
would be very slow. We might store a special bit pattern at the end and start of each block to
indicate whether it is available or not, but what if the block is allocated that the data contents
happen to match this bit pattern by accident? Let us consider the implementation of this
scheme in greater detail.

Implementation: The main issues are how to we store the available blocks so we can search them
quickly (skipping over used blocks), and how do we determine whether we can merge with
neighboring blocks or not. We want the operations to be efficient, but we do not want to use
up excessive pointer space (especially in used blocks). Here is a sketch of a solution (one of
many possible).

Allocated blocks: For each block of used memory we record the following information. It
can all fit in the first word of the block.

size: An integer that indicates the size of the block of storage. This includes both the
size that the user has requested and the additional space used for storing these extra
fields.

inUse: A single bit that is set to 1 (true) to indicate that this block is in use.

prevInUse: A single bit that is set to 1 (true) if the previous block is in use and 0
otherwise. (Later we will see why this is useful.)

22 -2

Lecture Notes CMSC 420

inUse inUse
67 previnUse I previnUse
1‘?‘ size O‘ 1‘ size J
pred T
next b
size2
Allocated Block Available Block

Figure 66: Block structure for dynamic storage allocation.

Available blocks: For an available block we store more information, which is okay because
the user is not using this space. These blocks are stored in a doubly-linked circular list,
called avail.

size: An integer that indicates the size of the block of storage (including these extra
fields).

inUse: A bit that is set to 0 (false) to indicate that this block is not in use.

prevInUse: A bit that is set to (true) if the previous block is in use (which should always
be true, since we should never have two consecutive unused blocks).

pred: A pointer to the predecessor block on the available space list. Note that the
available space list is not sorted. Thus the predecessor may be anywhere in the heap.

next: A pointer to the next block on the available space list.

size2: Contains the same value as size. Unlike the previous fields, this size indicator
is stored in the last word of the block. Since is not within a fixed offset of the head
of the block, for block p we access this field as *(p+p.size-1).

Note that available blocks require more space for all this extra information. The system
will never allow the creation of a fragment that is so small that it cannot contain all this
information.

Block Allocation: To allocate a block we search through the linked list of available blocks until
finding one of sufficient size. If the request is about the same size (or perhaps slightly smaller)
as the block, we remove the block from the list of available blocks (performing the necessary
relinkings) and return a pointer to it. We also may need to update the prevInUse bit of the
next block since this block is no longer available. Otherwise we split the block into two smaller
blocks, return one to the user, and leave the other on the available space list.

Here is pseudocode for the allocation routine. Note that we make use of pointer arithmetic
here. The argument b is the desired size of the allocation. Because we reserve one word of
storage for our own use we increment this value on entry to the procedure. We keep a constant
TOO_SMALL, which indicates the smallest allowable fragment size. If the allocation would result
in a fragment of size less than this value, we return the entire block. The procedure returns
a generic pointer to the newly allocated block. The utility function avail .unlink(p) simply
unlinks block p from the doubly-linked available space list. An example is provided in the
figure below. Shaded blocks are available.

Allocate a block of storage

(void*) alloc(int b) { // allocate block of size b
b +=1 // extra space for system overhead
p = search available space list for block of size at least b

22 -3

Lecture Notes CMSC 420

if (p == null) { ...error: insufficient memory...}
if (p.size - b < TOO_SMALL) { // allocate whole block
avail.unlink(p) // unlink p from avail space list
Q=P
}
else { // split the block
p-size = b // decrease size by b
*(ptp.size-1) = p.size // store size in p’s size2 field
q=p+ p.size // offset to start of new block
q.size = b // size of new block
q.previnUse = 0 // previous block is unused
}
q.inUse = true // new block is used
(gt+q.size) .previnUse = true // adjust prevInUse for following block
return q
}
R |ele o = %0« S =4 R |ele o
= B = = =
=] — <o — =]
100 150 190 290 340 390
alloe(59) (b=60» »~ returned
 —
R |ele - = S |ele - 2 =4 R |e|e -
iy ~+ vy
=] [o] = [o] = =
o — o — — =)
100 150 190 230 290 340 390
dealloc(150)
5 oo % 2 =4 R |ele o
=1 [© | [— | [—
=] — — f=
100 150 190 230 290 340 390

Figure 67: An example of block allocation and deallocation.

Block Deallocation: To deallocate a block, we check whether the next block or the preceding
blocks are available. For the next block we can find its first word and check its inUse field.
For the preceding block we use our own prevInUse field. (This is why this field is present).
If the previous block is not in use, then we use the size value stored in the last word to find
the block’s header. If either of these blocks is available, we merge the two blocks and update
the header values appropriately. If both the preceding and next blocks are available, then this
result in one of these blocks being deleting from the available space list (since we do not want
to have two consecutive available blocks). If both the preceding and next blocks are in-use,
we simply link this block into the list of available blocks (e.g. at the head of the list). We will
leave the details of deallocation as an exercise.

22 -4

Lecture Notes CMSC 420

Analysis: There is not much theoretical analysis of this method of dynamic storage allocation.
Because the system has no knowledge of the future sequence of allocation and deallocation
requests, it is possible to contrive situations in which either first fit or best fit (or virtually any
other method you can imagine) will perform poorly. Empirical studies based on simulations
have shown that this method achieves utilizations of around 2/3 of the total available storage
before failing to satisfy a request. Even higher utilizations can be achieved if the blocks are
small on average and block sizes are similar (since this limits fragmentation). A rule of thumb
is to allocate a heap that is at least 10 times larger than the largest block to be allocated.

22 -5

