Lecture Noles CMSC 420

Lecture 23: More on Memory Management
Reading: Chapter 3 in Samet’s notes.

Buddy System: The dynamic storage allocation method described last time suffers from the prob-
lem that long sequences of allocations and deallocations of objects of various sizes tends to
result in a highly fragmented space. The buddy system is an alternative allocation system
which limits the possible sizes of blocks and their positions, and so tends to produce a more
well-structured allocation. Because it limits block sizes, internal fragmentation (the waste
caused when an allocalion request is mapped Lo a larger block size) becomes an Issue.

The buddy system works by starting with a block of memory whose size is a power of 2 and
then hierarchically subdivides each block into blocks of equal sizes (like a 1-dimensional version
of a quadtree.) To make this intuition more formal, we introduce the two elements of the buddy
system. The first element that the sizes of all blocks (allocated and unallocated) are powers of
2. When a request comes for an allocation, the request (including the overhead space needed
for storing block size information) is artificially increased to the next larger power of 2. Note
that the allocated size is never more than twice the size of the request. The second element
is that blocks of size 2% must start at addresses that are multiples of 2*. (We assume that
addrcssing starts at 0, but it is casy to update this scheme to start at any arbitrary address
by simply shifting addresses by some offset.)

[0 15]
// \\

0 7 s 15
\ \ |
// \\ // \\

[0 3[4 7[s 112 15
AN ~ N VAN AN

N\ N /// \\\
6 7]s 9]0 11]12 13[14 15

[0 1 (2 5]4s

5

o 1[2]s] ¢[s]6]7]s[o]10]11]12]13]14]15]

Figure 68: Buddy system block structure.

Note that the above requirements limits the ways in which blocks may be merged. For example
the figure below illustrates a buddy system allocation of blocks, where the blocks of size 2% are
shown at the same level. Available blocks are shown in white and allocated blocks are shaded.
The two available blocks at addresses 5 and 6 (the two white blocks between 4 and 8) cannot
be merged because the result would be a block of length 2, starting at address 5, which is not
a multiple of 2. For each size group, there is a separate available space list.

For every block there is exactly one other block with which this block can be merged with.
This is called its buddy. In general, if a hlock b is of size 2%, and is located at, address 2, then
its buddy is the block of size 2* located at address

x4 2F i 2R+ divides x
buddy () = { xr — 2k otherwise.

Although this function looks fancy, it is very easy to compute in a language which is capable
of bit manipulation. Basically the buddy’s address is formed by complementing bit k in the
binary representation ol z, where the lowest order bit is bil 0. In languages like C4++ and
Java this can be implemented efficiently by shifting a single bit to the left by k positions and

LCopyright, David M. Mount, 2001

25 -1



Lecture Noles CMSC 420

avail

o — T

4 8 12 16 20 24 28 32 36 40 44 48

Figurc 69: Buddy system example.

exclusive or-ing with z, that is, (1<<k) "x. For example, for k = 3 the blocks of length 8§ at
addresses 208 and 216 are buddies. If we look at their binary representations we see that they
differ in bit position 3, and because they must be multiples of 8, bits 0-2 are zero.

bit position: 876543210
208 = 011010000,
216 = 011011000,.

As we mentioned earlier, one principle advantage of the buddy system is that we can exploit
the regular sizes of blocks to search efficiently for available blocks. We maintain an array of
linked lists, one for the available block list for each size, thus avail [k] is the header pointer
to the available block list for blocks of size k.

Here is how the basic operations work. We assume that each block has the same structure
as described in the dynamic storage allocation example from last time. The prevInUse bit
and the size field at the end of each available block are not needed given the extra structure
provided in the buddy system. Each block stores its size (actually the log k of its size is
sullicient) and a bit indicating whether it is allocaled or not. Also each available block has
links to the previous and next entries on the available space list. There is not just one available
space, but rather there are multiple lists, one for each level of the hierarchy (something like a
skip list). This makes it possible to search quickly for a block of a given size.

Buddy System Allocation: We will give a high level description of allocation and dealloction. Lo

allocate a block of size b, let k = [lg(b+1)]. (Recall that we need to include one extra word
for the block size. However, to simplify our figures we will ignore this extra word.) We will
allocate a block of size 2%, Tn general there may naot be a hlock of exactly this size available,
gso find the smallest j > k such that there is an available block of size 29. If j > k, repeatedly
split this block until we create a block of size 2. In the process we will create one or more
new blocks; which are added to the appropriale available space lists.
For example, in the figsure we request a block of length 2. There arc no such blocks, so we
remove the the block of length 16 at address 32 from its available space list, split it into
subblocks of sizes 2, 2, 4 and 8, add the last three to the appropriate available space lists, and
return the first block.

Deallocation: To deallocate a block, we first mark this block as being available. We then check to
see whether its buddy is available. This can be done in constant time. If so, we remove the
buddy [rom ils available space lisl, and merge them Logether into a single [ree block of twice
the size. This process is repeated until we find that the buddy is allocated.

The figure shows the deletion of the block of size 1 at address 21. It is merged with its buddy
at address 20, forming a block of size 2 at 20. This is then merged with its buddy at 22,

23 -2



Lecture Noles CMSC 420

avail

et |
0 4 8

28 32 36 40 44 48

alloc(2)

- returned

ises-un-RRNNi-=RENs-RN-s-: AR AR R RN 00E
0 4 8§ 12 16 20 24 28 32 36 40 44 48

[Figure 70: Buddy allocation.

forming a block of size 4 at 20. I'inally it is merged with its buddy at 16, forming a block of
gize 8 at 16.

23 -3



Lecture Noles CMSC 420

avail

o — T

0 4 8 12 16 20‘ 24 28 32 36 40 44 48

dealloc(21)

\\\\i%\iiii\iiiiiiiiiii
0 4 8 12 16 20 24 28 32 36 40 4 48

IMigure 71: Buddy deallocation.

Lecture 24: Garbage Collection
Reading: Chapter 3 in Samet’s notes.

Garbage Collection: In contrast to the explicit deallocation methods discussed in the previous

lectures, in some memory management systems such as Java, there is no explicit deallocation
of memory. In such systems, when memory is exhausted it must perform garbage collection to
reclaim storage and sometimes to reorganize memory for better future performance. We will
consider some of the issucs involved in the implementation of such systems.
Any garbage collection system must do two basic things. First, it must detect which blocks
of memory are unreachable, and hence are “garbage”. Second, it must reclaim the space used
by these objects and make it available for future allocation requests. (Garbage detection is
typically performed by defining a set of roots, e.g., local variables that point to objects in the
hcap, and then finding everything that is rcachable from these roots. An object is reachable
(or live) if there is some path of pointers or references from the roots by which the executing
program can access the object. The roots are always accessible to the program. Objects that
are not reachable are considered garbage, because they can no longer affect the future course
of program execution.

Reference counts: How do we know when a block of storage is able to be deleted? One simple
way Lo do this is Lo maintain a reference counl for each block. This is a counler associated
with the block. It is set to one when the block is first allocated. Whenever the pointer to
this block is assigned to another variable, we increase the reference count. (I'or example, the
compiler can overload the assignment operation to achieve this.) When a variable containing
a pointer to the block is modified, deallocated or goes out of scope, we decrease the reference
count. If the reference count ever equals 0, then we know that no references to this object
remain, and the object can be deallocated.

LCopyright, David M. Mount, 2001

24-1



