Lecture Notes CMSC 420

Lecture 25: Tries and Digital Search Trees

Reading: Section 5.3 in Samet’s notes. (The material on suffix trees is not covered there.)

Strings and Digital Data: Earlier this semester we studied data structures for storing and re-
trieving data from an ordered domain through the use of binary search trees, and related data
structures such as skip lists. Since these data structures can store any type of sorted data,
they can certainly be used for storing strings. However, this is not always the most efficient
way to access and retrieve string data. One reason for this is that unlike floating point or
integer values, which can be compared by performing a single machine-level operation (basi-
cally subtracting two numbers and comparing the sign bit of the result) strings are compared
lexicographically, that is, character by character. Strings also possess additional structure that
simple numeric keys do not have. It would be nice to have a data structure which takes better
advantage of the structural properties of strings.

Character strings arise in a number of important applications. These include language dictio-
naries, computational linguistics, keyword retrieval systems for text databases and web search,
and computational biology and genetics (where the strings may be strands of DNA encoded
as sequences over the alphabet {C, G, T, A}).

Tries: As mentioned above, our goal in designing a search structure for strings is to avoid having
to look at every character of the query string at every node of the data structure. The basic
idea common to all string-based search structures is the notion of visiting the characters of the
search string from left to right as we descend the search structure. The most straightforward
implementation of this concept is a trie. The name is derived from the middle syllable of
“retrieval”, but is pronounced the same as “try”. Each internal node of a trie is k-way rooted
tree, which may be implemented as an array whose length is equal to the number of characters
k in the alphabet. It is common to assume that the alphabet includes a special character,
indicated by “.” in our figures, which represents a special end of string character. (In languages
such as C++ and Java this would normally just be the null character.) Thus each path
starting at the root is associated with a sequence of characters. We store each string along the
associated path. The last pointer of the sequence (associated with the end of string character)
points to a leaf node which contains the complete data associated with this string. An example
is shown in the figure below.

The obvious disadvantage of this straightforward trie implementation is the amount of space
it uses. Many of the entries in each of the arrays is empty. In most languages the distribution
of characters is not uniform, and certain character sequences are highly unlikely. There are a
number of ways to improve upon this implementation.

For example, rather than allocating nodes using the system storage allocation (e.g., new) we
store nodes in a 2-dimensional array. The number of columns equals the size of the alphabet,
and the number of rows equals the total number of nodes. The entry T'[¢, 7] contains the index
of the j-th pointer in node ¢. If there are m nodes in the trie, then [lgm] bits suffice to
represent each index, which is much fewer than the number of bits needed for a pointer.

de la Brandais trees: Another idea for saving space is, rather than storing each node as an array
whose size equals the alphabet size, we only store the nonnull entries in a linked list. Each
entry of the list contains a character, a child link, and a link to the next entry in the linked
list for the node. Note that this is essentially just a first-child, next-sibling representation of
the trie structure. These are called de la Brandais trees. An example is shown in the figure
below.

1Copyright, David M. Mount, 2001

25 -1

Lecture Notes CMSC 420

L. le] E ~
(ete.) set.) [] L | L] | L] |
I]

sets. stet. test. tete.

Figure 75: A trie containing the strings: est, este, ete, set, sets, stet, test and tete. Only the nonnull
entries are shown.

efe]e s[efe L
MIM \B\IH—>\t\IM \B\IM
[t[e]] \B\IM MIM \B\IM \S\I*HHIM

\~\IH+\6\IM HIM \~\IM+\S\IM MIM MIM \e\IM
est. E%Z HIM HIM HIM HIM

Figure 76: A de la Brandais tree containing the strings: est, este, ete, set, sets, stet, test and tete.

25 -2

Lecture Notes CMSC 420

Although de la Brandais trees have the nice feature that they only use twice as much pointer
space as there are characters in the strings, the search time at each level is potentially linear
in the number of characters in the alphabet. A hybrid method would be to use regular trie
nodes when the branching factor is high and then convert to de la Brandais trees when the
branching factor is low.

Patricia Tries: In many applications of strings there can be long sequences of repeated substrings.
As an extreme example, suppose that you are creating a trie with the words “demystificational”
and “demystifications” but no other words that contain the prefix “demys”. In order to
stores these words in a trie, we would need to create 10 trie nodes for the common substring
“tification”, with each node having a branching factor of just one each. To avoid this, we
would like the tree to inform us that after reading the common prefix “demys” we should skip
over the next 10 characters, and check whether the 11th is either ‘a’ or ‘s’. This is the idea
behind patricia tries. (The word ‘patricia’ is an acronym for Practical Algorithm To Retrieve
Information Coded In Alphanumeric.)

A patricia trie uses the same node structure as the standard trie, but in addition each node
contains an index field, indicating which character is to be checked at this node. This index
field value increases as we descend the tree, thus we still process strings from left to right.
However, we may skip over any characters that provide no discriminating power between keys.
An example is shown below. Note that once only one matching word remains, we can proceed
immediately to a leaf node.

1
5 -
e[

Cle[s]
3
7

8
el il (_sublease) [a[]e[il

N

(_essence) (essential) (estimate) (estimation) (sublimate) (sublime) (subliminal)

Figure 77: A patricia trie for the strings: essence, essential, estimate, estimation, sublease, sublime,
subliminal.

Observe that because we skip over characters in a patricia trie, it is generally necessary to
verify the correctness of the final result. For example, if we had attempted to search for the
word “survive” then we would match ‘s’ at position 1, ‘I’ at position 5, and ‘e’ at position 7,
and so we arrive at the leaf node for “sublime”. This means that “sublime” is the only possible
match, but it does not necessarily match this word. Hence the need for verification.

Suffix trees: In some applications of string pattern matching we want to perform a number of
queries about a single long string. For example, this string might be a single DNA strand.
We would like to store this string in a data structure so that we are able to perform queries
on this string. For example, we might want to know how many occurrences there are of some
given substring within this long string.

One interesting application of tries and patricia tries is for this purpose. Consider a string
s = “ajag...a,.”. We assume that the (n + 1)-st character is the unique string termina-
tion character. Such a string implicitly defines n + 1 suffixes. The i-th suffix is the string
“a;aiy1 ... ay.”. For each position i there is a minimum length substring starting at position

i which uniquely identifies this substring. For example, consider the string “yabbadabbadoo”.

25 -3

Lecture Notes CMSC 420

Position | Substring identifier

1 y

2 abbada
3 bbada
4 bada

5 ada

6 da

7 abbado
8 bbado
9 bado

10 ado

11 do

12 00

13 0.

14

Figure 78: Substring identifiers for the string “yabbadabbadoo.”.

(S8

The substring “y” uniquely identifies the first position of the string. However the second po-
sition is not uniquely identified by “a” or “ab” or even “abbad”, since all of these substrings
occur at least twice in the string. However, “abbada” uniquely identifies the second posi-
tion, because this substring occurs only once in the entire string. The substring identifier for
position ¢ is the minimum length substring starting at position i of the string which ocecurs
uniquely in s. Note that because the end of string character is unique, every position has a

unique substring identifier. An example is shown in the following figure.

A suffiz tree for a string s is a trie in which we store each of the n+ 1 substring identifiers for s.
An example is shown in the following figure. (Following standard suffix tree conventions, we put
labels on the edges rather than in the nodes, but this data structure is typically implemented
as a trie or a patricia trie.)

As an example of answering a query, suppose that we want to know how many times the
substring “abb” occurs within the string s. To do this we search for the string “abb” in the
suffix tree. If we fall out of the tree, then it does not occur. Otherwise the search ends at
some node u. The number of leaves descended from u is equal to the number of times “abb”
occurs within s. (In the example, this is 2.) By storing this information in each node of the
tree, we can answer these queries in time proportional to the length of the substring query
(irrespective of the length of s).

Since suffix trees are often used for storing very large texts upon which many queries are
to be performed (e.g. they were used for storing the entire contents of the Oxford English
Dictionary and have been used in computational biology) it is important that the space used
by the data structure be O(n) where n is the number of characters in the string. Using the
standard trie representation, this is not necessarily true. (You can try to generate your own
counterexample where the data structure uses O(n?) space, even if the alphabet is limited to
2 symbols.) However, if a patricia trie is used the resulting suffix tree has O(n) nodes. The
reason is that the number of leaves in the suffix tree is equal to n + 1. We showed earlier in
the semester that if every internal node has two children (or generally at least two children)
then the number of internal nodes is not greater than n. Hence the total number of nodes is

O(n).

25 -4

Lecture Notes CMSC 420

. .
SRUNuN e
a

a 0

Figure 79: A suffix tree for the string “yabbadabbadoo.”.

Lecture 26: Hashing
Reading: Chapter 5 in Weiss and Chapter 6 in Samet’s notes.

Hashing: We have seen various data structures (e.g., binary trees, AVL trees, splay trees, skip lists)
that can perform the dictionary operations insert (), delete() and find(). We know that
these data structures provide O(logn) time access. It is unreasonable to ask any sort of tree-
based structure to do better than this, since to store n keys in a binary tree requires at least
Q(logn) height. Thus one is inclined to think that it is impossible to do better. Remarkably,
there is a better method, at least if one is willing to consider expected case rather than worst
case performance.

Hashing is a method that performs all the dictionary operations in O(1) (i.e. constant) expected
time, under some assumptions about the hashing function being used. Hashing is considered so
good, that in contexts where just these operations are being performed, hashing is the method
of choice (e.g. symbol tables for compilers are almost always implemented using hashing).
Tree-based data structures are generally prefered in the following situations:

e When storing data on secondary storage (e.g. using B-trees),

e When knowledge of the relative order of elements is important (e.g. if a £ind() fails, I
may want to know the nearest key. Hashing cannot help us with this.)

The idea behind hashing is very simple. We have a table containing m entries. We select a
hash function h(x), which is an easily computable function that maps a key = to a “virtually
random” index in the range [0..m-1]. We will then attempt to store the key in index h(z)
in the table. Of course, it may be that different keys are mapped to the same location. This
is called a collision. We need to consider how collisions are to be handled, but observe that if
the hashing function does a good job of scattering the keys around the table, then the chances
of a collision occuring at any index of the table are about the same. As long as the table size
is at least as large as the number of keys, then we would expect that the number of keys that
are map to the same cell should be small.

1Copyright, David M. Mount, 2001

26 -1

