Lecture Notes CMSC 420

. .
SRUNuN e
a

a 0

Figure 79: A suffix tree for the string “yabbadabbadoo.”.

Lecture 26: Hashing
Reading: Chapter 5 in Weiss and Chapter 6 in Samet’s notes.

Hashing: We have seen various data structures (e.g., binary trees, AVL trees, splay trees, skip lists)
that can perform the dictionary operations insert (), delete() and find(). We know that
these data structures provide O(logn) time access. It is unreasonable to ask any sort of tree-
based structure to do better than this, since to store n keys in a binary tree requires at least
Q(logn) height. Thus one is inclined to think that it is impossible to do better. Remarkably,
there is a better method, at least if one is willing to consider expected case rather than worst
case performance.

Hashing is a method that performs all the dictionary operations in O(1) (i.e. constant) expected
time, under some assumptions about the hashing function being used. Hashing is considered so
good, that in contexts where just these operations are being performed, hashing is the method
of choice (e.g. symbol tables for compilers are almost always implemented using hashing).
Tree-based data structures are generally prefered in the following situations:

e When storing data on secondary storage (e.g. using B-trees),

e When knowledge of the relative order of elements is important (e.g. if a £ind() fails, I
may want to know the nearest key. Hashing cannot help us with this.)

The idea behind hashing is very simple. We have a table containing m entries. We select a
hash function h(x), which is an easily computable function that maps a key = to a “virtually
random” index in the range [0..m-1]. We will then attempt to store the key in index h(z)
in the table. Of course, it may be that different keys are mapped to the same location. This
is called a collision. We need to consider how collisions are to be handled, but observe that if
the hashing function does a good job of scattering the keys around the table, then the chances
of a collision occuring at any index of the table are about the same. As long as the table size
is at least as large as the number of keys, then we would expect that the number of keys that
are map to the same cell should be small.

1Copyright, David M. Mount, 2001

26 -1

Lecture Notes CMSC 420

Hashing is quite a versatile technique. Omne way to think about hashing is as a means of
implementing a content-addressable array. We know that arrays can be addressed by an integer
index. But it is often convenient to have a look-up table in which the elements are addressed
by a key value which may be of any discrete type, strings for example or integers that are over
such a large range of values that devising an array of this size would be impractical. Note that
hashing is not usually used for continuous data, such as floating point values, because similar
keys 3.14159 and 3.14158 may be mapped to entirely different locations.

There are two important issues that need to be addressed in the design of any hashing system.
The first is how to select a hashing function and the second is how to resolve collisions.

Hash Functions: A good hashing function should have the following properties.

e It should be simple to compute (using simple arithmetic operations ideally).

e It should produce few collisions. In turn the following are good rules of thumb in the
selection of a hashing function.

— It should be a function of every bit of the key.

— It should break up naturally occuring clusters of keys.

As an example of the last rule, observe that in writing programs it is not uncommon to use
very similar variables names, temp1, temp2, and temp3. It is important such similar names be
mapped to entirely different locations.

We will assume that our hash functions are being applied to integer keys. Of course, keys need
not be integers generally. But noninteger data, such as strings, can be thought of as a sequence
of integers assuming their ASCII or UNICODE encoding. Once our key has been converted
into an integer, we can think of hash functions on integers. One very simple hashing function
is the function

h(z) = x mod m.

This certainly maps each key into the range [0..m — 1], and it is certainly fast. Unfortunately
this function is not a good choice when it comes to collision properties, since it does not break
up clusters.

A more robust strategy is to first multiply the key value by some large integer constant a and
then take the mod. For this to have good scattering properties either m should be chosen to
be a prime number, or a should be prime relative to m (i.e. share no common divisors other
than 1).

h(z) = (a - z) mod m.

An even better approach is to both add and multiply. Let ¢ and b be two large integer
constants. Ideally a is prime relative to m.

h(z) = (ax + b) mod m.

By selecting a and b at random, it can be shown such a scheme produces a good performance
in the sense that for any two keys the probability of them being mapped to the same address
is roughly 1/m. In our examples, we will simplify things by taking the last digit as the hash
value, although in practice this is a very bad choice.

Collision Resolution: Once a hash function has been selected, the next element that has to be
solved is how to handle collisions. If two elements are hashed to the same address, then we
need a way to resolve the situation.

26 — 2

Lecture Notes CMSC 420

Separate Chaining: The simplest approach is a method called separate chaining. The idea is that
we think of each of the m locations of the hash table as simple head pointers to m linked lists.
The link list table[i] holds all keys that hash to location i.

To insert a key 2 we simply compute h(z) and insert the new element into the linked list
table[h(x)]. (We should first search the list to make sure it is not a duplicate.) To find
a key we just search this linked list. To delete a key we delete it from this linked list. An
example is shown below, where we just use the last digit as the hash function (a very bad
choice normally).

~ 20| o= 10| /]

a LTI a F1
{3l

Figure 80: Collision resolution by separate Chaining.

EINEININEIEY

The running time of this procedure will depend on the length of the linked list to which the
key has been hashed. If n denotes the number of keys stored in the table currently, then the
ratio A = n/m indicates the load factor of the hash table. If we assume that keys are being
hashed roughly randomly (so that clustering does not occur), then it follows that each linked
list is expected to contain A elements. As mentioned before, we select m to be with a constant
factor of n, so this ratio is a constant.

Thus, it follows from a straightforward analysis that the expected running time of a successful
search is roughly

Sop = 1+g = 0(1).

since about half of an average list needs be searched. The running time of an unsuccessful
search is roughly

U, =1+ 2= 0().
Thus as long as the load factor is a constant separate chaining provide expected O(1) time for
insertion and deletion.

The problem with separate chaining is that we require separate storage for pointers and the
new nodes of the linked list. This also creates additional overhead for memory allocation. It
would be nice to have a method that does not require the use of any pointers.

Open Addressing: To avoid the use of extra pointers we will simply store all the keys in the hash
table, and use a special value (different from every key) called EMPTY, to determine which entries
have keys and which do not. But we will need some way of finding out which entry to go to
next when a collision occurs. Open addressing consists of a collection of different strategies for
finding this location. In it most general form, an open addressing system involves a secondary
search function, f, and if we find that location h(x) is occupied, we next try locations

(h(z) + (1)) mod m, (h(z)+ f(2)) mod m, (h(z)+ f(3)) mod m,....

until finding an open location. This sequence is called a probe sequence, and ideally it should
be capable of searching the entire list. How is this function f chosen? There are a number of
alternatives, which we consider below.

26 -3

Lecture Notes CMSC 420

Linear Probing: The simplest idea is to simply search sequential locations until finding one that
is open. Thus f(i) = ¢. Although this approach is very simple, as the table starts to get full
its performance becomes very bad (much worse than chaining).

To see what is happening let’s consider an example. Suppose that we insert the following 4
keys into the hash table (using the last digit rule as given earlier): 10, 50, 42, 92. Observe
that the first 4 locations of the hash table are filled. Now, suppose we want to add the key
31. With chaining it would normally be the case that since no other key has been hashed to
location 1, the insertion can be performed right away. But the bunching of lists implies that
we have to search through 4 cells before finding an available slot.

insert(50) insert(42) insert(92) insert(31)

— 0 10 0 10 0 10 0 10

1 50) 1 50 1 50 — 1 50

2 — 2 42 — 2 42 2 42

3 3 3 92) 3 92

4 4 4 4 31

5 5 5 5

6 6 6 6

Figure 81: Linear probing.

This phenomenon is called secondary clustering. Primary clustering happens when the table
contains many names with the same hash value (presumably implying a poor choice for the
hashing function). Secondary clustering happens when keys with different hash values have
nearly the same probe sequence. Note that this does not occur in chaining because the lists
for separate hash locations are kept separate from each other, but in open addressing they can
interfere with each other.

As the table becomes denser, this affect becomes more and more pronounced, and it becomes
harder and harder to find empty spaces in the table.

Recall that A = n/m is the load factor for the table. For open addressing we require that
A < 1, because the table cannot hold more than m entries. It can be shown that the expected
running times of a successful and unsuccessful searches using linear probing are

1 1
Sy = 5(”m)

1 I
e ()
This is quite hard to prove. Observe that as A approaches 1 (a full table) this grows to infinity.

A rule of thumb is that as long as the table remains less than 75% full, linear probing performs
fairly well.

Quadratic Probing: To avoid secondary clustering, one idea is to use a nonlinear probing function
which scatters subsequent probes around more effectively. One such method is called quadratic
probing, which works as follows. If the index hashed to h(z) is full, then we consider next
h(x) + 1,h(x) +4,h(2) + 9,... (again taking indices mod m). Thus the probing function is
1) =2

26 -4

Lecture Notes CMSC 420

Here is the search algorithm (insertion is similar). Note that there is a clever trick to compute
i2 without using multiplication. It is based on the observation that i2 = (i — 1)2 4 2i — 1.
Therefore, f(i) = f(i — 1) + 2 — 1. Since we already know f(i — 1) we only have to add in
the 2¢ — 1. Since multiplication by 2 can be performed by shifting this is more efficient. The
argument z is the key to find, T is the table, and m is the size of the table. We will just
assume we are storing integers, but the extension to other types is straightforward.

Hashing with Quadratic Probing

int find(int x, int T[m]) {

i=20
¢ =h(x) // first position
while (T[c] != EMPTY) && (T[c] !=x) { // found key or empty slot
c += 2x(++i) - 1 // mnext position
c=ctm // wrap around using mod
}
return ¢
}
hash
MZ/QZ/QZ/QZ/% insert
Linear probing I
;\/—/
secondary cluster
hash
Vit 1 Yinsert
Quadratic probing
+1 +4 +9 +16
hash
i insert
Double hashing
+g(X) +2g(X) +3g(x)

Figure 82: Various open-addressing systems.

The above procedure is not quite complete, since it loops infinitely when the table is full. This
is easy to fix, by adding a variable counting the number of entries being used in the table.

Experience shows that this succeeds in breaking up the secondary clusters that arise from
linear probing, but there are some tricky questions to consider. With linear probing we were
assured that as long as there is one free location in the array, we will eventually find it without
repeating any probe locations. How do we know if we perform quadratic probing that this
will be the case? It might be that we keep hitting the same index of the table over and over
(because of the fact that we take the index mod m).

26 -5

Lecture Notes CMSC 420

It turns out (fortunately) that quadratic probing does do a pretty good job of visiting different
locations of the array without repeating. It can even be formally proved that if m is prime,
then the first m/2 locations that quadratic probing hits will be distinct. See Weiss for a proof.

Double Hashing: As we saw, the problem with linear probing is that we may see clustering or
piling up arise in the table. Quadratic probing was an attractive way to avoid this by scattering
the successive probe sequences around. If you really want to scatter things around for probing,
then why don’t you just use another hashing function to do this?

The idea is use h(z) to find the first location at which to start searching, and then let f(i) =
i - g(x) be the probing sequence where g(z) is another hashing function. Some care needs to
be taken in the choice of g(2) (e.g. g(2) = 0 would be a disaster). As long as the table size m
is prime and (g(2) mod m #£ 0 we are assured of visiting all cells before repeating. Note that
the second hash function does not tell us where to put the object, it gives us an increment to
use in cycling around the table.

Performance: Performance analysis shows that as long as primary clustering is avoided, then open
addressing using is an efficient alternative to chaining. The running times of successful and
unsuccessful searches for open addressing using double hashing are

1 1
Sdh = Xln T
1
Udh - m

To give some sort of feeling for what these quantities mean, consider the following table.

) 050 0.75 090 095 099
U(N) [200 400 100 20.0 100,
S(A) | 139 189 256 3.15 465

26 -6

