Lecture Notes CMSC 420

Lecture 4: Basic Data Structures
Read: Chapt. 3 in Weiss.

Basic Data Structures: Before we go into our coverage of complex data structures, it is good to
remember that in many applications, simple data structures are sufficient. This is true, for
example, if the number of data objects is small enough that efficiency is not so much an issue,
and hence a complex data structure is not called for. In many instances where you need a
data structure for the purposes of prototyping an application, these simple data structures are
quick and easy to implement.

Abstract Data Types: An important element to good data structure design is to distinguish
between the functional definition of a data structure and its implementation. By an abstract
data structure (AD'T) we mean a set of objects and a set of operations defined on these objects.
For example, a stack ADT is a structure which supports operations such as push and pop (whose
definition you are no doubt familiar with). A stack may be implemented in a number of ways,
for example using an array or using a linked list. An important aspect of object oriented
languages like C++ and Java is the capability to present the user of a data structure with an
abstract definition of its function without revealing the methods with which it operates. To
a large extent, this course will be concerned with the various options for implementing simple
abstract data types and the tradeoffs between these options.

Linear Lists: A linear list or simply list is perhaps the most basic abstract data types. A list is
simply an ordered sequence of elements (a1, aq,...,a,). We will not specify the actual type of
these elements here, since it is not relevant to our presentation. (In C++ this might be done
through the use of templates. In Java this can be handled by defining the elements to be of
type Object. Since the Object class is a superclass of all other classes, we can store any class
type in our list.)

The size or length of such a list is n. There is no agreed upon specification of the list ADT,
but typical operations include:

get(i): Returns element a;.
set(i,x): Sets the ith element to x.
length(): Returns the length of the list.

insert(i,x): Insert element x just prior to element a; (causing the index of all subsequent
items to be increased by one).

delete(i): Delete the ith element (causing the indices of all subsequent elements to be de-
creased by 1).

I am sure that you can imagine many other useful operations, for example search the list for
an item, split or concatenate lists, return a sublist, make the list empty. There are often a
number of programming language related operations, such as returning an iterator object for
the list. Lists of various types are among the most primitive abstract data types, and because
these are taught in virtually all basic programming classes we will not cover them in detail
here.

There are a number of possible implementations of lists. The most basic question is whether
to use sequential allocation (meaning storing the elements sequentially in an array) or linked
allocation (meaning storing the elements in a linked list. With linked allocation there are
many other options to be considered. Is the list singly linked, doubly linked, circularly linked?

1Copyright, David M. Mount, 2001

Lecture Notes CMSC 420

Another question is whether we have an internal list, in which the nodes that constitute the
linked list contain the actual data items a;, or we have an external list, in which each linked
list item contains a pointer to the associated data item.

head#l_-l_-l_-l heada@—@—@—g

Sequential Internal linked list External linked list
allocation

Figure 2: Common types of list allocation.

Multilists and Sparse Matrices: Although lists are very basic structures, they can be combined
in various nontrivial ways. One such example is the notion of a multilist, which can be thought
of as two sets of linked lists that are interleaved with each other. One application of multilists
is in representing sparse matrices. Suppose that you want to represent a very large m X n
matrix. Such a matrix can store O(mn) entries. But in many applications the number of
nonzero entries is much smaller, say on the order of O(m+n). (For example, if n = m = 10,000
this might means that only around 0.01% of the entries are being used.) A common approach
for representing such a sparse matriz is by creating m linked lists, one for each row and n
linked lists, one for each column. Each linked list stores the nonzero entries of the matrix.
Each entry contains the row and column indices [#][j] as well as the value stored in this entry.

Columns 0 1 2 3

Rows 1 13— 1+ 1 ¢ | I |
Matrix contents 0 o]1]s5 0367
0| 8s 0 67 ke 1] - :
15000 99 1 1]o]15 1]3]99
0122390 2 2\1‘\22 2]2739

Figure 3: Sparse matrix representation using multilists.

Stacks, Queues, and Deques: There are two very special types of lists: stacks and queues and
their generalization, called the deque.

Stack: Supports insertions (called pushes) and deletions (pops) from only one end (called
the top). Stacks are used often in processing tree-structured objects, in compilers (in
processing nested structures), and is used in systems to implement recursion.

Queue: Supports insertions (called enqueues) at one end (called the tail or rear) and deletions
(called dequeues) from the other end (called the head or front). Queues are used in
operating systems and networking to store a list of items that are waiting for some
resource.

Lecture Notes CMSC 420

Deque: This is a play on words. It is written like “d-e-que” for a “double-ended queue”, but
it is pronounced like deck, because it behaves like a deck of cards, where you can deal
off the top or the bottom. A deque supports insertions and deletions from either end.
Clearly, given a deque, you immediately have an implementation of a stack or queue by
simple inheritance.

Both stacks and queues can be implemented efficiently as arrays or as linked lists. There are a
number of interesting issues involving these data structures. However, since you have probably
seen these already, we will skip the details here.

Graphs: Intuitively, a graph is a collection of vertices or nodes, connected by a collection of edges.
Graphs are extremely important because they are a very flexible mathematical model for many
application problems. Basically, any time you have a set of objects, and there is some “con-
nection” or “relationship” or “interaction” between pairs of objects, a graph is a good way
to model this. Examples of graphs in application include communication and transportation
networks, VLSI and other sorts of logic circuits, surface meshes used for shape description in
computer-aided design and geographic information systems, precedence constraints in schedul-
ing systems. The list of application is almost too long to even consider enumerating it.

Definition: A directed graph (or digraph) G = (V, E) consists of a finite set V, called the
vertices or nodes, and E, a set of ordered pairs, called the edges of G. (Another way of
saying this is that £ is a binary relation on V.)

Observe that self-loops are allowed by this definition. Some definitions of graphs disallow this.
Multiple edges are not permitted (although the edges (v,w) and (w,v) are distinet).

—® Oan®
Digraph Graph

Figure 4: Digraph and graph example.

Definition: An undirected graph (or graph) G = (V, E) consists of a finite set V' of vertices,
and a set E of unordered pairs of distinct vertices, called the edges. (Note that self-loops
are not allowed).

Note that directed graphs and undirected graphs are different (but similar) objects mathemat-
ically. We say that vertex v is adjacent to vertex u if there is an edge (u,v). In a directed
graph, given the edge e = (u, v), we say that u is the origin of e and v is the destination of e.
In undirected graphs u and v are the endpoints of the edge. The edge e is incident (meaning
that it touches) both u and v.

In a digraph, the number of edges coming out of a vertex is called the out-degree of that vertex,
and the number of edges coming in is called the in-degree. In an undirected graph we just talk
about the degree of a vertex as the number of incident edges. By the degree of a graph, we
usually mean the maximum degree of its vertices.

When discussing the size of a graph, we typically consider both the number of vertices and
the number of edges. The number of vertices is typically written as n or V, and the number
of edges is written as m or E. Here are some basic combinatorial facts about graphs and
digraphs. We will leave the proofs to you. Given a graph with V vertices and E edges then:

4-3

Lecture Notes CMSC 420

In a graph:
e 0<E<(3) =n(n—1)/2€0(n?).
* > v deglv) = 2F.
In a digraph:
e 0 < E < n?.
o > ey in-deg(v) = X oy out-deg(v) = .

Notice that generally the number of edges in a graph may be as large as quadratic in the
number of vertices. However, the large graphs that arise in practice typically have much fewer
edges. A graph is said to be sparse if & € O(V), and dense, otherwise. When giving the
running times of algorithms, we will usually express it as a function of both V and F, so that
the performance on sparse and dense graphs will be apparent.

Adjacency Matrix: An n x n matrix defined for 1 <v,w < n.

M%M:{l if (v,w) e FE

0 otherwise.

If the digraph has weights we can store the weights in the matrix. For example if (v, w) €
E then Ajv,w] = W(v,w) (the weight on edge (v,w)). If (v,w) ¢ E then generally
W (v, w) need not be defined, but often we set it to some “special” value, e.g. A(v,w) =
—1, or oo. (By oo we mean (in practice) some number which is larger than any allowable
weight. In practice, this might be some machine dependent constant like MAXINT.)

Adjacency List: An array Adj[l...n] of pointers where for 1 < v < n, Adj[v] points to a
linked list containing the vertices which are adjacent to v (i.e. the vertices that can be
reached from v by a single edge). If the edges have weights then these weights may also
be stored in the linked list elements.

1 2 3 Adj
][RR
210(0]1 2| -3/
\ sloli]o] 3] eH2)/]
Adjacency matrix Adjacency list

Figure 5: Adjacency matrix and adjacency list for digraphs.

We can represent undirected graphs using exactly the same representation, but we will store
each edge twice. In particular, we representing the undirected edge {v, w} by the two oppositely
directed edges (v,w) and (w,v). Notice that even though we represent undirected graphs in
the same way that we represent digraphs, it is important to remember that these two classes
of objects are mathematically distinet from one another.

This can cause some complications. For example, suppose you write an algorithm that operates
by marking edges of a graph. You need to be careful when you mark edge (v,w) in the
representation that you also mark (w,v), since they are both the same edge in reality. When
dealing with adjacency lists, it may not be convenient to walk down the entire linked list, so
it is common to include cross links between corresponding edges.

Lecture Notes CMSC 420

Adj
1 2 3 4 ([o2l T3], TeF{4], 1]
1101 1 1] ! l”__,, :
a e 2 .__—I 1 |v | ._|7.'_.| 3 |‘ |/|
S 201fof1]o0 T L
© © s{1|1]o]1 3| oLl Tal{2] [o}{4], /]
411(0[]1]0 N :
¢ ol B
Adjacency matrix Adjacency list (with crosslinks)

Figure 6: Adjacency matrix and adjacency list for graphs.

An adjacency matrix requires O(V'2) storage and an adjacency list requires O(V + E) storage.
The V arises because there is one entry for each vertex in Adj. Since each list has out-deg(v)
entries, when this is summed over all vertices, the total number of adjacency list records is
O(FE). For sparse graphs the adjacency list representation is more space efficient.

