Lecture Notes CMSC 420

Lecture 5: Trees

Read: Chapt. 4 in Weiss.

Trees: Trees and their variants are among the most common data structures. In its most general
form, a free tree is a connected, undirected graph that has no cycles. Since we will want to
use our trees for applications in searching, it will be more meaningful to assign some sense of
order and direction to our trees.

Formally a tree (actually a rooted tree) is defined recursively as follows. It consists of one or
more items called nodes. (Our textbook allows for the possibility of an empty tree with no
nodes.) It consists of a distinguished node called the root, and a set of zero or more nonempty

subsets of nodes, denoted 14,15, ..., T, where each is itself a tree. These are called the subtrees
of the root.
The root of each subtree T4,...,T} is said to be a child of r, and r is the parent of each root.

The children of r are said to be siblings of one another. Trees are typically drawn like graphs,
where there is an edge (sometimes directed) from a node to each of its children. See the figure

elow. e
\@
%% ©
& o

If there is an order among the T;’s, then we say that the tree is an ordered tree. The degree of
a node in a tree is the number of children it has. A leafis a node of degree 0. A path between
two nodes is a sequence of nodes u1,uq, ..., u; such that u; is a parent of u;41. The length of
a path is the number of edges on the path (in this case k — 1). There is a path of length 0
from every node to itself.

Figure 7: Trees.

The depth of a node in the tree is the length of the unique path from the root to that node.
The root is at depth 0. The height of a node is the length of the longest path from the node
to a leaf. Thus all leaves are at height 0. If there is a path from u to v we say that v is a
descendants of u. We say it is a proper descendent if w £ v. Similarly, u is an ancestor of v.

Implementation of Trees: One difficulty with representing general trees is that since there is no
bound on the number of children a node can have, there is no obvious bound on the size of a
given node (assuming each node must store pointers to all its children). The more common
representation of general trees is to store two pointers with each node: the firstChild and
the nextSibling. The figure below illustrates how the above tree would be represented using
this technique.

Trees arise in many applications in which hierarchies exist. Examples include the Unix file
system, corporate managerial structures, and anything that can be described in “outline form”
(like the chapters, sections, and subsections of a user’s manual). One special case of trees will
be very important for our purposes, and that is the notion of a binary tree.

1Copyright, David M. Mount, 2001

Lecture Notes CMSC 420

3%

data | ¢ | el nextSibling E—*\C [¢let=D /]
frsChid B TF 1 G

W T

Figure 8: A binary representation of general trees.

root

Binary Trees: Our text defines a binary tree as a tree in which each node has no more than two
children. However, this definition is subtly flawed. A binary tree is defined recursively as
follows. A binary tree can be empty. Otherwise, a binary tree consists of a root node and two
disjoint binary trees, called the left and right subtrees. The difference in the two definitions
is important. There is a distinction between a tree with a single left child, and one with a
single right child (whereas in our normal definition of tree we would not make any distinction
between the two).

The typical Java representation of a tree as a data structure is given below. The element field
contains the data for the node and is of some abstract type, which in Java might be Object.
(In C++ the element type could be specified using a template.) When we need to be concrete
we will often assume that element fields are just integers. The left field is a pointer to the
left child (or null if this tree is empty) and the right field is analogous for the right child.

class BinaryTreeNode {

Object element; // data item
BinaryTreeNode left; // left child
BinaryTreeNode right; // right child

Binary trees come up in many applications. One that we will see a lot of this semester
is for representing ordered sets of objects, a binary search tree. Another one that is used
often in compiler design is expression trees which are used as an intermediate representation
for expressions when a compiler is parsing a statement of some programming language. For
example, in the figure below right, we show an expression tree for the expression ((a + b) *

c)/(d—e)).

Traversals: There are three natural ways of visiting or traversing every node of a tree, preorder,
postorder, and (for binary trees) inorder. Let T be a tree whose root is r and whose subtrees
are 11,15, ..., Ty for m > 0.

Preorder: Visit the root r, then recursively do a preorder traversal of T41,7T5,...,Ty. For
example: {/,*,+,a,b,e,—,d,e) for the expression tree shown above.

Postorder: Recursively do a postorder traversal of 14,75, ..., Ty and then visit r. Example:
{a,b,+,¢,%,d,e,—, /). (Note that this is not the same as reversing the preorder traversal.)

Inorder: (for binary trees) Do an inorder traversal of Tr, visit r, do an inorder traversal of
Tr. Example: (a,+,b,x,¢,/,d,—,e).

Note that theses traversal correspond to the familiar prefiz, postfiz, and infix notations for
arithmetic expressions.

Lecture Notes CMSC 420

Expression Tree Binary tree and extended binary tree

Figure 9: Expression tree.

Preorder arises in game-tree applications in Al, where one is searching a tree of possible
strategies by depth-first search. Postorder arises naturally in code generation in compilers.
Inorder arises naturally in binary search trees which we will see more of.

These traversals are most easily coded using recursion. If recursion is not desired (either for
greater efficiency or for fear of using excessive system stack space) it is possible to use your
own stack to implement the traversal. Either way the algorithm is quite efficient in that its
running time is proportional to the size of the tree. That is, if the tree has n nodes then the
running time of these traversal algorithms are all O(n).

Extended Binary Trees: Binary trees are often used in search applications, where the tree is
searched by starting at the root and then proceeding either to the left or right child, depending
on some condition. In some instances the search stops at a node in the tree. However, in some
cases 1t attempts to cross a null link to a nonexistent child. The search is said to “fall out” of
the tree. The problem with falling out of a tree is that you have no information of where this
happened, and often this knowledge is useful information. Given any binary tree, an extended
binary tree is one which is formed by replacing each missing child (a null pointer) with a special
leaf node, called an external node. The remaining nodes are called internal nodes. An example
is shown in the figure above right, where the external nodes are shown as squares and internal
nodes are shown as circles. Note that if the original tree is empty, the extended tree consists
of a single external node. Also observe that each internal node has exactly two children and
each external node has no children.

Let n denote the number of internal nodes in an extended binary tree. Can we predict how
many external nodes there will be? It is a bit surprising but the answer is yes, and in fact
the number of extended nodes is n + 1. The proof is by induction. This sort of induction is
so common on binary trees, that it is worth going through this simple proof to see how such
proofs work in general.

Claim: An extended binary tree with n internal nodes has n + 1 external nodes.

Proof: By (strong) induction on the size of the tree. Let X (n) denote the number of external
nodes in a binary tree of n nodes. We want to show that for alln >0, X(n) =n + 1.
The basis case is for a binary tree with 0 nodes. In this case the extended tree consists
of a single external node, and hence X (0) = 1.
Now let us consider the case of n > 1. By the induction hypothesis, for all 0 < n’ < n, we
have X (n') = n’+ 1. We want to show that it is true for n. Since n > 1 the tree contains

a root node. Among the remaining n — 1 nodes, some number % are in the left subtree,
and the other (n — 1) — k are in the right subtree. Note that k and (n — 1) — k are both

5-3

Lecture Notes CMSC 420

less than n and so we may apply the induction hypothesis. Thus, there are X (k) = k+1
external nodes in the left subtree and X ((n — 1) — k) = n — k external nodes in the right
subtree. Summing these we have

X(n)=X(k)+X((n=1)—k)=(+1)+(n—Fk)=n+1,
which is what we wanted to show.

Remember this general proof structure. When asked to prove any theorem on binary trees by
induction, the same general structure applies.

Complete Binary Trees: We have discussed linked allocation strategies for general trees and
binary trees. Is it possible to allocate trees using sequential (that is, array) allocation? In
general it is not possible because of the somewhat unpredictable structure of trees. However,
there is a very important case where sequential allocation is possible.

Complete Binary Tree: is a binary tree in which every level of the tree is completely filled,
except possibly the bottom level, which is filled from left to right.

It is easy to verify that a complete binary tree of height h has between 2% and 2**1 —1 nodes,
implying that a tree with n nodes has height O(logn). (We leave these as exercises involving
geometric series.) An example is provided in the figure below.

max=15

'
Aalele plelr [6njn [y [T
0123456789 101112131415

Figure 10: A complete binary tree.

The extreme regularity of complete binary trees allows them to be stored in arrays, so no
additional space is wasted on pointers. Consider an indexing of nodes of a complete tree from
1 to n in increasing level order (so that the root is numbered 1 and the last leaf is numbered
n). Observe that there is a simple mathematical relationship between the index of a node and
the indices of its children and parents.

In particular:

leftChild(¢): if (2¢ < n) then 2, else null.
rightChild(¢): if (2 + 1 < n) then 2 + 1, else null.
parent(i): if (¢ > 2) then |i/2], else null.

Observe that the last leaf in the tree is at position n, so adding a new leaf simply means
inserting a value at position n + 1 in the list and updating n.

Lecture Notes CMSC 420

Threaded Binary Trees: Note that binary tree traversals are defined recursively. Therefore a
straightforward implementation would require extra space to store the stack for the recursion.
The stack will save the contents of all the ancestors of the current node, and hence the addi-
tional space required is proportional to the height of the tree. (Either you do it explicitly or
the system handles it for you.) When trees are balanced (meaning that a tree with n nodes has
O(logn) height) this is not a big issue, because logn is so smaller compared to n. However,
with arbitrary trees, the height of the tree can be as high as n — 1. Thus the required stack
space can be considerable.

This raises the question of whether there is some way to traverse a tree without using additional
storage. There are two tricks for doing this. The first one involves altering the links in the tree
as we do the traversal. When we descend from parent to child, we reverse the parent-child link
to point from parent to the grandparent. These reversed links provide a way to back up the
tree when the recursion bottoms out. On backing out of the tree, we “unreverse” the links,
thus restoring the original tree structure. We will leave the details as an exercise.

The second method involves a clever idea of using the space occupied for the null pointers
to store information to aid in the traversal. In particular, each left-child pointer that would
normally be null is set to the inorder predecessor of this node. Similarly each right-child pointer
that would normally be null is set to the inorder successor of this node. The resulting links
are called threads. This is illustrated in the figure below (where threads are shown as broken
curves).

Binary tree Binary tree with threads

Figure 11: A Threaded Tree.

Each such pointer needs to have a special “mark bit” to indicate whether it used as a parent-
child link or as a thread. So the additional cost is only two bits per node. Now, suppose that
you are currently visiting a node u. How do we get to the inorder successor of u? If the right
child pointer is a thread, then we just follow it. Otherwise, we go the right child, and then
traverse left-child links until reaching the bottom of the tree (namely a threaded link).

BinaryTreeNode nextInOrder() { // inorder successor of "this"
BinaryTreeNode q = right; // go to right child
if (rightIsThread) return q; // if thread, then done
while (!q.leftIsThread) { // else q is right child
q = q.left; // go to left child
} // ...until hitting thread
return q;
}

Lecture Notes CMSC 420

For example, in the figure below, suppose that we start with node A in each case. In the left
case, we immediately hit a thread, and return B as the result. In the right case, the right
pointer is not a thread, so we follow it to B, and then follow left links to C' and D. But D’s left
child pointer is a thread, so we return D as the final successor. Note that the entire process
starts at the first node in an inorder traversal, that is, the leftmost node in the tree.

Figure 12: Inorder successor in a threaded tree.

