Lecture Notes CMSC 420

Lecture 7: Binary Search Trees
Read: Chapt 4 of Weiss, through 4.3.6.

Searching: Searching is among the most fundamental problems in data structure design. Tradi-
tionally, we assume that we are given a set of elements {F1, Es,..., E,}, where each E; is
associated with a distinct key value, z; over some totally ordered domain. Given an arbitrary
search key z, we wish to determine whether there is a element containing this key.

Assuming that each object contains a key field is sometimes a bit awkward (since it may involve
accessing private data). A somewhat more attractive way to handle this in modern languages
like C++ and Java is to assume that the element E has a comparison method defined for it.
(In Java we would say that the object is a subclass of type Comparable.) This means that
the class provides a method int compareTo(), whose argument is of the same type as this
class. Since we are not constrained to using one programming language, we will allow ourselves
to overload the comparison operators (which Java does not permit) to make our pseudo-code
easier to read.

Relationship | Expressed in Java What we’ll write
r1 < To rl.compareTo(r2) < 0 rli < r2
=R rl.compareTo(r2) == rl == r2
re > ro rl.compareTo(r2) > 0 rli > r2

Henceforth, we will not mention keys, but instead assume that our base Element type has such
a comparison method. But we will abuse our own convention from time to time by refering
to x sometimes as “key” (when talking about ordering and comparisons) and sometimes as an
“element” (when talking about insertion).

The Dictionary ADT: Perhaps the most basic example of a data structure based on the structure
is the dictionary. A dictionary is an ADT which supports the operations of insertion, deletion,
and finding. There are a number of additional operations that one may like to have supported,
but these seem to be the core operations. Throughout, let us assume that x is of type Element.

insert(Element x): Insert x into the dictionary. Recall that we assume that keys uniquely
identify records. Thus, if an element with the same key as x already exists in the structure,
there are a number of possible responses. These include ignoring the operation, returning
an error status (or printing an error message), or throwing an exception. Throwing the
exception is probably the cleanest option, but not all languages support exceptions.

delete(Element x): Delete the element matching 2’s key from the dictionary. If this key
does not appear in the dictionary, then again, some special error handling is needed.

Element find(Element x): Determine whether there is an element matching 2’s key in the
dictionary? This returns a pointer to the associated object, or null, if the object does not
appear in the dictionary.

Other operations that might like to see in a dictionary include printing (or generally iterating
through) the entries, range queries (find or count all objects in a range of values), returning
or extracting the minimum or maximum element, and computing set operations such as union
and intersection. There are three common methods for storing dictionaries: sorted arrays,
hash tables, and binary search trees. We discuss two of these below. Hash tables will be
presented later this semester.

1Copyright, David M. Mount, 2001



Lecture Notes CMSC 420

Sequential Allocation: The most naive idea is to simply store the keys in a linear array and
run sequentially through the list to search for an element. Although this is simple, it is not
efficient unless the set is small. Given a simple unsorted list insertion is very fast O(1) time
(by appending to the end of the list). However searching takes O(n) time in the worst case.

In some applications, there is some sort of locality of reference, which causes the same small set
of keys to be requested more frequently than others over some subsequence of access requests.
In this case there are heuristics for moving these frequently accessed items to the front of the
list, so that searches are more efficient. One such example is called move to front. Each time a
key is accessed, it is moved from its current location to the front of the list. Another example
is called transpose, which causes an item to be moved up one position in the list whenever it
is accessed. It can be proven formally that these two heuristics do a good job in placing the
most frequently accessed items near the front of the list.

Instead, if the keys are sorted by key value then the expected search time can be reduced
to to O(logn) through binary search. Given that you want to search for a key « in a sorted
array, we access the middle element of the array. If  is less than this element then recursively
search the left sublist, if = is greater then recursively search the right sublist. You stop when
you either find the element or the sublist becomes empty. It is a well known fact that the
number of probes needed by binary search is O(logn). The reason is quite simple, each probe
eliminates roughly one half of the remaining items from further consideration. The number of
times you can “halve” a list of size n is lgn (where lg means log base 2).

Although binary search is fast, it is hard to update the list dynamically, since the list must be
maintained in sorted order. This would require O(n) time for insertion and deletion. To fix
this we use binary trees, which we describe next.

Binary Search Trees: In order to provide the type of rapid access that binary search offers, but
at the same time allows efficient insertion and deletion of keys, the simplest generalization is
called a binary search tree. The idea is to store the records in the nodes of a binary tree, such
that an inorder traversal visits the nodes in increasing key order. In particular, if x is the key
stored in the root node, then the left subtree contains all keys that are less than z, and the
right subtree stores all keys that are greater than z. (Recall that we assume that keys are
distinct, so no other keys are equal to z.)

Defining such an object in C++ or Java typically involves two class definitions. One class
for the tree itself, BinarySearchTree (which is publically accessible) and another one for the
individual nodes of this tree, BinaryNode (which is a protected friend of the BinarySearchTree).
The main data object in the tree is a pointer to root node. The methods associated with the
binary search tree class are then transfered to operations on the nodes of the tree. (For
example, finding a node in the tree is might be transformed to a find operation starting with
the root node of the tree.) See our text for an example.

A node in the binary search tree would typically consist of three members: an associated
Element, which we will call data, and a 1eft and right pointer to the two children. Of course
other information (parent pointers, level links, threads) can be added to this.

Search in Binary Search Trees: The search for a key 2 proceeds as follows. The search key is
compared to the current node’s key, say y. If it matches, then we are done. Otherwise if z < y
we recursively search the left subtree and if x > y then we recursively search the right subtree.
A natural way to handle this would be to make the search procedure a recursive member
function of the BinaryNode class. The one technical hassle in implementing this in C++ or
Java is that we cannot call a member function for a null pointer, which happens naturally if
the search fails and we fall out the bottom of the tree. There are a number of ways to deal
with this. Our book proposes making the search function a member of the BinarySearchTree

7-2



Lecture Notes CMSC 420

class, and passing in the pointer to the current BinaryNode as an argument. (But this is not
the only way to handle this.)

By the way, the initial call is made from the find() method associated with the Binary-
SearchTree class, which invokes find(x, root), where root is the root of the tree.
Recursive Binary Tree Search

Element find(Element x, BinaryNode p) {

if (p == null) return null; // didn’t find it
else if (x < p.data) // x is smaller?
return find(x, p.left); // search left
else if (x > p.data) // x is larger?
return find(x, p.right); // search right
else return p.data; // found it!

It should be pretty easy to see how this works, so we will leave it to you to verify its correctness.
We will often express such simple algorithms in recursive form. Such simple procedures can
often be implemented iteratively, thus saving some of the overhead induced by recursion. Here
is a nonrecursive version of the same algorithm.

Nonrecursive Binary Tree Search

Element find(Element x) {
BinaryTreeNode p = root;
while (p != null) {
if (x < p.data) p = p.left;
else if (x > p.data) p = p.right;
else return p.data;
}

return null;

Given the simplicity of the nonrecursive version, why would anyone ever use the recursive
version? The answer is the no one would. However, we will see many more complicated
algorithms that operate on trees, and these algorithms are almost always much easier to
present and understand in recursive form (once you get use to recursive thinking!).

What is the worst-case running time of the search algorithm? Both of them essentially take
constant time for each node they visit, and then descend to one of the descendents. In the
worst-case the search will visit the deepest node in the tree. Hence the running time is O(h),
where h is the height of the tree. If the tree contains n elements, h could vary anywhere from
lgn (for a balanced tree) up to n — 1 for a degenerate (path) tree.

Insertion: To insert a new element in a binary search tree, we essentially try to locate the key in
the tree. At the point that we “fall out” of the tree, we insert a new leaf node containing the
desired element. It turns out that this is always the right place to put the new node.

As in the previous case, it is probably easier to write the code in its nonrecursive form, but
let’s try to do the recursive version, since the general form will be useful for more complex tree
operations. The one technical difficulty here is that when a new node is created, we need to
“reach up” and alter one of the pointer fields in the parent’s node. To do this the procedure
returns a pointer to the subtree with the newly added element. Note that “most” of the time,
this is returning the same value that is passed in, and hence there is no real change taking
place.



Lecture Notes CMSC 420

The initial call from the BinarySearchTree object is root = insert(x, root). We assume
that there is a constructor for the BinaryNode of the form BinaryNode(data, left, right).

An example is shown below.
Binary Tree Insertion

BinaryNode insert(Element x, BinaryNode p) {
if (p == NULL)
p = new BinaryNode(x, null, null);
else if (x < p.data) p.left = insert(x, p.left);
else if (x > p.data) p.right = insert(x, p.right);
else ...Error: attempt to insert duplicate!...
return p

insert(8)

Figure 18: Binary tree insertion.



