Lecture Notes CMSC 420

Lecture 9: AVL Trees

Read: Chapt 4 of Weiss, through 4.4.

Balanced Binary Trees: The (unbalanced) binary tree described earlier is fairly easy to imple-
ment, but suffers from the fact that if nodes are inserted in increasing or decreasing order
(which is not at all an uncommon phenomenon) then the height of the tree can be quite bad.
Although worst-case insertion orders are relatively rare (as indicated by the expected case
analysis), even inserting keys in increasing order produces a worst-case result. This raises the
question of whether we can design a binary search tree which is guaranteed to have O(logn)
height, irrespective of the order of insertions and deletions. The simplest example is that of
the AVL tree.

AVL Trees: AVL tree’s are height balanced trees. The idea is at each node we need to keep track
of balance information, which indicates the differences in height between the left and right
subtrees. In a perfectly balanced (complete) binary tree, the two children of any internal node
have equal heights. However, maintaining a complete binary tree is tricky, because even a
single insertion can cause a large disruption to the tree’s structure. But we do not have to
do much to remedy this situation. Rather than requiring that both children have exactly the
same height, we only require that their heights differ by at most one. The resulting search
trees are called AVL trees (named after the inventors, Adelson-Velskii and Landis). These
trees maintain the following invariant:

AVL balance condition: For every node in the tree, the heights of its left subtree and right
subtree differ by at most 1. (The height of a null subtree is defined to be -1 by convention.)

In order to maintain the balance condition we can add a new field, balance to each node,
which stores the difference in the height of the right subtree and the height of the left subtree.
This number will always be either —1, 0, or +1 in an AVL tree. (Thus it can be stored using
only 2 bits from each node.) Rather than using the balance field in the code below, we will
assume a simpler method in which we store the height of each subtree.

Before discussing how we maintain this balance condition we should consider the question of
whether this condition is strong enough to guarantee that the height of an AVL tree with n
nodes will be O(logn). To prove this, let’s let N(h) denote the minimum number of nodes that
can be in an AVL tree of height h. We can generate a recurrence for N(h). Clearly N(0) = 1.
In general N(h) will be 1 (for the root) plus N(hy) and N(hg) where hy and hg are the
heights of the two subtrees. Since the overall tree has height h, one of the subtrees must have
height h — 1, suppose hr. To make the other subtree as small as possible we minimize its
height. It’s height can be no smaller than h — 2 without violating the AVL condition. Thus
we have the recurrence

NO) =1

N(h) = NMh-1)+Nh-2)+1
This recurrence is not well defined since N(1) cannot be computed from these rules, so we add
the additional case N(1) = 2. This recurrence looks very similar to the Fibonacci recurrence
(F(h) = F(h— 1)+ F(h —2)). In fact, it can be argued (by a little approximating, a little
cheating, and a little constructive induction) that

h
1 5
N(h) ~ (*2\/_> .

1Copyright, David M. Mount, 2001

Lecture Notes CMSC 420

The quantity (1 + \/5)/2 =~ 1.618 is the famous Golden ratio. Thus, by inverting this we
find that the height of the worst case AVL tree with n nodes is roughly log,n, where ¢ is
the Golden ratio. This is O(logn) (because log’s of different bases differ only by a constant
factor).

All that remains is to show how to perform insertions and deletions in AVL trees, and how to
restore the AVL balance condition after each insertion or deletion. We will do this next time.

Insertion: The insertion routine for AVL trees starts exactly the same as the insertion routine for
binary search trees, but after the insertion of the node in a subtree, we must ask whether the
subtree has become unbalanced. If so, we perform a rebalancing step.

Rebalancing itself is a purely local operation (that is, you only need constant time and actions
on nearby nodes), but requires a little careful thought. The basic operation we perform is called
a rotation. The type of rotation depends on the nature of the imbalance. Let us assume that
the source of imbalance is that the left subtree of the left child is too deep. (The right subtree
of the right child is handled symmetrically.) See the figure below. The operation performed
in this case is a right single rotation. Notice that after this rotation has been performed, the
balance factors change. The heights of the subtrees of b and d are now both even with each
other.

oy
A
J L

Figure 22: Single rotation.

Insert

On the other hand, suppose that the heavy grandchild is the right subtree of the left subtree.
(Again the the left subtree of the right child is symmetrical.) In this case note that a single
rotation will not fix the imbalance. However, two rotations do suffice. See the figure below.
In particular, do a left rotation on the left-right grandchild (the right child of the left child),
and then a right rotation on the left child, you will restore balance. This operation is called a
double rotation, and is shown in the figure below. (We list multiple balanced factors to indicate
the possible values. We leave it as an exercise to determine how to update the balance factors.)

Before presenting the code for insertion, we present the utilities routines used. The rotations
are called rotateL () and rotateR() for the left and right single rotations, respectively, and
rotateLR () and rotateRL() for the left-right and right-left double rotations, respectively. We
also use a utility function height (t), which returns t.height if ¢ is nonnull and —1 otherwise
(the height of a null tree).

AVL Tree Utilities

int height (AvlNode t) { return t == null ? -1 : t.height}

AvlNode rotateR(AvlNode t) // right single rotation
{

Lecture Notes CMSC 420

A

Insert (either)

Figure 23: Left-right double rotation.

AvlNode s = t.left; // (t.bal = -2; s.bal = 0 or 1)
t.left = s.right; // swap inner child
s.right = t; // bring s above t
t.height = ...exercise... // update subtree heights
s.height = ...exercise...
return s; // s replaces t
}
AvlNode rotateLR(AvlNode t) // left-right double rotation
{
t.left = rotateL(t.left);
return rotateR(t);
}

The recursive insertion code is given below. We use the same structure given in Weiss. We
use the usual trick of passing pointer information up the tree by returning a pointer to the
resulting subtree after insertion.

AVL Tree Insertion

AvlNode insert(Element x, AvlNode t) { // recursive insertion method

if (t == null) { // bottom or tree: create new node
t = new AvlNode(x); // create node and initialize

}

else if (x < t.element) {
t.left = insert(x, t.left); // insert recursively on left

// check height condition
if (height(t.left) - height(t.right) == 2) {
// rotate on the left side

if (x < t.left.element) // left-left insertion
t = rotateR(t);

else // left-right insertion
t = rotateLR(t);

}
// update height
t.height = max(height(t.left), height(t.right)) + 1;

Lecture Notes CMSC 420

else if (x > t.element) {
...symmetric with left insertion...
b
else {
...Error: duplicate insertion ignored...
b

return t;

As mentioned earlier, and interesting feature of this algorithm (which is not at all obvious) is
that after the first rotation, the height of the affected subtree is the same as it was before the
insertion, and hence no further rotations are required.

Deletion: Deletion is similar to insertion in that we start by applying the deletion algorithm for
unbalanced binary trees. Recall that this breaks into three cases, leaf, single child, and two
children. In the two children case we need to find a replacement key. Once the deletion
is finished, we walk back up the tree (by returning from the recursive calls), updating the
balance factors (or heights) as we go. Whenever we comes to an unbalanced node, we apply
an appropriate rotation to remedy the situation.

The deletion code is messier than the insertion code. (We will not present it.) But the idea is
the same. Suppose that we have deleted a key from the left subtree and that as a result this
subtree’s height has decreased by one, and this has caused some ancestor to violate the height
balance condition. There are two cases. First, if balance factor for the right child is either 0
or +1 (that is, it is not left heavy), we can perform a single rotation as shown in the figure
below. We list multiple balance factors, because there are a number of possibilities. (We leave
it as an exercise to figure out which balance factors apply to which cases.)

Figure 24: Single rotation for deletion.

On the other hand, if the right child has a balance factor of —1 (it is left heavy) then we
need to perform a double rotation, as shown in the following figure. A more complete example
of a deletion is shown in the figure below. We delete element 1. The causes node 2 to be
unbalanced. We perform a single left rotation at 2. However, now the root is unbalanced. We
perform a right-left double rotation to the root.

Lazy Deletion: The deletion code for AVL trees is almost twice as long as the insertion code. It
is not all that more complicated conceptually, but the number of cases is significantly larger.
Our text suggests an interesting alternative for avoiding the pain of coding up the deletion
algorithm, called lazy deletion. The idea is to not go through the entire deletion process. For
each node we maintain a boolean value indicating whether this element is alive or dead. When

9-4

Lecture Notes CMSC 420

Delete

Figure 25: Double rotation for deletion.

Unbalanced ,/@\\
@ % & Slngle rotation (2)

Delete
Unbalanced

- %&
5

Double rotation (15,7) @f(l@

ofic
@@@ "
F @

Figure 26: AVL Deletion example.

Lecture Notes CMSC 420

a key is deleted, we simply declare it to be dead, but leave it in the tree. If an attempt is
made to insert the same key value again, we make the element alive again. Of course, after a
long sequence of deletions and insertions, it is possible that the tree has many dead nodes. To
fix this we periodically perform a garbage collection phase, which traverses the tree, selecting
only the live elements, and then building a new AVL tree with these elements.

