
Lecture Notes CMSC 251

A heap is represented as anleft-completebinary tree. This means that all the levels of the tree are full
except the bottommost level, which is filled from left to right. An example is shown below. The keys of
a heap are stored in something calledheap order. This means that for each nodeu, other than the root,
key(Parent(u)) ≥ key(u). This implies that as you follow any path from a leaf to the root the keys
appear in (nonstrict) increasing order. Notice that this implies that the root is necessarily the largest
element.

4

Heap orderingLeft−complete Binary Tree

14

3

16

9

10

8 7

12

Figure 11: Heap.

Next time we will show how the priority queue operations are implemented for a heap.

Lecture 13: HeapSort

(Tuesday, Mar 10, 1998)
Read: Chapt 7 in CLR.

Heaps: Recall that a heap is a data structure that supports the main priority queue operations (insert and
extract max) inΘ(log n) time each. It consists of a left-complete binary tree (meaning that all levels of
the tree except possibly the bottommost) are full, and the bottommost level is filled from left to right.
As a consequence, it follows that the depth of the tree isΘ(log n) wheren is the number of elements
stored in the tree. The keys of the heap are stored in the tree in what is calledheap order. This means
that for each (nonroot) node its parent’s key is at least as large as its key. From this it follows that the
largest key in the heap appears at the root.

Array Storage: Last time we mentioned that one of the clever aspects of heaps is that they can be stored in
arrays, without the need for using pointers (as would normally be needed for storing binary trees). The
reason for this is the left-complete nature of the tree.

This is done by storing the heap in an arrayA[1..n]. Generally we will not be using all of the array,
since only a portion of the keys may be part of the current heap. For this reason, we maintain a variable
m ≤ n which keeps track of the current number of elements that are actually stored actively in the
heap. Thus the heap will consist of the elements stored in elementsA[1..m].

We store the heap in the array by simply unraveling it level by level. Because the binary tree is left-
complete, we know exactly how many elements each level will supply. The root level supplies 1 node,
the next level 2, then 4, then 8, and so on. Only the bottommost level may supply fewer than the
appropriate power of 2, but then we can use the value ofm to determine where the last element is. This
is illustrated below.

We should emphasize that thisonly worksbecause the tree is left-complete. This cannot be used for
general trees.

41

Lecture Notes CMSC 251

 3 2 1 5 6 7 8 9 4 13121110

6 7

10

16 14 10 8 7 9 4 2 1 3

n=13m=10

Heap as an array

98

9
54

32

116

Heap as a binary tree

14

3

10

8 7

142

Figure 12: Storing a heap in an array.

We claim that to access elements of the heap involves simple arithmetic operations on the array indices.
In particular it is easy to see the following.

Left(i) : return2i.

Right(i) : return2i + 1.

Parent(i) : returnbi/2c.
IsLeaf (i) : returnLeft(i) > m. (That is, ifi’s left child is not in the tree.)

IsRoot(i) : returni == 1.

For example, the heap ordering property can be stated as “for alli, 1 ≤ i ≤ n, if (not IsRoot(i)) then
A[Parent(i)] ≥ A[i]”.

So is a heap a binary tree or an array? The answer is that from a conceptual standpoint, it is a binary
tree. However, it is implemented (typically) as an array for space efficiency.

Maintaining the Heap Property: There is one principal operation for maintaining the heap property. It is
calledHeapify . (In other books it is sometimes calledsifting down.) The idea is that we are given an
element of the heap which we suspect may not be in valid heap order, but we assume that all of other
the elements in the subtree rooted at this element are in heap order. In particular this root element may
be too small. To fix this we “sift” it down the tree by swapping it with one of its children. Which child?
We should take the larger of the two children to satisfy the heap ordering property. This continues
recursively until the element is either larger than both its children or until its falls all the way to the
leaf level. Here is the pseudocode. It is given the heap in the arrayA, and the indexi of the suspected
element, andm the current active size of the heap. The elementA[max] is set to the maximum ofA[i]
and it two children. Ifmax 6= i then we swapA[i] andA[max] and then recurse onA[max].

Heapify

Heapify(array A, int i, int m) { // sift down A[i] in A[1..m]
l = Left(i) // left child
r = Right(i) // right child
max = i
if (l <= m and A[l] > A[max]) max = l // left child exists and larger
if (r <= m and A[r] > A[max]) max = r // right child exists and larger
if (max != i) { // if either child larger

swap A[i] with A[max] // swap with larger child
Heapify(A, max, m) // and recurse

}
}

42

Lecture Notes CMSC 251

See Figure 7.2 on page 143 of CLR for an example of how Heapify works (in the case wherem = 10).
We show the execution on a tree, rather than on the array representation, since this is the most natural
way to conceptualize the heap. You might try simulating this same algorithm on the array, to see how
it works at a finer details.

Note that the recursive implementation of Heapify is not the most efficient. We have done so because
many algorithms on trees are most naturally implemented using recursion, so it is nice to practice this
here. It is possible to write the procedure iteratively. This is left as an exercise.

The HeapSort algorithm will consist of two major parts. First building a heap, and then extracting the
maximum elements from the heap, one by one. We will see how to use Heapify to help us do both of
these.

How long does Hepify take to run? Observe that we perform a constant amount of work at each level
of the tree until we make a call to Heapify at the next lower level of the tree. Thus we doO(1) work
for each level of the tree which we visit. Since there areΘ(log n) levels altogether in the tree, the total
time for Heapify isO(log n). (It is notΘ(log n) since, for example, if we call Heapify on a leaf, then
it will terminate inΘ(1) time.)

Building a Heap: We can use Heapify to build a heap as follows. First we start with a heap in which the
elements are not in heap order. They are just in the same order that they were given to us in the array
A. We build the heap by starting at the leaf level and then invoke Heapify on each node. (Note: We
cannot start at the top of the tree. Why not? Because the precondition which Heapify assumes is that
the entire tree rooted at nodei is already in heap order, except fori.) Actually, we can be a bit more
efficient. Since we know that each leaf is already in heap order, we may as well skip the leaves and
start with the first nonleaf node. This will be in positionbn/2c. (Can you see why?)

Here is the code. Since we will work with the entire array, the parameterm for Heapify, which indicates
the current heap size will be equal ton, the size of arrayA, in all the calls.

BuildHeap

BuildHeap(int n, array A[1..n]) { // build heap from A[1..n]
for i = n/2 downto 1 {

Heapify(A, i, n)
}

}

An example of BuildHeap is shown in Figure 7.3 on page 146 of CLR. Since each call to Heapify
takesO(log n) time, and we make roughlyn/2 calls to it, the total running time isO((n/2) log n) =
O(n log n). Next time we will show that this actually runs faster, and in fact it runs inΘ(n) time.

HeapSort: We can now give the HeapSort algorithm. The idea is that we need to repeatedly extract the
maximum item from the heap. As we mentioned earlier, this element is at the root of the heap. But
once we remove it we are left with a hole in the tree. To fix this we will replace it with the last leaf in
the tree (the one at positionA[m]). But now the heap order will very likely be destroyed. So we will
just apply Heapify to the root to fix everything back up.

HeapSort

HeapSort(int n, array A[1..n]) { // sort A[1..n]
BuildHeap(n, A) // build the heap
m = n // initially heap contains all
while (m >= 2) {

swap A[1] with A[m] // extract the m-th largest
m = m-1 // unlink A[m] from heap

43

Lecture Notes CMSC 251

Heapify(A, 1, m) // fix things up
}

}

An example of HeapSort is shown in Figure 7.4 on page 148 of CLR. We maken− 1 calls to Heapify,
each of which takesO(log n) time. So the total running time isO((n− 1) log n) = O(n log n).

Lecture 14: HeapSort Analysis and Partitioning

(Thursday, Mar 12, 1998)
Read: Chapt 7 and 8 in CLR. The algorithm we present for partitioning is different from the texts.

HeapSort Analysis: Last time we presented HeapSort. Recall that the algorithm operated by first building a
heap in a bottom-up manner, and then repeatedly extracting the maximum element from the heap and
moving it to the end of the array. One clever aspect of the data structure is that it resides inside the
array to be sorted.

We argued that the basic heap operation of Heapify runs inO(log n) time, because the heap has
O(log n) levels, and the element being sifted moves down one level of the tree after a constant amount
of work.

Based on this we can see that (1) that it takesO(n log n) time to build a heap, because we need
to apply Heapify roughlyn/2 times (to each of the internal nodes), and (2) that it takesO(n log n)
time to extract each of the maximum elements, since we need to extract roughlyn elements and each
extraction involves a constant amount of work and one Heapify. Therefore the total running time of
HeapSort isO(n log n).

Is this tight? That is, is the running timeΘ(n log n)? The answer is yes. In fact, later we will see that it
is not possible to sort faster thanΩ(n log n) time, assuming that you use comparisons, which HeapSort
does. However, it turns out that the first part of the analysis is not tight. In particular, the BuildHeap
procedure that we presented actually runs inΘ(n) time. Although in the wider context of the HeapSort
algorithm this is not significant (because the running time is dominated by theΘ(n log n) extraction
phase).

Nonetheless there are situations where you might not need to sort all of the elements. For example, it
is common to extract some unknown number of the smallest elements until some criterion (depending
on the particular application) is met. For this reason it is nice to be able to build the heap quickly since
you may not need to extract all the elements.

BuildHeap Analysis: Let us consider the running time of BuildHeap more carefully. As usual, it will make
our lives simple by making some assumptions aboutn. In this case the most convenient assumption is
thatn is of the formn = 2h+1 − 1, whereh is the height of the tree. The reason is that a left-complete
tree with this number of nodes is a complete tree, that is, its bottommost level is full. This assumption
will save us from worrying about floors and ceilings.

With this assumption, level 0 of the tree has 1 node, level 1 has 2 nodes, and up to levelh, which has
2h nodes. All the leaves reside on levelh.

Recall that when Heapify is called, the running time depends on how far an element might sift down
before the process terminates. In the worst case the element might sift down all the way to the leaf
level. Let us count the work done level by level.

At the bottommost level there are2h nodes, but we do not call Heapify on any of these so the work is
0. At the next to bottommost level there are2h−1 nodes, and each might sift down 1 level. At the 3rd
level from the bottom there are2h−2 nodes, and each might sift down 2 levels. In general, at levelj

44

