
Storing a Collection of Polygons Using
Quadtrees
HANAN SAMET
University of Maryland
and
ROBERT E. WEBBER
Rutgers University

An adaptation of the quadtree data structure that represents polygonal maps (i.e., collections of
polygons, possibly containing holes) is described in a manner that is also useful for the manipulation
of arbitrary collections of straight line segments. The goal is to store these maps without the loss of
information that results from digitization, and to obtain a worst-case execution time that is not overly
sensitive to the positioning of the map. A regular decomposition variant of the region quadtree is
used to organize the vertices and edges of the maps. A number of related data organizations are
proposed in an iterative manner until a method is obtained that meets the stated goals. The result is
termed a PM (polygonal map) quadtree and is based on a regular decomposition point space quadtree
(PR quadtree) that stores additional information about the edges at its terminal nodes. Algorithms
are given for inserting and deleting line segments from a PM quadtree. Use of the PM quadtree to
perform point location, dynamic line insertion, and map overlay is discussed. The PM quadtree is
compared conceptually to the K-structure and the layered dag with respect to typical cartographic
data. An empirical comparison of the PM quadtree with other quadtree-based representations for
polygonal maps is also provided.

Categories and Subject Descriptors: E.l [Data]: Data Structures--trees; 1.2.10 [Artificial Intelli-
gence]: Vision and Scene Understanding-represerztations, data structures, and transforms; 1.3.3
[Computer Graphics]: Picture/Image Generation--display algorithms; I.35 [Computer Graphics]:
Comput.ational Geometry and Object Modeling-curve surface, solid, and object representations;
geometric algorithms, languages, and systems; modeling packages; 1.4.6 [Image Processing]: Segmen-
tation-region growing, partitioning; 1.4.7 [Image Processing]: Feature Measurement-size and
shape

General Terms: Algorithms

Additional Key Words and Phrases: Geographic information, hierarchical data structures, line
representations, map overlay, polygonal representations, quadtrees

1. INTRODUCTION

Hierarchical data structures are becoming increasingly important representation
techniques in the domains of computer graphics, image processing, computational
geometry, geographic information systems, and robotics. They are based on the
principle of divide and conquer. One such data structure is the quadtree [12, 191.

This work was supported by the National Science Foundation under grant DCR-83-02118.
Authors’ addresses: H. Samet, Computer Science Department, University of Maryland, College Park,
MD 20742; R. E. Webber, Computer Science Department, Rutgers University, Busch Campus, New
Brunswick, NJ 08903.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0730-0301/85/0700-0182 $00.75

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985, Pages 182-222.

Storing a Collection of Polygons Using Quadtrees . 183

It is our goal to show how one variant of the quadtree data structure can be
adapted to the problem of representing polygonal maps. We define a polygonal
map as a collection of polygons (bounding disjoint polygonal regions) which may
be degenerate (e.g., isolated vertices or edges). Thus a polygonal map is an
arbitrary collection of line segments that only intersect at vertices and that
implicitly define a collection of bounded regions. The implicitly defined regions
may contain holes. Such a map must be embedded in a Euclidean plane. These
maps are sometimes referred to as planar subdivisions and frequently arise in
cartographic applications (e.g., representing county boundaries, etc.) as well as
in a host of other applications that require partitioning of the plane into regions
whose boundaries consist of straight line segments. In our discussion, we use the
terms line segment, line, and edge interchangeably, and likewise for the terms
point and vertex.

Our presentation is an evolutionary one (along the lines first presented in [17,
231) in the sense that we start with one data structure and continually refine it
until it satisfies our goal. Although this approach has some merit as a case history
of the design of a data structure, its main purpose is to show the possible trade-
offs involved with different criteria for leaf determination. When storing one-
dimensional data, we have practical, optimal, general-purpose data structures,
that is, the 2-3 tree implementation of a dictionary [l]. However, when manip-
ulating two-dimensional data, the situation is more complicated. Some practical
heuristics, like the quadtree decomposition paradigm, perform well on typical
data, but poorly for various cases of extremely skewed data. Other, more robust
techniques (e.g., the K-structure [ll] and the layered dag [5] discussed in
Appendix 2) appear to be less suited to the manipulation of real data.

The remainder of this paper is organized as follows. In Section 2 we review the
concept of a quadtree and discuss some of its variants in the context of the type
of data we wish to represent. In Section 3 we develop the PM quadtree-our
solution to the problem of storing a polygonal map. Section 4 outlines some
problems that can be solved using the PM quadtree including the actual mechan-
ics of their solution. In particular, it is shown how to perform point location,
dynamic line update (although we only discuss the analysis of dynamic line
insertion), and map overlay. Section 5 is an empirical comparison of the storage
requirements of the PM quadtree and other quadtree-based data structures when
used to encode some sample cartographic data. Three appendices are included to
handle some peripheral topics. Appendix 1 contains a set of procedures for the
insertion and deletion of line segments in the PM quadtree. Appendix 2 reviews
other solutions to the problems discussed in Section 4 but that are not based on
quadtrees as well as a comparison of their use with solutions based on the PM
quadtree. Appendix 3 discusses how labels of regions are maintained so that
region identification information can be updated efficiently when line segments
are inserted and deleted.

The point location problem is to determine the region that contains a given
pair of coordinates. Since we do not represent the region explicitly, this problem
reduces to locating a line segment that borders the region that contains the point
(and knowing on which side of the line segment the region lies). This problem is
central to the input aspects of interactive computer graphics. The dynamic line
insertion problem is the problem of adding new information (in the form of new

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

184 l Hanan Samet and Robert E. Webber

(a) (b)

37383940
(4

57585960

Fig. 1. A region, its binary array, its maximal blocks, and the corresponding quadtree. (a) Region.
(b) Binary array. (c) Block decomposition of the region (a). Blocks in the region are shaded. (d)
Quadtree representation of the blocks in (c).

line segments) to an already existent structure. This problem is central to the
real-time aspects of interactive computer graphics. The map overlay problem can
be viewed as a generalization of the dynamic line insertion problem in that
instead of inserting a single line, we are now inserting a collection of lines (which
happen to be already organized as a map). Our technique will be seen to be more
efficient than performing a sequence of dynamic line insertions.

2. OVERVIEW OF QUADTREE DATA STRUCTURES

2.1 Region Quadtrees
In its most general context, the term quadtree is used to describe a class of
hierarchical data structures whose common property is that they are based on
the principle of recursive decomposition [191. In two dimensions, a square planar
region is recursively subdivided into four rectangular parts until each part
contains data that is sufficiently simple so that it can be organized by some other
data structure (e.g., a vector or a dictionary). They can be differentiated on the
basis of the type of data that they are used to represent, and on the principle
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 185

guiding the decomposition process. The decomposition may be into congruent
parts of the same shape as the original planar region (termed a regular decom-
position) or it may be governed by the input.

As an example of the quadtree concept, we briefly indicate how it is used to
represent digitized regions. Consider the region shown in Figure la which is
represented by the 23 by 23 binary array in Figure lb. Observe that the l’s
correspond to picture elements (termed pixels) that are in the region and the O’s
correspond to pixels that are outside the region. The most studied quadtree
approach to region representation, termed a region quadtree, is based on the
successive subdivision of the array into four equal-size quadrants. If the array
does not consist entirely of l’s or entirely of O’s (i.e., the region only partially
overlaps the entire array), then we subdivide it into quadrants, subquadrants,
. . . , until we obtain blocks (possibly single pixels) that consist entirely of l’s or
entirely of O’s; that is, each block is entirely contained in the region or entirely
disjoint from it. As an example, the resulting blocks for the array of Figure lb
are shown in Figure lc. This process is represented by a tree where each nonleaf
node has four sons. The root node corresponds to the entire array. Each son of a
node represents a quadrant (labeled in order NW, NE, SW, SE). The leaf nodes
of the tree correspond to those blocks for which no further subdivision is
necessary. A leaf node is said to be BLACK or WHITE depending on whether
its corresponding block is entirely inside or entirely outside of the represented
region. All nonleaf nodes are said to be GRAY. The quadtree representation for
Figure lc is shown in Figure Id.

2.2 PR Quadtrees

Point data can be represented by a point quadtree [6] which is a decomposition
of a square planar region into noncongruent parts. The region quadtree can also
be adapted to represent point data. We term such a tree a PR quadtree (PR
denoting point region) [15]. PR quadtrees store points only in terminal nodes.
Regular decomposition is applied until no quadrant contains more than one data
point. For example, Figure 3 is a PR quadtree representation of the five vertices
of the polygonal map in Figure 2. An interesting problem arises when vertices lie
on the border of quadtree nodes. We could always move the vertices so that this
does not happen, but generally this requires global knowledge about the maximum
depth of the quadtree prior to its construction. We could also establish the
convention that some sides of the region represented by a node are closed and
other sides are open, but this can lead to implementation difficulties when
floating point numbers are involved. Therefore, we adopt the convention that all
sides of a node are closed. This means that a vertex that lands on the border
between 2 (or 3 but never more than 4) nodes is recorded in each of the nodes
on whose border it exists.

When comparing the PR quadtree to the point quadtree, three distinctions are
worthy of note. First, the PR quadtree is algorithmically simpler than the point
quadtree. This is particularly noticeable in the implementation of a point deletion
procedure.

Second, given a subtree of a PR quadtree there is an upper bound on the
separation, in terms of distance, between its points. For example, assuming that

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

186 l Hanan Samet and Robert E. Webber

to,11

to,0

Fig. 2. Sample polygonal map.

(l,l)

c!

‘E

.B

‘c

Fig. 3. PR quadtree correspon-
ding to the vertices A, B, C, D,
and E, of polygonal map of Figure
2.

D .
(I,01

the universe is the unit square, a subtree whose root is at a depth d will represent
a 2-d by 2-d region. Thus, the maximum separation between any two points in it
is bounded from above by ~&/2~. In contrast, the bound for the point quadtree
is 4%

The third distinction is in their balance, that is, the distribution of the depths
at which the leaf nodes are found. In the case of the PR quadtree, this is a
function of the static distribution of the points in the area of concern. If the
points are uniformly distributed, then they can be expected to be stored in leaves
with a depth of log,v where v is the number of points. When the points result
from a curve sampling process (e.g., the vertices of a polygonal approximation of
a boundary), then as the density of the sampling process increases, the points
will be stored in leaves whose depth is bounded from above by logzv. However,
in the worst case (i.e., for skewed point distributions), the only upperbound
available is a function of the closest approach between the points (as discussed
in the next section). In contrast to this, the balance of the point quadtree is a
function of the order in which the points are inserted. A simple algorithm that
sorts the points by one coordinate and then uses medians for roots of subtrees
can build a point quadtree with a maximum depth of logzv. Overmars and van
Leeuwen [161 show that by performing this sort algorithm whenever the balance
becomes worse than some constant multiplicative factor, an overall performance
of O(v~logzv) for the insertion of v points can be maintained. This approach is
not suitable for an interactive environment, however, because it entails an
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 187

occasional O(u. log,u) worst-case insertion cost for inserting only one point into
a map of v points.

The above considerations lead us to conclude that among the quadtree-based
data structures, the PR quadtree forms a better basis than the point quadtree for
the development of a practical algorithm to process typical cartographic data in
an interactive environment. Alternative representations based on quadtrees are
discussed briefly below. The PR quadtree is compared with nonquadtree alter-
natives in Appendix 2.

2.3 Previous Approaches to Storing Line Data in Quadtrees

There are two major approaches to the representation of regions: those that
specify the borders of a region and those that organize the interior of a region.
This corresponds to either storing region identification information only on the
region’s border or also storing it on parts of the region’s interior. The definition
of the region quadtree given above corresponds to the latter approach. In the
case of polygons, we are more interested in the former approach. Hunter and
Steiglitz [9, lo] address the problem of representing simple polygons (i.e., poly-
gons with nonintersecting edges and without holes) with a region quadtree which,
when used this way, we call an MX quadtree. A disadvantage of the MX quadtree
is that shift and rotate operations may result in information loss with respect to
the map that was originally digitized.

Some alternative but related approaches include the edge quadtree [13, 211,
edge-EXCELL [ZZ], and the line quadtree [18]. These are not suitable for
polygonal maps due to, in part, difficulties in representing an arbitrary number
of vertices. The regular decomposition property of the region quadtree is very
important because it enables the efficient execution of set-theoretic operations
such as union and intersection of two regions, polygons, etc. This results from
the quadtrees being in registration and enables uninteresting areas to be ignored
by virtue of the hierarchical representation. For the region quadtree, these
operations can be performed in time proportional to the number of nodes in the
quadtrees involved [9, lo]. In the following we examine the edge and MX
quadtrees more closely as we will use them as a benchmark against which to
evaluate the PM quadtree-our proposed data structure.

In the edge quadtree of Shneier [Zl] a region containing a vector feature, or
part thereof, is repeatedly subdivided into subquadrants until each quadrant
contains a curve that can be approximated by a single straight line segment.
Each leaf node contains the following information about the edge passing through
it: magnitude (i.e., 1 in the case of a binary image or the intensity in case it is a
grey-scale image), direction, intercept, and a directional error term (i.e., the error
resulting from the approximation of the curve by a straight line using a measure
such as least squares). If a line segment terminates within a node, then a special
flag is set and the intercept denotes the point at which the segment terminates.

Applying this process leads to quadtrees in which long straight edges can be
stored in a few large leaves. However, small leaves are required in the vicinity of
corners, intersecting edges, close approaches between curves, or areas of high
curvature. Of course, many leaves will contain no edge information at all, since

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

188 l Hanan Samet and Robert E. Webber

Fig. 4. Sample edge quadtree

Fig. 5. MX quadtree corresponding to Figure 4.

they are not intersected by a curve. As an example of the decomposition that is
imposed by the edge quadtree, consider Figure 4 which is a sample polygon and
its corresponding edge quadtree when represented on a 24 by 24 grid.

A serious drawback of the edge quadtree is its inability to handle the meeting
of two or more edges at a single point (i.e., a vertex) except as a pixel correspond-
ing to an edge of minimal length. The problem is that at a certain level of
decomposition all vertices are represented by single line segments regardless of
their degree. This means that boundary following as well as deletion of line
segments cannot be properly handled in the vicinity of a vertex at which more
than one edge meets.

The MX quadtree [lo] is closely related to the edge quadtree. It considers the
border of a region as separate from either the inside or the outside of that region.
Figure 5 shows the MX quadtree corresponding to the polygon of Figure 4. The
MX quadtree has problems similar to those of the edge quadtree in handling
vertices. Again, a vertex is represented by a single pixel. Thus boundary following
and deletion of line segments cannot be properly handled. Worse is the fact that
an MX quadtree only yields an approximation of a straight line rather than an
exact representation as done by the edge quadtree. This leads to faster deterio-
ration of accuracy when the representation is rotated. Moreover, the MX quadtree
usually contains more nodes than the edge quadtree as can be seen by comparing
Figures 4 and 5.

3. THE DEVELOPMENT OF THE PM QUADTREE

The quadtree that we develop for storing polygonal maps will be referred to as
the PM quadtree. It will be seen to be an adaptation of the PR quadtree. Our
goal in designing this data structure is to derive a reasonably compact represen-
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 189

tation that satisfies the following three criteria:

(1) It stores polygonal maps without information loss (i.e., it does not suffer a
loss of accuracy resulting from digitization).

(2) It is not overly sensitive to the positioning of the map (i.e., shift and rotation
operations do not drastically increase the storage requirements of the map).

(3) It can be efficiently manipulated.

To meet these goals, we develop three closely related quadtree structures: PMi,
PM:!, and PMB. Our approach is to find a decomposition criterion that corre-
sponds to the principle of repeatedly breaking up the collection of vertices and
edges (forming the polygonal map) until obtaining a subset that is sufficiently
simple so that it can be organized by some other data structure. We find this
decomposition criterion by successively weakening the definition of what consti-
tutes a permissible leaf node thereby enabling more information to be stored at
each leaf node. Thus a permissible PM1 quadtree leaf node is also a permissible
PM2 quadtree leaf node and likewise a permissible PM, quadtree leaf node.

3.1 General Remarks

In general, it is difficult to evaluate a data structure without some operations in
mind. We are interested in performing interactive computer graphics on carto-
graphic data (in particular, maps represented as a collection of line segments).
Thus, we evaluate the PM quadtree in the context of the following three tasks:
point location, dynamic line insertion (algorithms for the more general dynamic
update task are given in Appendix l), and map overlay. We assume that the
polygonal map is being manipulated in a dynamically changing environment. We
also assume that associated with each line segment that forms the boundary of a
region, there is a pair of names indicating which region is on which side of the
line segment. This reduces the point location task to the less restricted problem
of locating a line segment that borders the region containing the query point.
For example, the map of Figure 2 partitions the plane into 3 regions, labeled 1,
2, and 3. Thus, for this figure, edge DA is marked to indicate that region 2 lies
on the right-hand side of DA and region 1 lies on the left-hand side of DA. A
discussion of how such labels are maintained is orthogonal to our presentation
of the development of the PM quadtree and is therefore treated in Appendix 3.

The quadtrees presented in this section will be defined in terms of their
decomposition criteria. First, let us consider the definition of a PR quadtree in
terms of its criterion for decomposing a quadrant. The decomposition criterion
that defines the PR quadtree is termed Cl and is given below:

Cl: At most one vertex can lie in a region represented by a quadtree leaf.

Figure 3 shows the PR quadtree formed from the vertices of the map of
Figure 2.

The analysis of each of the PM quadtree variants relies heavily on the value
of the worst-case tree depth, which is, in turn, a function of the input polygon-
that is, the minimal angle formed by adjacent edges in the polygon and the closest
approach of various parts of the polygon. Thus, it is worthwhile to first analyze
the depth of the PR quadtree. The worst-case PR quadtree depth is obtained as

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

190 - Hanan Samet and Robert E. Webber

Fig. 6. PM, quadtree meeting criteria (Cl, C2’, and C3).

follows. Assume that the polygonal map is embedded in a unit square. As the
depth of the PR quadtree increases, the maximum separation between two points
in the same node is halved. The maximum separation between any two points in
the unit square is &. Points that are this far apart require a tree with depth 1
to separate them. Generalizing this observation, we see that letting dmin,uu be the
minimum separation between two distinct vertices, then an upperbound on the
depth of the corresponding quadtree is

Jz
Dl = 1 + log2 r.

lllllI.“U

In the subsequent discussion, we frequently need to refer to segments of edges
of the polygonal map (for which we also use the term straight-line planar graph
or a suitable abbreviation thereof) that are formed by clipping an edge of the
polygonal map against the border of the region represented by a quadtree node.
We use the term q-edge (denoting a quadtree-decomposition edge) to refer to
such an edge (e.g., EF and FG in the quadtree decomposition of Figure 6). Thus
every map edge is covered by a set of q-edges that only touch at their endpoints.
For example, edge EB in Figure 6 consists of the q-edges EF, FG, GH, HI, IJ,
JK, and KB. Note that only B and E are vertices; F, G, H, I, J, and K merely
serve as reference points.

3.2 The PM, Quadtree

A criterion analogous to Cl, called C2, which takes edges into account is given
below.

C2: At most one q-edge can lie in a region represented by a quadtree leaf.

It should be clear that C2 does not imply Cl due to the possible presence of
isolated vertices. Nevertheless, C2 is inadequate because there exist polygonal
maps that would require a PM quadtree of infinite depth to satisfy C2. For
example, consider the portion of such an infinite decomposition shown in Figure
6. The node containing vertex E does not satisfy C2 because of the two q-edges
incident at it. Assume that the x and y coordinates of E cannot be expressed
(without error) as a rational number whose denominator is a power of two (e.g.,
let both coordinates be 3). This means that E can never lie on the boundary
between two quadrants. Thus, by virtue of the continuity of the q-edges, no
matter how many times we subdivide the quadrant containing vertex E, there
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 191

will always exist a pair of (possibly infinitesimally small) q-edges incident at E
which will occupy the same quadtree leaf.

One solution to the above problem lies in replacing C2 with criteria C2’ and
C3 given below.

C2’: If a region contains a vertex, then it can contain no q-edge that does not
include that vertex.

C3: If a region contains no vertices, then it can contain at most one q-edge.

A quadtree built from the criteria Cl, C2’, and C3, representing the polygonal
map of Figure 2, termed a PM, quadtree, is shown in Figure 6. Note that as in
the PR quadtree, when a vertex lands on the border between 2 or 3 or 4 nodes,
then it is inserted in all of the nodes on whose border it exists. By the same
reasoning, when a line or q-edge falls on the border between two quadrants, it is
inserted in all of the nodes on whose border it exists. Thus we say that all four
quadrants are closed.

Since criterion C2’ allows any number of q-edges to be stored at one PM1
quadtree leaf, a question arises as to how these q-edges are organized. The
simplest approach, consistent with our interest in worst-case tree-depth, is to
store the q-edges in a dictionary [l] where the q-edges are ordered by the angle
that they form with a ray originating at the vertex and parallel to the positive x
axis. For efficient updating and search, the dictionary itself is usually imple-
mented as some type of a tree structure such as a 2-3 tree [l] (but not as a
quadtree since the dictionary is storing a linear ordering). Since the number of
q-edges passing through a leaf is bounded from above by the number of vertices
belonging to the polygonal map, say V, the depth of the dictionary structure is
at most

Al = log, V + 1.

The depth of the PM1 quadtree can be determined as the maximum of the
depth required independently by each of the criteria (i.e., Cl, C2’, and C3) for
building the quadtree. The factor contributed by criterion Cl has already been
noted to be Dl. If dmin,eu denotes the minimum separation between an edge and
a vertex not on that edge (for a given polygonal map), then by reasoning similar
to the derivation of Dl, the depth of the PM1 quadtree required to fulfill criterion
C2’ is

Note that a map consisting of a single line segment would have no meaningful
value for c&~.~~.

Analogously, if dmin,ee denotes the minimum separation between two noninter-
secting q-edges (i.e., portions of edges bounded by either a vertex or the boundary
of a PM1 quadtree leaf of the PM1 quadtree of the given polygonal map), then
the PM, quadtree depth required to fulfill criterion C3 is

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

192 ’ Hanan Samet and Robert E. Webber

Fig. 7. Example illustrating D3 > D2’ when C3 is used
in a PM, quadtree.

The factors Dl and D2’ are functions of the polygonal map and are independent
of the positioning of the underlying digitization grid. However, the factor D3 is
dependent on the positioning of the digitization grid and thus it can vary as the
polygonal map is shifted. Recall that each of these factors, Dl, D2’, and D3, is
an upperbound on some aspect of the quadtree’s construction that could contrib-
ute to the depth of the resulting quadtree. The actual depth of the quadtree that
is built could be considerably less than any of these factors. For maps of the
complexity of the one shown in Figure 2, the D3 factor can become arbitrarily
large. For example, suppose we shift the polygonal map in Figure 2 to the right.
As vertex E (see Figure 6) moves closer and closer to the quadrant boundary on
its right, the minimum separation between the q-edges of BE and CE that are
not incident at E becomes smaller and smaller resulting in the growth of D3 to
unacceptable values. While the PM1 quadtree does not have the problem associ-
ated with the use of C2, it still behooves us to find a better decomposition
criterion than C3 because we would like to be able to represent an image with a
fixed amount of storage irrespective of the positioning of the underlying digiti-
zation grid.

3.3 The PM2 Quadtree

In order to remedy the deficiency associated with criterion C3, it is necessary to
determine when it dominates the cost of storing a polygonal map. In particular,
D3 is greater than D2’ only if dmin,ee is smaller than dmin.eu, which happens only
when the two nearest nonintersecting q-edges are segments of edges that intersect
at a vertex. For example, Figure 7 is the PM1 quadtree for a polygonal map
ABCD, such that D3 is greater than D2’ because dmin.ee (the distance between q-
edges XY and WZ) is smaller than dmin,pu (the distance between C and BD). Note
that XY is a q-edge of BD, WZ is a q-edge of CD, and BD intersects CD at vertex
D. This analysis leads us to replace criterion C3 with criterion C3’ defined below.

C3’: If a region contains no vertices, then it can contain only q-edges that meet
at a common vertex exterior to the region.

A quadtree built from criteria Cl, C2’, and C3’, for the polygonal map of Figure
2, termed a PM2 quadtree, is shown in Figure 8. Note that q-edges in the same
leaf meeting criterion C3’ would be ordered angularly in a dictionary as were
those q-edges meeting criterion C2’.

The worst-case tree depth is again proportional to the sum of the depth of the
quadtree plus Al, the maximum depth of the dictionary structure. However, the
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 193

Fig. 8. PM* quadtree meeting criteria Cl, C2’, and C3’.

Fig. 9.
of c3.

The PM, quadtree of Figure 7 when C3’ is used instead

depth of the quadtree is bounded from above by the maximum of Dl and D2’,
the factors attributed to criteria Cl and C2’, respectively. Note that by virtue of
our definition of C3’, the maximum depth resulting from its use is bounded from
above by D2’.

As an example, consider Figure 9, which represents the same polygonal map
as Figure 7 except that it uses C3’ instead of C3. The analog of dmin,ee, termed
d mm.ee’ 9 is defined as the minimum separation between two q-edges that are not
segments of two intersecting edges. In this example, D3’ is less than D2’ because
&in.ee, (the distance between UB and SC) is greater than dmin.eu (the distance
between C and DB). Note that the distance between QR and ST, and the distance
between RB and TC, are irrelevant to D3’, because, if necessary, these segments
could be in the same leaf.

We have now found a criteria for which the worst-case tree depth is less
sensitive to shift and rotation of the polygonal map. The only question that
remains is whether we can do better. Can the contribution of criterion C2’ be
removed or reduced?

3.4 The PM3 Quadtree

We consider a quadtree, termed a PM3 quadtree, which is built using only criterion
Cl, but that could represent any polygonal map. For example, Figure 10 is the
PM3 quadtree corresponding to the polygonal map of Figure 2. Recall that the
PR quadtree is also built using only criterion Cl. Thus the number of quadtree
nodes in the PR quadtree for the vertices of a polygonal map is equal to the
number of quadtree nodes in the PM3 quadtree of the polygonal map, although
the amount of information stored in the quadtree leaf node of a PM3 quadtree

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

194 l Hanan Samet and Robert E. Webber

Fig. 10. PM3 quadtree corresponding to the polygonal
map of Figure 2.

can be much greater than the amount of information stored in the quadtree leaf
node of a PR quadtree. Since the depth factor Dl is always less than or equal to
the maximum of the factors Dl and D2’, the quadtree component (as opposed to
the dictionary component) of the worst-case tree depth is lower than in our
previous structures. Indeed, the only time Dl is greater than D2’ is when the
polygonal map contains isolated edges (i.e., edges with both endpoints of degree
1). If the isolated edges were short, then &in.uu would be small. But, if the isolated
edges were far apart, then dmin,eu would be large. However, this structure does
have the problem that the number of q-edges that can be stored in a leaf is now
bounded by the number of edges in the graph, instead of the number of vertices.
This does not affect the order of the worst-case tree depth, because, in a planar
graph (containing neither multiple edges nor nonlinear edges), the number of
edges is bounded from above by six less than three times the number of vertices
(this is a corollary of Euler’s formula [7]).

There still remains the problem of how to organize the q-edges in a leaf’s
region. We propose to partition the q-edges in a leaf’s region into 7 classes, each
of which can be ordered by a dictionary. Note that in any given leaf, most of
these classes will usually be empty.

The most obvious class of q-edges is the one that meets at a vertex within the
leaf’s region. This class can be ordered in an angular manner as has been done
previously. The remaining q-edges that pass through the leaf’s region must enter
at one side and leave via another. This yields six classes: NE, NS, NW, EW, SW,
and SE, where NE denotes q-edges that intersect both the northern and the
eastern boundaries of the leaf’s region. Note that the q-edges are undirected
edges. For example, the q-edges in class NE (the other 5 classes are handled
analogously) are ordered according to whether they lie to the left or to the right
of each other when viewing them in an easterly direction from the northern
boundary of the leaf’s region. Q-edges that coincide with the border of a leaf’s
region are placed in either NS or EW as is appropriate. Note that a leaf’s
boundary can coincide with at most one q-edge because if it coincided with two
q-edges, then it would have to contain two vertices and thereby violate Cl.

Before contemplating the algorithmic aspects of the PM quadtrees, we observe
that our proposed quadtrees are relatively compact. For example, the PM1
quadtree of Figure 6 required 28 quadtree leaf nodes and 31 q-edge nodes
(scattered among 24 dictionaries), the PM, quadtree of Figure 8 required 16
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees 195

quadtree leaf nodes and 22 q-edge nodes (scattered among 13 dictionaries), and
the PM3 quadtree of Figure 10 required 7 quadtree leaf nodes and 17 q-edge
nodes (scattered among 9 dictionaries). Note that many of the dictionaries consist
of single data nodes.

4. ALGORITHMS FOR PM QUADTREES

Now that we have developed the PM quadtree, it is appropriate to examine how
it can be used to achieve the three tasks that we specified in Section 1, that is,
point location, dynamic line insertion (deletion is discussed in Appendix l), and
map overlay. For the first two tasks, our discussion starts with the PM1 quadtree,
after which we show how the PM2 and PM, quadtrees perform it. For map
overlay we focus primarily on the PM, quadtree. We first consider point location.

4.1 Point Location

For PM1 quadtrees (built from Cl, C2’, and C3) this problem has three cases
which are illustrated by queries with respect to the points X, Y, and Z in Figure
6. The first case is illustrated by the point labeled X. In this case, the point lies
in a leaf containing exactly one q-edge. Since region information is linked to
each q-edge indicating the regions associated with the q-edge, this reduces to
determining the side of the q-edge on which the point lies. Note that the cost of
determining the region information associated with a q-edge is also, at most
proportional to Al.

The second case is illustrated by the point labeled Y. In this case, the query
point lies in a leaf containing a vertex, C in this example. This situation reduces
to finding a q-edge in the dictionary that would neighbor a hypothetical q-edge
from C and passing through Y. Such a neighboring q-edge must border the region
containing Y. Thus, once again our task is reduced to determining on which side
of a q-edge a point lies (i.e., Y).

The third case is illustrated by the point labeled Z. In this case, the query point
lies in a leaf, say 4, containing no q-edges. This means that all the points in the
region represented by the leaf q-lie in the same region of the polygonal map. It
also means that one of q’s brothers must be the root of a subtree that contains a
q-edge that borders the region containing Z. In order to find this (not necessarily
unique) brother, we visit the brothers in an arbitrary order, say counterclockwise
in this example. When considering a brother, one of two cases arises. Either q’s
brother contains a q-edge (the first case), say b, or it doesn’t (the second case).
In the first case, the problem reduces to determining the side of q-edge b on
which Z lies. This is accomplished by postulating a hypothetical point Z’ in
region r that is infinitesimally close to q’s region and recursively reapplying the
point location procedure to Z ‘. As an example consider point Z in Figure 6. Since
q, the leaf containing Z, is empty, we examine its counterclockwise brother, say
r, and postulate a point Z’ that is just across the boundary between q and r.
Determining the polygon in which Z ’ lies (in this example) is equivalent to
determining the polygon in which X lies. In the second case, r contains no
q-edges and the algorithm proceeds to examine r’s counterclockwise brother.

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

196 . Hanan Samet and Robert E. Webber

It should be clear that one of the brothers must contain a q-edge, otherwise the
brothers would have been merged to yield a larger node.

The worst-case execution time of point location using a PM1 quadtree con-
structed with criteria Cl, C2’, and C3 is proportional to the depth of the entire
structure-that is, the depth of the quadtree built from Cl, C2’, and C3 plus Al
(where Al is the maximum depth of a dictionary structure in a quadtree leaf
node).

Replacement of C3 by C3’, resulting in a PM, quadtree, does not lead to
significant changes in the point location procedure. The situation arising when
q-edges are ordered about a point exterior to their region is handled in the same
way as q-edges that are angularly ordered about their point of intersection. It is
convenient to store, with each dictionary, the point about which the ordering is
being performed, although this can be avoided by sampling two q-edges from the
dictionary.

Point location in PM3 quadtrees is accomplished by finding the closest border-
ing q-edge with respect to each of the seven classes. The closest q-edge of these
seven q-edges borders the region containing the query point. The worst-case cost
of point location when using a PM3 quadtree is proportional to Dl plus Al. This
is because the cost of finding the appropriate quadtree node is proportional to
Dl, and the cost of finding a q-edge that borders the region containing the point
from the set of q-edges that are in the node is proportional to Al. The propor-
tionality to Al is a result of the following. For each of the classes of q-edges, we
find the q-edge from that class that is closest to the point. For the class of q-
edges that meet at a vertex within the node, this is the same process as used to
locate a point within a node of a PM1 quadtree. For the other classes, it is similar
except that instead of relying on angles, we must actually calculate on which side
of a line a point lies. Again, for each of these classes the associated worst-case
cost is proportional to Al. Now, we must decide which of these closest q-edges
(at most 7), forming the set E, is actually part of the border of the region
containing the point. Since the only way one of these q-edges could fail to be
part of the border is if there was a portion of the border between that q-edge and
the point. It is sufficient to determine which q-edge of E is closest to the point
in order to know that no other q-edge separates it from the point. This last
determination can be done in constant time and thus the entire processing of a
node can be done in time proportional to Al.

4.2 Dynamic Line Segment Insertion in PM Quadtrees

Initially, let us assume that we are given a PM1 quadtree. To insert an edge AB,
we insert a q-edge of AB into each quadrant intersected by AB. In some of these
quadrants, the insertion of a q-edge of AB would cause a violation of one of the
criteria. In that case, the quadrant in question is subdivided and insertion is
reattempted. Insertion in PM, and PM3 quadtrees is done in the same manner.
The actual algorithms for insertion of line segments as well as deletion for all
three types of PM quadtrees are given in Appendix 1.

The above subdivision of a quadrant can cause q-edges of edges that had been
previously inserted to be further subdivided. For example, consider Figure 11.
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 197

Fig. 11. Result of inserting line segments into the PM1
quadtree.

First, we insert the edge AB, which entails inserting the q-edges: AV, VW, and
WB. Now, suppose that we insert the edge BC. This entails not only inserting
the q-edges CZ and ZB, but also the q-edges WX, XY, and YB. Thus, the ultimate
cost of inserting an edge into a PM, quadtree is often paid for over many
insertions as q-edges of the edge are further subdivided to accommodate edges
that are being subsequently added.

In order to handle this situation, for our worst-case analysis we do not consider
the total cost of inserting a particular edge in a tree. Instead, we consider the
ultimate cost of inserting that portion of the map that is currently built. This
cost, henceforth known as the running-sum worst-case cost, assumes that the
map is being built dynamically, that is, information about future edges is not
exploited at the time an edge is initially inserted. Note that the running-sum
worst-case cost (when summed over the insertions that built the map) is an
upperbound on the actual cost of building the map so far. Implicit in the
calculation of the running-sum worst-case cost at any instant during the building
of a map is the assumption that we know the ultimate depth to which the tree
will be expanded. This approach to cost analysis is related to the “amortization”
method [2] in that the real difference between the running-sum worst-case cost
of the map before and after an insertion is equivalent to the “amortized” cost of
that insertion.

The running-sum worst-case map building cost is the product of the cost of
inserting a q-edge and the number of q-edges that would have to be inserted. The
cost of inserting a q-edge is the depth DMAX of the quadtree (the maximum of

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

198 l Hanan Samet and Robert E. Webber

Dl, D2’, and D3) plus the depth of the dictionary structure (Al). The calculation
of an upperbound for the number of q-edges is slightly more complicated. We
define L, the length of the perimeter of a polygonal map, to be the sum of the
lengths of all the edges that form the map. Recall that the length of a side of the
bounding square is 1. In the following we show that the upperbound on the
number of q-edges in the representation of the map is a function of L and the
maximum depth, DMAX, of the quadtree structure.

Let us consider the structure of the q-edges that form a single edge. First, we
note that for each edge there are at most two q-edges that have the property of
being incident at one of the vertices of the graph. Thus the number of such
q-edges is proportional to the number of edges in the graph. Since the factor Dl
is both bounded from above by DMAX and requires that no edge is less than
2-DMAX units long, we deduce the following upperbound on the number of edges,
denoted by E, in a map.

E.2-DMAX 5 L

or

E I L . 2DMAX.

Of the remaining P q-edges in the map, all begin and end on the boundary of a
square of size 2-DMAX by 2-DMAX. First, we note that while a line segment that
passes through a square may be shorter than the width of that square, a line
segment that passes through two congruent squares must be at least as long as
the width of one of the squares. For each edge, we group together the maximum
number of disjoint pairs of contiguous q-edges. The result of this pairing process
is that there is at most one unpaired q-edge of the P q-edges processed for each
edge. Hence the number of unpaired q-edges is bounded from above by E (the
number of edges). Let P’ denote the number of q-edges that remain after the
elimination of these unpaired q-edges. These P’ q-edges can be grouped into
P ‘/2 pairs of q-edges that pass through two congruent squares. Note that P’
must be even. This leads to the following upperbound on P’.

p’ <L
2.~DMAX -

or

p’ 5 L.2.2DMAX.

To summarize, the number of q-edges is equal to the number of q-edges that
are incident at a vertex plus the number of q-edges that are left over after the
pairing process plus the number of q-edges that participate in the pairing process.
For each of these values, we have an upperbound proportional to the length of
the perimeter of the map times 2DMAX. Thus the total number of q-edges is also
bounded from above by the length of the perimeter of the map times 2DMAX.
Recall that the running-sum worst-case map building cost was proportional to
the depth of the entire structure (DMAX plus Al) times the number of q-edges
inserted, for which we have just derived an upperbound. More formally, an
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 199

procedure OVERLAY(SUBTREE1, SUBTREES);
/* Compute the overlay of the quadtrees SUBTREEl and SUBTREE2. */
begin

value pointer quadtree SUBTREEl, SUBTREEB;
pointer quadtree QTD, THE-SUBTREE, TREE-TO-RETURN;
quadrant X;
if IS-LEAF(SUBTREE1) and IS-LEAF(SUBTREE2) then

return(MERGE(SUBTREE1, SUBTREEB)
else if IS-LEAF(SUBTREE1) or IS-LEAF(SUBTREE2) then

begin
QTD c QUARTER(WHICHEVER-WAS-LEAF(SUBTREE1, SUBTREE2));
THE-SUBTREE + WHICHEVER-WAS-NOT-LEAF(SUBTREE1,

SUBTREEB);
TREE-TO-RETURN c NEW-NODE();
foreach X in {‘NW’, ‘NE’, ‘SW’, ‘SE’] do

SON(TREE-TO-RETURN, X) c OVERLAY(SON(QTD, X),
SON(THE-SUBTREE,X));

return(TREE-TO-RETURN);
end

else
begin

TREE-TO-RETURN t NEW-NODE();
foreach X in (‘NW’, ‘NE’, ‘SW’, ‘SE’] do

SON(TREE-TO-RETURN, X) c OVERLAY(SON(SUBTREE1, X),
SON(SUBTREE2, X));

return(TREE-TO-RETURN);
end;

end;

Program I

upperbound on the cost of building a PM quadtree by inserting one edge at a
time is given by

(E.3 + L.2DMAX+1).(DMAX + Al),

which in turn is bounded from above by

(5. L .2DM‘4X)-(DMAX + Al).

Note that the analysis of dynamic line insertion for PM, quadtrees is the same
as for PMi, except that DMAX now denotes the maximum of Dl and D2.
Similarly, for the PM3 quadtree, the analysis need only be modified in that
DMAX now corresponds to Dl.

4.3 Map Overlay Algorithm for PM Quadtrees

We first consider the computation of map overlay for PM3 quadtrees. The overlay
algorithm can be decomposed into four procedures: OVERLAY, MERGE, CAN-
MERGE, and QUARTER. The code for some of them is presented below using
a pseudo ALGOL notation in order to provide a maximum amount of information
in a minimum amount of space. Procedure OVERLAY (Program I) takes two
PM, quadtrees as parameters. It traverses the two quadtrees in parallel. When

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

200 l Hanan Samet and Robert E. Webber

procedure MERGE(LEAF1, LEAFB);
/* Perform the overlay algorithm on the simple case where both quadtrees, LEAF1 and

LEAFB, are leaf nodes. */
begin

value pointer quadtree LEAFl, LEAFB;
pointer quadtree LEAF-TO-RETURN, QTl, QT2;
quadrant Q;
dictionary-index X;
if not CAN-MERGE(LEAF1, LEAFS) then

begin
LEAF-TO-RETURN c NEW-NODE();
QTl +-- QUARTER(LEAF1);
QT2 c QUARTER(LEAF2);
foreach Q in I‘NW’, ‘NE’, ‘SW’, ‘SE’) do

SON(LEAF-TO-RETURN, Q) c MERGE(SON(QT1, Q),SON(QT2, Q));
return(LEAF-TO-RETURN);

end
else

begin
LEAF-TO-RETURN c NEW-NODE();
D-VERTEX(LEAF-TO-RETURN) c

WHICHEVER-HAD-D-VERTEX(LEAF1, LEAFP);
foreach X in (‘NE’, ‘NW’, ‘NS’, ‘SE’, ‘SW’, ‘EW’) do

D-SIDE(LEAF-TO-RETURN, X) + D-MERGE(D-SIDE(LEAF1, X),
D-SIDE(LEAF2, X));

return(LEAF-TO-RETURN);
end;

end;

Program II

one tree is a leaf and the other tree is not, the leaf is split into a node with four
sons, each of which are leaf nodes (and correspond to a description of the same
region as the original leaf) and the OVERLAY procedure is applied recursively
to the corresponding sons. When both quadtrees are leaf nodes, the dictionaries
of q-edges in each of them are merged to form a leaf in the output tree. A node
is represented as a record with a number of fields. The dictionaries are accessed
by the D-VERTEX and D-SIDE fields. D-VERTEX refers to the dictionary
associated with the vertex. D-SIDE refers to the remaining dictionaries which
are accessed with the aid of dictionary indices (‘NE’, ‘NW’, ‘NS’, ‘SE’, ‘SW’,
‘EW’J.

Procedure MERGE (Program II) produces the subtree that results from merg-
ing two leaf nodes (from a pair of PM3 quadtrees) depending on whether or not
the q-edges involved intersect. Recall that the information about q-edges that is
stored in the leaf nodes is ordered with respect to various intercepts (either a
vertex or a side of the block). Thus the merger of this information is simply the
merger of the corresponding trees. The routine that performs the actual merging
is termed D-MERGE and is not given here. The worst-case execution time of
MERGE is proportional to the number of nodes merged plus the cost of executing
the procedures: CAN-MERGE and QUARTER.

The coding of procedure MERGE uses WHICHEVER-HAD-D-VERTEX,
which returns NIL if neither leaf contains a vertex and otherwise returns the
dictionary connected to the vertex. Note that the function CAN-MERGE has a
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 201

Boolean procedure CAN-MERGE(LEAF1, LEAFB);
/* Returns true if and only if the merger of the leaf nodes, LEAF1 and LEAFP, would

not create any new vertices. Note that in the case that neither leaf node contains a
vertex, it is possible for one intersection to occur and yet the nodes would still be
mergible. The counter, N, records the number of known vertices in the pair of nodes.
If this counter is zero, then LINES-INTERSECT, upon noticing that exactly one
intersection occurs, has the side effect of incrementing N and updating the
D-VERTEX field of its last parameter, which is always LEAFl. Of course, if more
than one intersection occurs, then LINES-INTERSECT will cause CAN-MERGE to
return false. */

begin
reference pointer quadtree LEAFl, LEAFB;
dictionary-index X, Y;
dictionary THE-VERTEX;
integer N;
N CO;
if HASVERTEX(LEAF1) and HAS-VERTEX(LEAF2) then

if SAME-XY-VERTEX(LEAF1, LEAFP) then
begin

D-VERTEX(LEAFl)cD-MERGE(D_VERTEX(LEAFl),
D-VERTEX(LEAF2));

D-VERTEX(LEAF2) c nil;
end

else return(false);
if HAS-VERTEX(LEAF1) or HAS-VERTEX(LEAF2) then

begin
Nc 1;
THE-VERTEX c D-VERTEX(WHICHEVER-HAD-VERTEX(LEAF1,

LEAF2);
foreach X in {‘NE’, ‘NW’, ‘NS’, ‘SW’, ‘SE’, ‘EW’) do

if LINES-INTERSECT(THE-VERTEX, D-SIDE(LEAF1, X), N, LEAFl)
or LINES-INTERSECT(THE-VERTEX, D-SIDE(LEAF2, X), N, LEAFl)
then return(false);

end;
foreach X in (‘NE’, ‘NW’, ‘NS’, ‘SW’, ‘SE’, ‘EW’) do

begin
foreach Y in (‘NE’, ‘NW’, ‘NS’, ‘SW’, ‘SE’, ‘EW’) do

begin
if LINES-INTERSECT(D-SIDE(LEAF1, X), DSIDE(LEAF2, Y), N,

LEAFl)
then return(false);

end;
end;

return(true);
end;

Program III

side effect of removing redundant references to the same vertex (i.e., with the
same x and y coordinates). The information in two dictionaries is merged to form
a new dictionary by the function D-MERGE.

Procedure CAN-MERGE (Program III) determines whether a pair of leaf
nodes of PM3 quadtrees can be merged. In order to be mergible, the q-edges in
the two leaf nodes cannot intersect and if there is a vertex in both of the leaf
nodes, then it must have the same x and y coordinate values. Since the checking
of intersection (done by the procedure LINES-INTERSECT) can take advantage

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

202 - Hanan Samet and Robert E. Webber

of the ordering of the q-edges, the execution time of CAN-MERGE is propor-
tional to the number of q-edges in its leaf parameters.

The final procedure to consider is QUARTER, which takes a leaf as a parameter
and returns a subtree containing four leaves that represents the same map. This
procedure involves visiting each q-edge in its leaf parameter and determining
which parts of it will lie in which sons of the new subtree. Its execution time is
proportional to the number of q-edges processed. We don’t give its code here. It
can be coded easily using the primitives presented in Appendix 1. Note that the
code in this section is presented on a more detailed level than the code in
Appendix 1.

We now consider an analysis of the OVERLAY algorithm. Let N be the
number of q-edges in the PM quadtree built by OVERLAY. Recall that DMAX
is an upperbound on the depth of the PM quadtree (not including the depth of
the dictionary structures). Although OVERLAY performs a preorder traversal of
two subtrees in parallel, its calculation could be performed by a breadth-first
traversal of the two trees. This reformulation is used in the following analysis.

First, we note that the cost of executing OVERLAY is proportional to t.he
number of nodes in the input quadtrees (as is the case for the region quadtree
intersection and union algorithms) except that the cost of the CAN-MERGE
and QUARTER procedures is unbounded with respect to the size of the input
tree (whereas the analogous procedures for a region quadtree are bounded).
Instead, we find that the cost of performing the CAN-MERGE or QUARTER
procedure is proportional to the number of q-edges in its two leaf parameters.
We now consider the worst case of the execution time of the OVERLAY
algorithm. This occurs when we overlay a pair of PM quadtrees having two
corresponding leaf nodes at level k containing vertices which are arbitrarily close
to each other. Alternatively, this worst case also results when two new intersection
points are created that are arbitrarily close to each other. With respect to the
analysis, the significance of two vertices being arbitrarily close to each other is
that DMAX becomes arbitrarily larger than k.

Let i be a level between k and DMAX. The execution of OVERLAY on each
leaf at level i will result in an invocation of CAN-MERGE and QUARTER
(which creates the leaf nodes of level i + 1). Hence the cost associated with
processing at level i is proportional to the number of q-edges at level i. This cost
must be paid at each of the levels between k and DMAX. The number of such
levels is bounded from above by DMAX. The number of q-edges at any given
level is bounded from above by the number of q-edges in the final result, that is,
N. Thus, it follows that the entire OVERLAY algorithm will execute in time
proportional to N. DMAX.

Similar algorithms for map overlay can be devised for the PM1 and PM2
quadtrees. The above analysis holds for PM1, PM2, and PM3 quadtrees. At first
glance, it might appear that the OVERLAY algorithm could be executed just as
effectively by repeatedly performing dynamic line insertions from one of the PM
quadtrees into the other. However, the analysis for such an approach turns out
to be of order N . (DMAX + Al). Our OVERLAY procedure does better than this
because q-edges occurring within a given dictionary are processed sequentially
instead of randomly.
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 203

Fig. 12. The powerline map.

Fig. 13. The cityline map.

5. EMPIRICAL RESULTS

The variants of the PM quadtree discussed in Section 3 were used to encode
three maps (Figures 12 through 14) chosen from a cartographic database with
which we have been working in our prior experiments with quadtrees [20]. The
powerline map (Figure 12) shows the path of a main powerline through a section
of the Russian River area in California. The cityline map (Figure 13) indicates
the border of the local municipality. The roadline map (Figure 14) is our most
complicated map, which details a part of the local roadway network. Table I
contains the number of vertices and edges in each of these maps. Note that all
of these maps consist of line segments whose vertices rest on a 512 by 512 grid
that is offset by half a pixel width from the coordinates of the lower left-hand
corners of the quadtree nodes at level 9 (later we will consider the impact of this
displacement).

As mentioned in Section 2, neither the MX quadtree nor the edge quadtree is
really an appropriate representation for polygonal maps since they only corre-
spond to an approximation (or in the case of the MX quadtree, a digitization) of
the map, whereas the variants of the PM quadtree represent the maps exactly.

ACM Transactions on Graphics, Vol. 4, No. 3, July 198.5.

204 - Hanan Samet and Robert E. Webber

LA--- l

Fig. 14. The roadline map.

Nevertheless, in practice, for the MX quadtree it is natural to consider the
approximation that results from representing line segments with the same
accuracy as the grid. For the 512 by 512 images that we are considering, this
means that the MX quadtree is built by truncating the decomposition at
depth 9. Similarly, the edge quadtree is also constructed by truncating the
decomposition at depth 9.

Tables II-V summarize the storage requirements of the various quadtree
methods of representing the maps of Figures 12-14. As we observed before, the
PM, quadtree will always be the largest of the PM quadtrees-that is, it will
require the most nodes. Therefore, let us consider how it compares with two
alternative approaches, the MX and edge quadtrees given in Tables II and III,
respectively. Tables IV and V contain the data for the different PM quadtrees.
Table V breaks down the leaf count in terms of the different type of nodes as
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees 205

Table I. Size of the Maps

MaD No. of vertices No. of edges

Powerline 15 14
Cityline 64 64
Roadline 684 764

Mar,

Table II. Size of the MX Quadtrees

Depth Leaves BLACK nodes WHITE nodes

Powerline 9 1594 521 1073
Cityline 9 2335 782 1553
Roadline 9 19513 7055 12458

Mar,

Table III. Size of the Edge Quadtrees

Depth Leaves Vertex nodes Line nodes WHITE nodes

Powerline 9 211 15 68 128
Cityline 9 730 64 219 447
Roadline 9 6658 684 2431 3543

Table IV. Size of the PM,, PM*, and PM3 Quadtrees

Map

Powerline
Cityline
Roadline

Depth Leaves Q-edges

PM, PM* PM3 PM, PM, PMa PM1 PMz PM,

7 7 7 61 61 61 38 38 38
9 8 8 214 208 187 178 176 168

13 9 9 2125 1960 1714 2144 2096 1976

Table V. Breakdown of Information in Table IV by Node Type

Map

Powerline
Cityline
Roadline

Vertex nodes Line nodes
(average q-edges) (average q-edges)

WHITE nodes

PM, PM2 PM3 PM, PM, PM3 PM, PMz PM3

15 (1.9) 15 (1.9) 15 (1.9) 10 10 (1.0) 10 (1.0) 36 36 36
64 (2.0) 64 (2.0) 64 (2.1) 50 47 (1.0) 33 (1.0) 100 97 90

684 (2.2) 684 (2.2) 684 (2.3) 618 515 (1.1) 360 (1.1) 823 761 670

well as gives the average number of q-edges for each node type (in parentheses)
where it is relevant.

The MX quadtree (see Table II) has the worst performance. In all of our
examples the MX quadtree is larger than the PM1 quadtree (see Table IV) by at
least a factor of 9. More generally, we would expect the size of the MX quadtree
for a polygonal map to be roughly as large as the product of the average line
length and the number of nodes in the corresponding PM, quadtree. This can be
seen by the following chain of arguments. First, for “typical data,” the number
of nodes in a PM1 quadtree of a polygonal map is proportional to the number of
vertices in the polygonal map since, typically, the vertex nodes are the lowest

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

206 l Hanan Samet and Robert E. Webber

nodes in the PM1 quadtree (although there are rare exceptions as illustrated in
Figure 7). In the analysis of quadtrees, a good rule of thumb is that the deepest
frequently occurring node type will dominate the size measurement. Second,
Hunter and Steiglitz [9, lo] have shown that the number of nodes in an MX
quadtree of a polygonal map is proportional to the perimeter of the polygon.
Third, we know that polygonal maps are planar maps which means that the
number of line segments in each map is proportional to the number of vertices
in the map. Combining these three arguments with the fact that the perimeter
of a map is equal to the product of the number of line segments and the average
length of a line segment leads to the desired result-that is, typically, the number
of nodes in the MX quadtree is of the order of the product of the number of
vertices in the PM1 quadtree and the average line length (measured in pixels).

Now, let us compare the edge quadtree with the PM1 quadtree. The edge
quadtree (see Table III) can be seen to be a definite improvement over the MX
quadtree. Considering the trivial (but often typical) maps like powerline and
cityline, we see that the edge quadtree is about three times as large as the PM,
quadtree. This can be explained by observing that the average depth of a vertex
node in the PM, quadtree for each of these two maps was between 6 and 7 (not
shown in our tables) whereas the corresponding edge quadtree must represent all
of the vertex nodes at depth 9.

The roadline map, which is the most complex map that we have examined to
date, has an edge quadtree that is also about three times the size of its PM1
quadtree. This might at first appear surprising since we observe that the maxi-
mum depth of this quadtree is considerably greater than that required by the
digitization grid. In this case the digitization grid requires a depth of 9 while the
PM, quadtree requires some nodes to be at a depth of 13. Although for this map,
the maximum depth of the PM1 quadtree is greater (i.e., 13) than that of the
edge quadtree (i.e., 9), we can explain the difference in the number of nodes in
the two trees by examining the distribution of nodes by depth (see Table VI). In
essence, the average depth of a vertex node is again between 6 and 7 for the PM1
quadtree while it is 9 for the edge quadtree. The reduction in the average depth
of a vertex node in the PM, quadtree has a direct effect on the total number of
nodes because the decomposition of a line is identical in the edge and PM1
quadtrees once the line segment has exited the region of the vertex nodes
representing its endpoints.

The above discussion leads us to conclude that the PM, quadtree is an
improvement over earlier approaches to handling real data. We have seen that
the PM1 quadtree has the desirable property of reducing the average depth at
which the dominant node type is located. The PM2 and PM3 quadtrees are
attempts to further reduce the maximum depth of nodes in a PM1 quadtree. The
PM2 quadtree has the effect of reducing the maximum depth (see Table VI) by
virtue of a more compact treatment of the case when close edges that radiate
from the same vertex lie in a different node from the vertex. When comparing
the data of the PM, quadtree columns with the data of the PM2 quadtree columns
of Table IV, we observe no change in the powerline map since it is composed of
only obtuse angles. The cityline map has a few acute angles creating situations
where line nodes can be formed containing more than one q-edge, thus causing
some of the line nodes to be closer to the root and resulting in a 3 percent
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 207

Table VI. Distribution of Node Types by Depth for PM Quadtrees in the Roadline Map

Vertex nodes Line nodes WHITE nodes

Depth PM] PM, PM3 PM, PM, PM3 PM1 PMz PM3

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 4 4 4
3 2 2 2 0 0 0 8 8 8
4 10 10 12 4 6 7 38 38 38
5 75 75 82 34 35 29 109 105 101
6 180 180 192 132 127 120 218 212 199
7 224 224 232 204 198 139 237 222 195
8 158 158 135 156 126 59 162 142 104
9 35 35 29 48 23 6 40 30 21

10 0 13 2
11 0 14 3
12 0 10 1
13 0 3 1

reduction in size. The more complicated roadline map presents more such
situations resulting in an 8 percent reduction in size. We note that the PM,
reduction only affects the depth of the line nodes. Recall that nodes containing
a vertex are treated in the same manner in both the PM, and PM, quadtrees.
This observation is reinforced by noting that the vertex node columns in Table
VI, which show the distribution of node type by depth, are identical.

Comparing the PM3 quadtree with the PM, and PM2 quadtrees also shows no
change in the number of nodes when used on the powerline map. This is because
the powerline map contains no edges that pass closely to vertices other than
their endpoints. This situation occurs a bit more frequently in the cityline map
resulting in a 12 percent reduction in size. Note that the existence of such
situations implies that vertex nodes will be slightly closer to the root in the PM,
quadtree than in the PM, and PM2 quadtrees. For the roadline map, the use of
the PM, quadtree instead of a PM1 quadtree leads to a 19 percent reduction in
size. This is due to the tendency for vertex nodes to occur closer to the root in
the PM3 quadtree than in the PM1 quadtree and can be seen by examining
Table VI.

From the above we see that although the differences among the different PM
quadtrees can be drastic in principle, for typical cartographic data, the difference
in the number of nodes in the various PM quadtrees for a particular map is less
pronounced. Thus, for cartographic data, the choice among the different PM
quadtrees is dictated more by the problems of implementation rather than by the
need to conserve space. However, it should be noted that cartographic data is
rather special in that it generally consists of sequences of short line segments
meeting at obtuse angles. Since the lengths of the line segments are often shorter
than the distance between the features that the line segments are representing,
this yields data that tends to bring out the best in each of the types of PM
quadtrees with the result that there is little difference between them. For data
that is not this simple, the benefits of the PM, and PM3 quadtrees over the PM1
quadtree should be more pronounced.

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

208 - Hanan Samet and Robert E. Webber

Table VII. The Effect of Small Shifts on Different Representations of the Roadline Map

Number of leaves resulting from different shifts

Quadtree type 0.5 0.625 0.75 0.0 0.125 0.25 -
MX 19513 19720 19627 20554 19597 19618
Edge 6658 6709 6757 8611 6760 6727
PM, 2125 2179 2218 2698 2275 2203
PMz 1960 1984 1981 2608 1999 1993
PMs 1714 1714 1714 2434 1714 1714

Aside from the consideration of the number of leaves in the various quadtree
implementations, there are two further aspects of storage to be examined: 1) the
number of q-edges in the various quadtree nodes and 2) the sensitivity of the PM
quadtree representations to slight shifts in the placement of the data.

In Table IV we find that a reduction in the number of q-edges closely parallels
the reduction of the number of quadtree leaf nodes across the different PM
quadtree implementations. Table V tabulates the average number of q-edges per
node of a particular node type. This is placed in parentheses immediately after
the count of the number of leaf nodes of that node type. No averages are given
for WHITE nodes and PM1 quadtree line nodes as by definition either they have
zero or one q-edge, respectively. Investigation of the average number of q-edges
per line node shows that it is rare for there to be more than one q-edge per line
node. In the case of vertex nodes, we find that the number of q-edges per node is
consistently around 2 although it does seem to increase slowly with map com-
plexity. These values tend to indicate that a linked list is usually sufficient to
organize the q-edges at a given node instead of the 2-3 tree as advocated in
Section 3.2. In the PM quadtree implementation of our three test maps, we found
at most one node in a given map that had as many as 5 q-edges. Thus not only
is the average low, but there does not seem to be much variance from the average
value either.

In Section 2, we stated that one of the motivations for the development of the
PM quadtree data structure is that its size is relatively invariant to shifting and
rotation. Table VII summarizes the results of some experiments on the effect of
minor shifts in positioning the vertices of the roadline map. The first column,
labeled 0.5, shows the data used to generate Tables II-VI. Recall that to obtain
these tables we shifted our original data by adding 0.5 to what were originally
integer coordinates on a 512 by 512 grid. The column labeled 0.0 indicates no
change in positioning the vertices of the original data and shows significantly
higher node counts than the other shifts. This is not surprising since, as stated
in Section 2.2, when a vertex lies on the border of a quadtree node it is inserted
in each of the nodes whose border it touches. This can cause further node splits
if some of the quadtree nodes into which it is inserted already have a vertex in
them. However, if the vertices that lie on the borders of quadtree nodes are
shifted slightly, then they no longer will share a quadtree node and thus no
further decomposition will be required. Once the placement of vertices on the
borders of quadtree nodes has been avoided (e.g., by using small shifts), there
still remains the secondary effect that vertices close to the border of a quadtree
node tend to result in a very small separation between the q-edges in the
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 209

neighboring quadtree node. This has the greatest effect on the number of nodes
in the PM1 quadtree, while it has no effect on the number of nodes in the PM3
quadtree. Like the PM3 quadtree, the PM2 quadtree is not affected by q-edges
whose separation is small because they result from a vertex being near a quadtree
boundary. However, this is not shown so clearly by the entries in Table VII for
the PM2 quadtree since the PM, quadtree is susceptible to the digitization effects
that result from the process of determining whether or not a line falls within a
particular square region. The only digitization effects that can alter the number
of leaf nodes in the PM3 quadtree are those resulting from the process of
determining whether or not a vertex lies within a particular square.

6. CONCLUDING REMARKS

We have taken an iterative approach to the development of a quadtree-like data
structure for storing polygonal maps. We started with the PR quadtree and
developed the PM quadtrees. The final formulation, PM3, uses the same decom-
position rule as the PR quadtree but stores considerably more information in the
terminal nodes. The PM quadtree enables storing polygonal maps without
information loss. Since isolated vertices pose no problems, the PM quadtree can
be used to represent points, lines, and regions. We have shown that point location
using the PM quadtree can be performed in time proportional to the depth of
the structure, have given an upperbound on the worst-case cost of insertion of a
portion of a map dynamically, and have shown how to overlay two polygonal
maps that are represented by PM quadtrees. Empirical results on the storage
requirements of PM quadtrees were also presented and analyzed showing that
the theoretical analysis was overly pessimistic for typical data.

Some future work includes the development and analysis of algorithms for
other operations, that is, shift and rotation. Currently, the best known algorithm
for shifting or rotating a PM quadtree is to extract each line segment from the
source quadtree, transform it, and then reinsert it into the target quadtree.
However, it would appear that something better could be achieved since spatial
order is preserved under shift and rotation transformations. The simple heuristic
of reinserting all the line segments extracted from the same node into the target
quadtree together (in a manner analogous to the map-overlay algorithm) may
prove useful here.

APPENDIX 1. Insertion and Deletion Routines for PM Quadtrees

Since the PM quadtree is used to implement polygonal maps, its basic entities
are vertices and edges. Each vertex is represented as a record of type point which
has two fields called XCOORD and YCOORD that correspond to the x and y
coordinates, respectively, of the point. They can be of type real or integer
depending on implementation considerations such as floating point precision. An
edge is implemented as a record of type line with four fields, Pl, P2, LEFT, and
RIGHT. Pl and P2 contain pointers to the records containing the edge’s vertices.
LEFT and RIGHT are pointers to structures that identify the regions which are
on the two sides of the edge. We shall use the convention that LEFT and RIGHT
are with respect to a view of the edge that treats the vertex closest to the origin
as the start of the edge. For example, in Figure 2 the LEFT and RIGHT fields

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

210 l Hanan Samet and Robert E. Webber

are marked as being associated with regions 1 and 2, respectively. The algorithms
that we give here ignore these two fields. For a discussion of the maintenance of
the information that they store, see Appendix 3.

Each node in a PM quadtree is a collection of q-edges which is organized
according to the variant being implemented (i.e., PM1, PMZ, or PMS) and is
represented as a record of type node containing seven fields. The first four fields
contain pointers to the node’s four sons corresponding to the directions (i.e.,
quadrants) NW, NE, SW, and SE. If P is a pointer to a node and I is a quadrant,
then these fields are referenced as SON(P, I). The fifth field, NODETYPE,
indicates whether the node is a terminal node (LEAF) or a nonterminal (GRAY)
node. The SQUARE field is a pointer to a record of type square which indicates
the size of the block corresponding to the node. It is defined for both LEAF and
GRAY nodes. It has two fields, CENTER and LEN. CENTER points to a record
of type point which contains the x and y coordinates of the center of the square.
LEN contains the length of a side of the square which is the block corresponding
to the node in the PM quadtree. DICTIONARY is the last field and it is a pointer
to a data structure that represents the set of q-edges that are associated with the
node. Initially, the universe is empty and consists of no edges or vertices. It is
represented by a tree of one LEAF node whose DICTIONARY field points to
the empty set.

In the implementation given here the set of q-edges for each LEAF node is a
linked list whose elements are records of type edgelist containing two fields
DATA and NEXT. DATA points to a record of type line corresponding to the
edge of which the q-edge is a member. NEXT points to the record corresponding
to the next q-edge in the list of q-edges. Although the set of q-edges is imple-
mented as a list here, it really should be implemented by a data structure that
supports the efficient execution of the delete, insert, set union, and set difference
operations (e.g., 2-3 trees). However, a linked list is usually sufficient since in
our empirical tests, described in Section 5, the list rarely had as many as five
items in it. Depending on the type of PM quadtree that is being used the set of
q-edges could be further decomposed into subsets. For example, in the case of a
PM3 quadtree we would want to have seven subsets corresponding to the vertex
and the six combinations of sides. These subsets have been discussed in Section
4.3 in the presentation of the map overlay algorithm and are referred to as
D-VERTEX and D-SIDE, respectively. The set of q-edges corresponding to a
GRAY node is said to be empty. Note that all of the q-edges comprising a given
edge point to the same line record.

An edge is inserted into a PM quadtree by traversing the tree in preorder and
successively clipping it (using CLIP-LINES) against the blocks corresponding
to the nodes. Clipping is important because it enables us to avoid looking at
areas where the edge cannot be inserted. This process is controlled by procedure
PMINSERT which actually inserts a list of edges. If the edge can be inserted
into the node, say P, then PMINSERT does so and exits. Otherwise, a list, say
L, is formed containing the edge and any q-edges already present in the node, P
is split, and PMINSERT is recursively invoked to attempt to insert the elements
of L in the four sons of P. PMINSERT uses PM-CHECK (i.e., PMl-CHECK,
PMB-CHECK, or PM3-CHECK) to determine if the criteria of the appropriate
PM quadtree are satisfied. Isolated vertices pose no problems and are handled
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 211

by PM-CHECK. The implementation given below assumes that whenever an
edge or an isolated vertex is inserted into the PM quadtree it is not already there
or does not intersect an existing edge. However, an endpoint of the edge may
intersect an existing vertex as long as it is not an isolated vertex. Procedure
CLIP-SQUARE is a predicate that indicates if an edge crosses a square. Simi-
larly, procedure PT-IN-SQUARE is a predicate that indicates if a vertex lies in
a square. They are responsible for enforcing the conventions with respect to
vertices and edges that lie on the boundaries of blocks. Their code is not given
here. Equality between records corresponding to vertices is tested by use of the
‘=’ symbol which requires that its two operands be of the same type (i.e., pointers
to records of type point).

An edge is deleted from a PM quadtree by using a process whose control
structure is identical to that used in the insertion of an edge. Again, the tree is
traversed in preorder and the edge is successively clipped (using CLIP-LINES)
against the blocks corresponding to the nodes. This process is controlled by
procedure PMDELETE which actually deletes a list of edges. At each LEAF
node, the DICTIONARY field is updated to show the elimination of the edge (or
edges). Once all four sons of a GRAY node have been processed, an attempt is
made to merge the four sons by use of procedures POSSIBLE-PM-
MERGE (i.e., POSSIBLE-PMl-MERGE or POSSIBLE-PM23-MERGE)
and TRYTOMERGE-PM (i.e., TRYTOMERGE-PM1 or TRYTOMERGE-
PM23) to check if the criteria of the appropriate PM quadtree are satisfied.
These procedures make use of PM-CHECK.

recursive procedure PMlNSERT(P, R);
/* Insert the list of edges pointed at by P in the PM quadtree rooted at R. The call to

procedure PM-CHECK is generic. It is replaced by its analog for the PM1, PMz, and
PMs quadtrees. :/

begin
value pointer edgelist P;
value pointer node R;
pointer edgelist L;
quadrant I;
L t CLIP-LlNES(P, SQUARE(R));
if empty(L) then return; /* N o new edges belong in the quadrant */
if LEAF(R) then /* A terminal node :/

begin
L t MERGE-LlSTS(L, DICTIONARY(R));
if PM-CHECK(L, SQUARE(R)) then

begin
DICTIONARY(R) c L;
return;

end
else SPLIT-PM-NODE(R);

end;
for I in (‘NW’, ‘NE’, ‘SW’, ‘SE’) do PMlNSERT(L, SON(R, 1));

end,

recursive edgelist procedure CLIP-LINES(L, R);
/* Collect all of the edges in the list of edges pointed at by P that intersect the square

pointed at by R. ADD-TO-LlST(X, S) adds element X to the list S and returns a
pointer to the resulting list. */

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

212 l Hanan Samet and Robert E. Webber

begin
value pointer edgelist L;
value pointer square R;
return(if empty(L) then NIL

else if CLIP-SQUARE(DATA(L), R) then
ADD-TO-LIST(DATA(L), CLIP-LINES(NEXT(L), R))

else CLIP-LINES(NEXT(L), R));
end;

Boolean procedure PMl-CHECK(L, S);
/* Determine if the square pointed at by S and the list of edges pointed at by L form a

legal PM, quadtree node. ONE-ELEMENT(L) is a predicate that indicates if L
contains just one element. */

begin
value pointer edgelist L;
value pointer square S;
return(if Pl(DATA(L)) = PS(DATA(L)) then

ONE-ELEMENT(L) /* Isolated vertex */
else if ONE-ELEMENT(L) then
/* Both vertices can lie outside the square :/

not(PT-IN-SQUARE(Pl(DATA(L)), S) and
PT_INSQUARE(P2(DATA(L)), S))

else if PT-IN-SQUARE(Pl(DATA(L)), S) and
PT-IN_SQUARE(P2(DATA(L)), S) then false

else if PT-INSQUARE(Pl(DATA(L)), S), then
SHARE-PMl-VERTEX(Pl(DATA(L)), NEXT(L), S)

else if PT_IN_SQUARE(P2(DATA(L)), S) then
SHARE_PMl_VERTEX(P2(DATA(L)), NEXT(L), S)

else false);
end,

recursive Boolean procedure SHARE-PMl-VERTEX(P, L, S);
/* The vertex pointed at by P is in the square pointed at by S. Determine if all the edges

in the list of edges pointed at by L share P and do not have their other vertex within
s. */

begin
value pointer point P;
value pointer edgelist L;
value pointer square S;
return(if empty(L) then true

else if P = Pl(DATA(L)) then
not(PT-IN_SQUARE(P2(DATA(L)), S)) and
SHARE-PMl-VERTEX(P, NEXT(L), S)

else if P = PB(DATA(L)) then
not(PT-IN-SQUARE(Pl(DATA(L)), S)) and
SHARE-PMl-VERTEX(P, NEXT(L), S)

else false);
end;

Boolean procedure PMB-CHECK(L, S);
/* Determine if the square pointed at by S and the list of edges pointed at by L form a

legal PM2 quadtree node. SHARE-PM2-VERTEX is invoked with L instead of
NEXT(L) because the edge might have one vertex in the square and share the other
vertex with the list, which violates the PM2 quadtree criteria. */

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 213

begin
value pointer edgelist L;
value pointer square S;
return(if Pl(DATA(L)) = PB(DATA(L)) then

ONE-ELEMENT(L) /* Isolated vertex */
else if PT-IN-SQUARE(Pl(DATA(L)), S) and

PT-IN-SQUARE(PZ(DATA(L)), S) then false
else if SHARE_PM2_VERTEX(Pl(DATA(L)), L, S) or

SHARE_PM2_VERTEX(P2(DATA(L)), L, S) then true
else false);

end,

recursive Boolean procedure SHARE-PMP-VERTEX(P, L, S);
/* The vertex pointed at by P is the shared vertex in a PM2 quadtree. It can be inside or

outside of the square pointed at by S. Determine if all the edges in the list of edges
pointed at by L share P and do not have their other vertex within S. */

begin
value pointer point P;
value pointer edgelist L;
value pointer square S;
return(if P = Pl(DATA(L)) then

not(PT_INSQUARE(P2(DATA(L)), S)) and
SHARE-PMZ-VERTEX(P, NEXT(L), S)

else if P = P2(DATA(L)) then
not(PT-IN-SQUARE(Pl(DATA(L)), S)) and
SHARE-PMX-VERTEX(P, NEXT(L), S)

else false);
end;

recursive Boolean procedure PMS-CHECK(L, S);
/* Determine if the square pointed at by S and the list of edges pointed at by L form a

legal PM3 quadtree node. In order to allow an isolated vertex to coexist in a leaf node
along with edges that do not intersect it, INF is used to represent a fictitious point at
(00, m) and serves as the shared vertex in the call to SHARE-PM3-VERTEX. */

begin
value pointer edgelist L;
value pointer square S;
return(if empty(L) then true

else if Pl(DATA(L)) = P2(DATA(L)) then /* Isolated vertex */
SHARE_PM3_VERTEX(INF, NEXT(L), S)

else if PT-IN-SQUARE(Pl(DATA(L)), S) and
PT_IN_SQUARE(P2(DATA(L)), S) then false

else if PT-IN-SQUARE(Pl(DATA(L)), S) then
SHARE_PM3_VERTEX(Pl(DATA(L)), NEXT(L), S)

else if PT-IN_SQUARE(P2(DATA(L)), S) then
SHARE_PM3_VERTEX(P2(DATA(L)), NEXT(L), S)

else PM3_CHECK(NEXT(L), S));
end;

recursive Boolean procedure SHARE-PM3_VERTEX(P, L, S);
/: The vertex pointed at by P is the shared vertex in a PM3 quadtree. It is inside the

square pointed at by S. Determine if all the edges in the list of edges pointed at by L
either share P and do not have their other vertex within S, or do not have either of
their vertices in S. */

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

214 - Hanan Samet and Robert E. Webber

begin
value pointer point P;
value pointer edgelist L;
value pointer square S;
return (if empty(L) then true

else if P = Pl(DATA(L)) then
not (PT_IN_SQUARE(P2(DATA(L)), S)) and
SHARE-PM3-VERTEX(P, NEXT(L), S)

else if P = P2(DATA(L)) then
not(PT-IN-SQUARE(Pl(DATA(L)), S)) and
SHARE-PMS-VERTEX(P, NEXT(L), S)

else not(PT-IN-SQUARE(Pl(DATA(L)), S)) and
not(PT_IN_SQUARE(P2(DATA(L)), S)) and
SHARE-PMS-VERTEX(P, NEXT(L), S));

end;

procedure SPLIT-PM-NODE(P);
1% Add four sons to the node pointed at by P and change P to be of type GRAY. */
begin

value pointer node P;
quadrant I, J;
pointer node Q;
pointer square S;
/* XF and YF contain multiplicative factors to aid in the location of the centers of the

quadrant sons while descending the tree */
preload real array XF[‘NW’, ‘NE’, ‘SW’, ‘SE’] with -0.25,0.25, -0.25,0.25;
preload real array YF[‘NW’, ‘NE’, ‘SW, ‘SE’] with 0.25,0.25, -0.25, -0.25;
for I in {‘NW’, ‘NE’, ‘SW’, ‘SE’) do
begin

Q c create(node);
SON(P, I) t Q;
for J in {‘NW’, ‘NE’, ‘SW’, ‘SE’] do SON(Q, J) c NIL;
NODETYPE +-- ‘LEAF’;
S t create(square);
SQUARE(Q) t S;
CENTER(S) t create(point);
XCOORD(CENTER(S)) c XCOORD(CENTER(SQUARE(P))) +

XF[I]:LEN(SQUARE(P));
YCOORD(CENTER(S)) + YCOORD(CENTER(SQUARE(P))) +

YF[I]:LEN(SQUARE(P));
LEN(S) c 0.5:LEN(SQUARE(P));
DICTIONARY(Q) + NIL;

end,
DICTIONARY(P) + NIL;
NODETYPE c ‘GRAY’;

end,
recursive procedure PMDELETE(P, R);
/* Delete the list of edges pointed at by P from the PM quadtree rooted at R. The calls

to procedures POSSIBLE-PM-MERGE and TRYTOMERGE-PM are generic. They
are replaced by their corresponding analogs for the PM1, PM2, and PM3 quadtrees. */

begin
value pointer edgelist P;
value pointer node R;
pointer edgelist L;
quadrant I;
L t CLIP-LINES(P, SQUARE(R));
if empty(L) then return; /* N one of the edges are in the quadrant */
if GRAY(R) then

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 215

begin
for I in (‘NW’, ‘NE’, ‘SW’, ‘SE’] do PMDELETE(L, SON(R, I));
if POSSIBLE-PM-MERGE(R) then

begin
L t NIL;
if TRYTOMERGE-PM(R, R, L) then

begin /* Merge the sons of the GRAY node */
RETURN-TREE-TO-AVAIL(R);
DICTIONARY(R) c L;
NODETYPE c ‘LEAF’;

end;
end,

end
else DICTIONARY(R) c SET-DIFFERENCE(DICTIONARY(R), L);

end,

Boolean procedure POSSIBLE-PMl-MERGE(P);
/* Determine if the subtrees of the four sons of the PM, quadtree node pointed at by P

should be further examined to see if a merger is possible. Such a merger is only feasible
if at least one of the four sons of P is a LEAF. */

begin
value pointer node P;
return(LEAF(SON(P, ‘NW’)) or LEAF(SON(P, ‘NE’)) or

LEAF(SON(P, ‘SW’)) or LEAF(SON(P, ‘SE’)));
end:

Boolean procedure POSSIBLE-PM23-MERGE(P);
/* Determine if an attempt should be made to merge the four sons of the PM, or PM3

quadtree. Such a merger is only feasible if all four sons of a GRAY node are LEAF
nodes. */

begin
value pointer node P;
return(LEAF(SON(P, ‘NW’)) and LEAF(SON(P, ‘NE’)) and

LEAF(SON(P, ‘SW’)) and LEAF(SON(P, ‘SE’)));
end;

recursive Boolean procedure TRYTOMERGE-PMl(P, R, L);
/* Determine if the four sons of the PM1 quadtree rooted at node P can be merged. Notice

that the check for the satisfaction of the PM1 decomposition criteria is with respect to
the square associated with the original GRAY node, rooted at R, whose subtrees are
being explored. Variable L is used to collect all of the edges that are present in the
subtrees. :/

begin
value pointer node P, R,
reference pointer edgelist L;
if LEAF(P) then

begin
L c SET-UNION(L, DICTIONARY(P));
return(true);

end
else return(TRYTOMERGE-PMl(SON(P, ‘NW’), R, L) and

TRYTOMERGE-PMl(SON(P, ‘NE’), R, L) and
TRYTOMERGE-PMl(SON(P, ‘SW’), R, L) and
TRYTOMERGE-PMl(SON(P, ‘SE’), R, L) and
PMl-CHECK(L, SQUARE(R)));

end;

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

216 l Hanan Samet and Robert E. Webber

Boolean procedure TRYTOMERGE_PMZ3(P, R, L);
/* Determine if the four sons of the PM2 or PM3 quadtree rooted at node P can be merged.

Variable L is used to collect all of the edges that are present in the subtrees. Note that
there is no need for parameter R, and the procedure is not recursive. The call to PM-
CHECK is replaced by PMB-CHECK or PM3-CHECK as is appropriate. */

begin
value pointer node P, R;
reference pointer edgelist L;
quadrant I;
for I in (‘NW’, ‘NE’, ‘SW’, ‘SE’) do

L c SET-UNION(L, DICTIONARY(SON(P, I)));
return(PM-CHECK(L, SQUARE(P)));

end;

recursive procedure RETURN-TREE-TO-AVAIL(P);
/* Return the PM quadtree rooted at P to the free storage list. This process is recursive

in the case of a PM1 quadtree. */
begin

value pointer node P;
quadrant I;
if LEAF(P) then return
else

begin
for I in {‘NW’, ‘NE’, ‘SW’, ‘SE’) do

begin
RETURN-TREE-TO-AVAIL(SON(P, I));
returntoavail(SON(P, I));
SON(P, I) c NIL;

end;
end;

end;

APPENDIX 2. Comparison with Nonquadtree Approaches

The problem of constructing a data structure allowing such operations as point
location has also been addressed by investigators of geometric complexity [4].
Their work has concentrated on providing a structure with optimal worst-case
analysis. One version of an optimal structure that has been reported is the
K-structure of Kirkpatrick [111.

The K-structure is a hierarchical structure based on triangulation rather than
a regular decomposition. The notion of hierarchy in the K-structure is radically
different from that of a quadtree, in that instead of replacing a group of triangles
by a single triangle at the next higher level, a group of triangles is replaced by a
smaller group of triangles. The triangles are first partitioned into groups that
share a common vertex. The shared vertex is then eliminated and a new smaller
triangulation is then constructed. The size of a K-structure for a polygonal map
of u vertices (possibly containing holes) is O(u) although it has a rather high
constant of proportionality. Its construction has a worst-case execution time of
O(u) for a triangular subdivision and O(v . log u) for a general map. The latter is
dominated by the cost of triangulating the original polygonal map [8].

The point location problem for the K-structure can be solved in O(logzu) time.
There is no obvious algorithm that performs overlay using the K-structure.
However, since the triangulation forms a convex map, the planar sweep algorithm
of Nievergelt and Preparata [141 can be used to perform overlay of two polygonal
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees . 217

maps in O(u log,u + s log,u) time where s denotes the number of intersections.
From the results of Nievergelt and Preparata’s algorithm, a new K-structure can
be built in O(u) time. Thus the total time is O(u log,u + s log,u). The dynamic
insertion of a line segment into a K-structure has a worst case of O(u) time.

It should be noted that the optimal worst-case behavior (on data not necessarily
fitting the model) of the K-structure for the task of point location is also shared
by the layered dug of Edelsbrunner, Guibas, and Stolfi [5]. The layered dag is a
modified binary tree which stores a y-monotone subdivision of a polygonal map.
A y-monotone subdivision of a polygonal map is created by partitioning the
regions of a map until no vertical line intersects a region’s boundary more than
twice. Note that the resulting map need not be convex; however, the asymptotic
worst-case analysis of the layered dag is identical to that of the K-structure.

Any triangulation can be used as the basis of a y-monotone subdivision, but,
usually, the creation of a y-monotone subdivision requires considerably fewer
line segments to be inserted than the creation of a triangulation of the same
map. However, like triangulation, the creation of a monotone subdivision is
performed by a planar sweep algorithm in O(u log,u) time. The layered dag can
be built from a y-monotone subdivision in O(u) time and O(u) space. However,
as with the K-structure, there is no simple way to perform the overlay algorithm
that takes advantage of this structure; so again, we resort to the overlay algorithm
of Nievergelt and Preparata [14]. Although the map created by the y-monotone
subdivision creation process is not convex, as observed by a referee, one can
perform overlay in O(u log,u + s log,u) time. More importantly, it is difficult to
perform dynamic update on the layered dag structure.

In comparing the PM quadtree to the K-structure and the layered dag, it is
necessary to establish a model of expected data, because the DMAX factor of the
quadtree analysis can grow arbitrarily large without changing the u factor of the
K-structure and layered dag analyses. Since loglu is only a lower bound on
DMAX, the K-structure and the layered dag clearly have a better worst-case
performance than the PM quadtree. However, in practice, data seldom exploit
this worst-case behavior.

Instead, we observe that cartographic polygonal maps result from a piecewise
linear approximation process. This means that the map will tend to contain only
long chains of short line segments. Thus the number of q-edges per line segment
is usually 2 as is the degree of a vertex. If the cartographic data fit this model
exactly, then the edge quadtree discussed in Section 2.3 would be adequate. The
PM quadtree is different from those variants in that while it is most efficient for
data that closely approximates the model, there is a smooth degradation of its
performance as the data departs from this model. Furthermore, the three PM
quadtrees presented (PMi, PM2, and PM3) degrade at successively slower rates.

For data that closely tit this model, the PM quadtree has the following
characteristics. Point location is performed in O(log,u) time. This follows from
the expectation that half the quadtree leaves are empty and the other half usually
contain at most two q-edges. Two PM quadtrees can be overlayed in O(u) time.
Dynamic insertion of a line segment can be performed in O(log2u) time. This
analysis is essentially that of the edge quadtree under ideal data. Note that the
expected performance of the PM quadtree for dynamic line insertion and map
overlay is better than that expected for the K-structure. For the problem of point

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

218 l Hanan Samet and Robert E. Webber

(a) (b)

Fig. 15. Example demonstrating the sensitivity of the PR quadtree to shifts.

location the comparison depends on a further investigation of the constant
factors involved in the analysis. Although the impact of the model on the
triangulation process that underlies the K-structure is difficult to discern, the
short line segments will tend to cause the creation of long narrow triangles. This
would increase the s factor in the execution time of the overlay algorithm when
using the K-structure. Note, also, that applying our model of cartographic data
to the layered dag does not change the analysis of the layered dag. Thus for such
data, the PM quadtree bears the same relationship to the layered dag as it does
to the K-structure.

One difference between the above methods and the quadtree approach is that
the size of a quadtree is inherently sensitive to the location of the map within
the decomposition grid (and hence can change significantly when the map is
shifted or rotated). However, the PM quadtree is less prone to suffer from this
problem than are other quadtrees. For example, shifting or rotating the region
quadtree and the line quadtree [18] can lead to much larger changes in storage
requirements. In contrast, the PM, and PM, quadtrees can be shifted or rotated
without distortion or an unreasonable change in the storage requirements of the
structure. Nevertheless, the storage requirements are still somewhat dependent
on the positioning of the space within which the map is embedded. For example,
the polygonal map of Figure 15a requires 7 PR quadtree leaf nodes. However, if
we shift the map slightly, we get Figure 15b, which requires only 4 PR quadtree
leaf nodes.

APPENDIX 3. Maintaining Labels of Regions

In the main body of the paper, we assume that the regions of a polygonal map
are represented by labeling the borders of the regions with the region names. In
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees - 219

Fig. 16. Example polygonal map with many holes.

C

this appendix, we discuss how these labels can be efficiently maintained. To see
the possible problems, let us consider Figure 16.

Figure 16 contains a pentagonal region ABCDE with many holes. All the q-
edges forming the ABCDE border and those forming the outer border of each of
the holes must be labeled with the name of the pentagonal region. Now consider
what happens when edge BE is inserted. The outer border of the pentagonal
region has been split in two and the new edge has been inserted forming two new
regions-a triangular region and a quadrilateral region. Also the holes of the
original pentagonal region must have their labels changed to indicate whether
they are now in the triangular region or in the quadrilateral region. If the region
labels were stored directly on each q-edge, then the updating of region labels
would require that every q-edge be visited. If no additional data structure were
used to organize the labels, then visiting each q-edge would be analogous to doing
a connected component analysis of the portion of the map bounded by the
pentagonal region. This analysis can be greatly simplified if all the q-edges in a
particular region are kept in a linked list, but it will still involve an amount of
work proportional to the number of q-edges in the outer border of the pentagonal
region and in the outer border of all the holes inside the pentagonal region. In
the following, we propose to organize the q-edges within a region in a more
efficient manner than a linked list. Note that the above comments about the
insertion of the edge BE apply equally to the problem of deleting the edge BE.

The q-edges that border a region can be partitioned into a collection of
disconnected chains of q-edges. Elements of this collection correspond to walks
along the outer border of the region, to walks along the outer borders of any
holes in the region, and miscellaneous q-edges that have the same region on both
their left and right sides (and hence are not properly borders of any region). The
q-edges of each chain are grouped into a 2-3 tree [l] (termed a chain 2-3 tree)
and we only store the label information (i.e., an identifier for the chain) in the
root of the tree. In fact, each q-edge is linked to the leaves of at most two of

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

220 l Hanan Samet and Robert E. Webber

these 2-3 trees (one link for the region on each side of the q-edge) and the region
information is found by moving up the tree using father links. Moreover, the
chains of each region are also grouped into a 2-3 tree (termed a region 2-3 tree)
and again we only store the label information in the root of the tree (this time
the label information is the name of the region). The 2-3 tree is chosen because
of its algorithmic simplicity (it is a degenerate case of the much studied B-tree
[3]). In particular, the 2-3 tree has the property that insertion, deletion, and
splitting and concatenation of two 2-3 trees can be performed in O(log,n) time
for trees of size n. In addition, two 2-3 trees of size tl and tP, respectively, can be
merged into a new 2-3 tree in O(t, + tz) time. However, other balanced tree
techniques could have also been used.

In order to be able to make use of the 2-3 trees we must be able to define an
ordering for q-edges and chains. The q-edges in a given chain can be ordered
according to their appearance during a walk along the chain starting at the
leftmost of the uppermost vertices incident to the chain. In case of a tie (e.g., a
closed chain in which case there are two q-edges meeting this criterion), we
choose the q-edge whose other endpoint is uppermost leftmost. We also have to
order the collection of chains corresponding to each region which we do by using
their “extreme” q-edge. By extreme we mean that for each chain we choose the
q-edge having the uppermost leftmost endpoint. Again, in case of a tie (e.g.,
extreme q-edges that share the same endpoint), we apply the same rule to the
second endpoint. This extreme q-edge will provide a unique label for the entire
region (with respect to a particular map).

If deletion or insertion of a q-edge does not change the number of regions in
the map, then the operation can be performed in O(logzq) time where q is the
number of q-edges (i.e., leaves) in the largest chain 2-3 tree associated with a
given region. If deletion of a q-edge merges two regions, then the region 2-3 trees
that order the collection of chains for each region will need to be merged. If the
number of leaves (i.e., chains) in the region 2-3 trees representing these
two regions is tl and tP, respectively, then the cost of this operation will be
O(t, + t2 + logZq) time. This is accomplished by a procedure that merges the two
collections of disconnected chains in O(t, + tz) time and creates the border of
the new region from the borders of the two merged regions in O(log,q) time.
Note that for cartographic data the individual chains are typically long (i.e., q
can become large), but the number of chains in each region’s collection is usually
small for a given region (i.e., ti + tZ is usually small). Indeed, if there are no
chains that have the same region on both sides, then the average value of tl (and
also tz) could not be larger than 1 (corresponding to the region’s outer border)
plus the average number of holes. But since each hole is itself a region, the
average number of holes cannot exceed 1. Therefore, the average value of tl (and
of tz) cannot exceed 2.

Similarly, when q-edge insertion causes splitting of a region with a region 2-3
tree of t chains, the cost will be O(t + logZq) time. This is accomplished by a
procedure that separates the collection of disconnected chains of q-edges that
bounded the old region (i.e., its region 2-3 tree) into a collection for each of the
new regions (i.e., new region 2-3 trees) in O(t) time and splits the outer border
of the old region into the two outer borders of the new regions in O(log,q) time.
ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

Storing a Collection of Polygons Using Quadtrees l 221

Note that the new region might be created by the inserted q-edge completing the
border of a hole instead of connecting the outer border in 2 places. The cost of
determining the region to which a q-edge belongs is O(log,q) time.

ACKtiOWLEDGMENTS

We have benefited greatly from discussions with Randal C. Nelson and Clifford
A. Shaffer. The suggestions of an anonymous referee are also appreciated.

REFERENCES

1. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

2. BENT, S. W., SLEATOR, D. D., AND TARJAN, R. E. Biased 2-3 trees. In Proceedings of the 21st
Annual Symposium on Foundations of Computer Science (October, Syracuse, New York), IEEE,
New York, 1980, pp. 248-254.

3. COMER, D. The ubiquitous B-tree. ACM Comput. Suru. 11, 2 (June 1979), 121-137.
4. EDELSBRUNNER, H. Key-problems and key-methods in computational geometry. In Symposium

of Theoretical Aspects of Computer Science (April, Paris, France), Springer-Verlag, New York,
1984, pp. 1-13.

5. EDELSBRUNNER, H., GUIBAS, L. J., AND STOLFI, J. Optimal point location in a monotone
subdivision. SIAM J. Comput. To appear.

6. FINKEL, R. A., AND BENTLEY, J. L. Quad trees: A data structure for retrieval on composite
keys. Acta Informatica 4, 1 (1974), l-9.

7. HARARY, F. Graph ZXeory. Addison-Wesley, Reading, Mass., 1969.
8. HERTEL, S., AND MEHLHORN, K. Fast triangulation of simple polygons. In Proceedings of the

1983 International FCT-Conference (August, Borgholm, Sweden), Springer-Verlag, New York,
1983, pp. 207-218.

9. HUNTER, G. M. Efficient computation and data structures for graphics. Ph.D. dissertation,
Deparment of Electrical Engineering and Computer Science, Princeton University, Princeton,
N.J., 1978.

10. HUNTER, G. M., AND STEIGLITZ, K. Operations on images using quad trees. IEEE Trans.
Pattern Anal. and Mach. Intell. 1, 2 (Apr. 1979), 145-153.

11. KIRKPATRICK, D. Optimal search in planar subdivisions. SIAM J. Comput. 12, 1 (Feb. 1983),
28-35.

12. KLINGER, A. Patterns and search statistics. In Optimizing Methods in Statistics, J. S. Rustagi,
Ed. Academic Press, New York, 1971, pp. 303-337.

13. MARTIN, J. J. Organization of geographical data with quad trees and least square approximation.
In Proceedings of the IEEE Conference on Pattern Recognition and Image Processing (June, Las
Vegas), IEEE, New York, 1982, pp. 458-463.

14. NIEVERGELT, J., AND PREPARATA, F. P. Plane-sweep algorithms for intersecting geometric
figures. Commun. ACM 25,lO (Oct. 1982), 739-747.

15. ORENSTEIN, J. A. Multidimensional tries used for associative searching. Inf. Process. L&t. 14,
4 (June 1982), 150-157.

16. OVERMARS, J. H., AND VAN LEEUWEN, J. Dynamic multi-dimensional data structures based on
quad- and k-d trees. Acta Informatica 17, (1982), 267-287.

17. SAMET, H., AND WEBBER, R. E. Using quadtrees to represent polygonal maps. In Proceedings
of Computer Vision and Pattern Recognition 83 (June, Washington, D.C.), IEEE, New York,
1983, pp. 127-132 (also University of Maryland, Computer Science Dept. TR-1372).

18. SAMET, H., AND WEBBER, R. E. On encoding boundaries with quadtrees. IEEE Trans. Pattern
Anal. and Mach. Intell. 6,3 (May 1984), 365-369.

19. SAMET, H. The quadtree and related hierarchical data structures. ACM Comput. Suru. 16, 2
(June 1984), 187-260.

ACM Transactions on Graphics, Vol. 4, No. 3, July 1985.

222 l Hanan Samet and Robert E. Webber

20. SAMET, H., ROSENFELD, A., SHAFFER, C. A., AND WEBBER, R. E. A geographic information
system using quadtrees. Pattern &cog. 17, 6 (Nov./Dee. 1984), 647-656.

21. SHNEIER, M. Two hierarchical linear feature representations: Edge pyramids and edge quad-
trees. Corn@. Graph. and Image Process. 17, 3 (Nov. 1981), 211-224.

22. TAMMINEN, M. The EXCELL method for efficient geometric access to data. Acta Polytechnica
Scandinauica, Mathematics and Computer Science Series No. 34, Helsinki, 1981.

23. WEBBER, R. E. Analysis of quadtree algorithms. Ph.D. dissertation, TR-1376, Computer Science
Department, University of Maryland, College Park, Md, March 1984.

Received November 1983; revised September 1985; accepted September 1985.

ACM Transactions cm Graphics, Vol. 4, No. 3, July 1985.

