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Abstract

Two different techniques of browsing through a collection of spatial objects stored in an R-tree spatia
data structure on the basis of their distances from an arbitrary spatia query object are compared. The con-
ventional approach is one that makes use of a k-nearest neighbor algorithm where £ is known prior to the
invocation of the algorithm. Thusif m > £ neighbors are needed, the k-nearest neighbor algorithm needs
to be reinvoked for m neighbors, thereby possibly performing some redundant computations. The second
approach isincremental in the sense that having obtained the & nearest neighbors, the & + 1%¢ neighbor can
be obtained without having to calculate the k£ + 1 nearest neighborsfrom scratch. Theincremental approach
finds use when processing complex queries where one of the conditionsinvolves spatia proximity (e.g., the
nearest city to Chicago with popul ation greater than a million), in which case a query engine can make use
of apipelined strategy. A general incremental nearest neighbor algorithm is presented that is applicable to
alarge class of hierarchical spatial data structures. This algorithm is adapted to the R-tree and its perfor-
mance is compared to an existing k-nearest neighbor algorithm for R-trees [45]. Experiments show that the
incremental nearest neighbor a gorithm significantly outperforms the k-nearest neighbor agorithm for dis-
tance browsing queriesin aspatial databasethat usesthe R-tree asaspatial index. Moreover, theincremental
nearest neighbor agorithm also usually outperforms the k-nearest neighbor algorithm when applied to the
k-nearest neighbor problem for the R-tree, although the improvement is not nearly as large as for distance
browsing queries. In fact, we prove informally that, at any step in its execution, the incremental nearest
neighbor agorithmisoptimal with respect to the spatial data structurethat isemployed. Furthermore, based
on some simplifying assumptions, we prove that in two dimensions, the number of distance computations
and leaf nodes accesses made by the algorithm for finding & neighborsis O (k + k).

Keywords: distancebrowsing, ranking, nearest neighbors, R-trees, spatial databases, hierarchical spatial data
structures.
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1 Introduction

In this paper, we focus on theissue of obtaining dataobjectsin their order of distance from agiven query ob-
ject (termed ranking). Thisissueisof primary interest in aspatial database althoughit also finds usein other
database applications including multimedia indexing [36], CAD, and molecular biology [37]. The desired
ranking may befull or partia (e.g., only thefirst k objects). Thisproblem can also be posed inaconventional
database system. For example, given a table of individuals containing a weight attribute, we can ask “who
has aweight closest to w 1bs.?’, or “rank the individuals by how much their weight differsfrom w Ibs.”. If
no index exists on the weight attribute, then to answer thefirst query, ascan of al tuples must be performed.
However, if an appropriate index structure is used, then more efficient methods can be employed. For ex-
ample, using aB™ -tree, the query can be answered by a single descent to aleaf, for a cost of O(log n) for n
tuples. Thecorrect answer will be found either inthat leaf or an adjacent one. Torank all theindividuals, the
search would proceed in two directions along the leaves of the BT -tree, with a constant cost for each tuple.
Theindex can be used for any such query regardless of the reference weight w.

For multidimensional data, things are not so simple. Consider, for example, a set of pointsin two di-
mensions representing cities. Queries anal ogous to the previous ones are “what city is closest to point p?’
and “rank the cities by their distances from point p”. In a database context, we wish to know what kind of
index structureswill aid in processing these queries. For a fixed reference point p and distance metric, we
might build a one-dimensional index on the distances of the cities from the point p. Thiswould provide an
efficient executiontimefor thisparticular point (i.e., for p), but for any other point or distancemetric it would
be useless. Thus we have to rebuild the index, which is a costly processif we need to do it for each query.
Contrast thisto the one-dimensional case, where there is generally only one choice of metric. Furthermore,
for a given reference point, any other point can have only two positionsin relation toit, larger or smaller. It
is not possibleto define such a simple relationship in the multidimensional case.

As another example, suppose we want to find the nearest city to Chicago that has more than a million
inhabitants. There are several ways to proceed. An intuitive solution is to guess some area range around
Chicago and check the populations of the cities in the range. If we find a city with the requisite popul a
tion, we must make sure that there are no other cities that are closer and that meet the population condition.
Thisapproach is rather inefficient as we have to guess the size of the area to be searched. The problem with
guessing isthat we may choosetoo small aregion or too large aregion. If the sizeistoo small, the area may
not contain any cities satisfying the population criterion, in which case we need to expand the region being
searched. If the sizeistoo large, we may be examining many cities needlessly.

A radical solutionisto sort al the cities by their distances from Chicago. Thisis not very practica as
we need to re-sort them each time we pose a similar query with respect to another city. Moreover, sorting
requires aconsiderableamount of extrawork, especially when usually all that is needed to obtain the desired
result is to inspect the first few nearest neighbors.

A lessradical solutionistoretrievetheclosest £ citiesand determineif any of them satisfy the population
criterion. The problem hereliesin determining the value of k. Asin the arearange solution, we may choose
too small or too large avalue of k. If £ istoo small, failureto find a city satisfying the population criterion
means that we have to restart the search with avalue larger than %, say m. The drawback of this solutionis
that such a search forces us to expend work in finding the £ nearest neighbors (which we aready did once
before) as part of the cost of finding the m > & nearest neighbors. On the other hand, if % istoo large, we
waste work in cal cul ating neighbors whose popul ationswe will never check.

A logical way to overcome the drawbacks of the second and third solutionsis to obtain the neighbors
incrementally (i.e., one by one) as they are needed. In essence, what we are doing is browsing through the
database on the basis of distance and we shall use theterm distance browsing to describe this operation. The
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result isan incremental ranking of the cities by distance where we cease the search as soon as the secondary
popul ation condition is satisfied. Theideaisthat we want only asmall but unknown number of neighbors.
Theincremental solution finds applicationin amuch more general setting than our specialized query exam-
ple. In particular, thisincludes queries that require the application of the “nearest” predicate to a subset s
of the attributes of arelation (or object class) r. This class of queriesis part of a more restricted, but very
common, class that imposes an additiona condition ¢ usually involving attributes other than s. This means
that the“nearest” condition serves asaprimary condition, while condition ¢ serves as a secondary condition.
Using an incremental solution enables such a query to be processed in a pipelined fashion.

Of course, in the worst case, we will have to examine all (or most) of the neighbors even when using
an incremental approach. This may occur if few objects satisfy the secondary condition (e.g., if none of
the cities have the requisite population). In this case, it may actually be better to first select on the basis of
the secondary condition (the population criterion in our example) before considering the “ spatially nearest”
condition, especially if anindex existsthat can be used to computethe secondary condition. Usingak-nearest
neighbor algorithm may aso be preferable, provided it is more efficient than the incremental algorithm for
large values of k. It makes sense to choose this solution only if we know in advance how many neighbors
are needed (i.e., the value of k), but this value can be estimated based on the selectivity of the secondary
condition. These issues demonstrate the need for a query engine to make estimates using selectivity factors
(e.g., [3, 40, 49]) involving the numbers of values that are expected to satisfy various parts of the query and
the computational costs of the applicable a gorithms.

In this paper we compare the incremental and %-nearest neighbor approaches for browsing through a
collection of spatial objects stored in an R-tree spatia data structure on the basis of their distances from an
arbitrary spatial query abject. In the process we present a general incremental nearest neighbor algorithm
that isapplicableto alarge class of hierarchical spatial data structures, and show how to adapt thisalgorithm
to the R-tree. Its performance is compared to an existing k-nearest neighbor algorithm for R-trees [45]. In
addition, we demonstrate that the &-nearest neighbor a gorithm of [45] can betransformed into aspecia case
of our R-tree adaptation of the general incremental nearest neighbor algorithm. The transformation process
also reveals that the R-tree incremental nearest neighbor algorithm achieves more pruning than the R-tree
k-nearest neighbor algorithm. Moreover, our R-tree adaptation leads to a considerably more efficient (and
conceptually different) algorithm. Thisis because the presence of object bounding rectanglesin thetree en-
ablestheir use as pruning devicesto reduce disk I/O for accessing the spatia descriptions of objects (stored
externa to the tree). Experiments show that the incremental nearest neighbor agorithm significantly out-
performs the k-nearest neighbor algorithm for distance browsing queriesin a spatial database that uses the
R-tree as aspatial index. Moreover, theincremental nearest neighbor a gorithm also usually outperformsthe
k-nearest neighbor algorithm when applied to the k-nearest neighbor problem for the R-tree, although the
improvement is not nearly as large as for distance browsing queries.

Therest of this paper is organized as follows. Section 2 discusses a gorithms related to nearest neigh-
bor queries. Section 3 reviewsthe structure of R-trees. Section 4 describes theincremental nearest neighbor
algorithm aswell asits adaptation to the R-tree. Section 5 introduces the k-nearest neighbor algorithm. Sec-
tion 6 presentsthe results of an empirical study comparing the incremental nearest neighbor algorithm with
the k-nearest neighbor algorithm. Section 7 discusses issues that arise in high-dimensiona spaces, while
conclusionsare drawn in Section 8.

2 Reated Work

Numerous a gorithmsexist for answering nearest neighbor and k-nearest neighbor queries. Thisismotivated
by theimportance of these queriesin fieldsincluding geographical information systems(GIS), pattern recog-
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nition, document retrieval, and learning theory. Almost all of these agorithms, many of them coming from
thefield of computational geometry, arefor pointsin ad-dimensional vector space[12, 16, 21, 22, 33, 45, 51],
but some allow for arbitrary spatial objects [26, 30], although most are still limited to a point as the query
object. In many applications, arough answer suffices, so that algorithms have been devel oped that return an
approximate result [4, 10, 54], thereby saving time in computing it. Many of the above algorithms require
specialized search structures [4, 10, 16, 22, 33], but some employ commonly used spatia data structures.
For example, agorithms exist for the k-d tree [12, 21, 41, 51], quadtree-related structures [29, 30], the R-
tree[45, 54], the LSD-tree [26] and others. In addition, many of the algorithmscan be applied to other spatial
data structures.

To our knowledge, only three incremental solutionsto the nearest neighbor problem exist in the litera-
ture [12, 26, 29]. All these algorithms employ priority queues (see Section 4). The agorithm of [12] was
developed for thek-d tree[7]. Itisconsiderably different from the other two algorithmsin that the algorithm
of [12] stores only the data objectsin the priority queue, and uses a stack to keep track of the subtrees of the
gpatial data structurewhich have yet to be completely processed. This makesit necessary to use an elaborate
mechanism to avoid processing the contents of anode more than once. The algorithm of [26] was devel oped
for the LSD-tree [28]. It isvery similar to our method (presented in [29]) and was published at about the
same time. The principal difference between [26] and our method is that the L SD-tree algorithm uses two
priority queues, one for the data objects and another for the nodes of the spatia data structure. This makes
the algorithm somewhat more complicated than ours, whilethe use of two priority queues does not offer any
performance benefits according to our experiments. Our algorithm [29] was initially devel oped for the PMR
quadtree [42] although its presentation was general. In this paper we expand considerably on our initial so-
lution by showing how it can be adapted to the R-tree [24] aswell as comparing it with asolution that makes
use of an existing k-nearest neighbor algorithm [45]. In addition, we show how this k-nearest neighbor algo-
rithm [45] can betransformed into a specia case of our R-tree adaptation of the general incremental nearest
neighbor algorithm. A byproduct of the transformation process isthat the k-nearest neighbor algorithm has
been simplified considerably.

Theterm distance scan [5] hasal so been used for what weterm distancebrowsing. Becker and Giiting[5]
introduce the concept of a distance scan and motivate its use. Thisis done along similar lines to those of
Section 1, i.e, in the context of finding the closest object to a query point where additional conditions may
beimposed ontheobject. In addition, that paper provides optimization rulesfor mapping a“ closest” operator
into a“ distance scan” operation in an example GIS query language.

All the algorithms mentioned thus far assume that the objects exist in a d-dimensional Euclidean space,
so that distances are defined between every two objects in a data set as well as between an object and any
point in the space. Another class of nearest neighbor algorithms operates on more general objects, in what
is commonly called the metric space model. The only restriction on the objectsis that they residein some
metric space, i.e., adistance metric isdefined between any two objects. However, inthisgenerd case, itisnot
possibleto produce new objectsin the metric space, e.g., to aggregate or divide two objects (in a Euclidean
space, bounding rectangles are often used for this purpose). Various methods exist for indexing objectsin
the metric space model aswell as for computing proximity queries [11, 13, 14, 52, 53]. These methods can
only make use of the properties of distance metrics (nonnegativity, symmetry, and the triangle inequality),
and operate without any knowledge of how objects are represented or how the distances between objectsare
computed. Such a general approach is usualy slower than methods based on spatial properties of objects,
but must be used for objectsfor which such propertiesdo not exist (e.g., images, chemical data, time series,
etc.). Thisapproach has a so been advocated for high-dimensional vector spaces. It may often be possibleto
map general objectsinto geometric space, thereby reaping the benefit of more efficient search methods. Most
such mapping approaches are domain-specific [ 25, 36], but general approacheshave al so been proposed [18].
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3 R-trees

The R-tree (e.g., Figure 1) [24] is an object hierarchy in the form of a balanced structureinspired by the B -
tree [15]. Each R-tree node contains an array of (key, pointer) entries where key is a hyper-rectangle that
minimally boundsthe data abjects in the subtree pointed at by pointer. In an R-tree leaf node, the pointer is
an object identifier (e.g., atupleID in arelational system), whilein a nonleaf node it is a pointer to achild
node on the next lower level. The maximum number of entriesin each node is termed its node capacity or
fan-out and may be different for leaf and nonleaf nodes. The node capacity isusually chosen such that anode
fills up one disk page (or asmall number of them). It should be clear that the R-tree can be used to index a
space of arbitrary dimension and arbitrary spatia objects rather than just points.

As described above, an R-tree leaf node contains a minimal bounding rectangle and an object identifier
for each object in the node, i.e., the geometric descriptions of the objects are stored externa to the R-tree
itself. Another possibility is to store the actual object, or its geometric description, in the leaf instead of its
bounding rectangle. Thisisusualy useful only if the object representation isrelatively small (e.g., similar
in size to a bounding rectangle) and is fixed in length. If al the data about the object (i.e., all its relevant
attributes) are stored in the leaf nodes, the object identifiers need not be stored. The disadvantage of this
approach is that objects will not have fixed addresses, as some objects must be moved each time an R-tree
node is split.
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Figure 1. An R-tree index for a set of nine line segments. (a) Spatial rendering
of the line segments and bounding rectangles; (b) a tree access structure for
(a). The bounding rectangles for the individual line segments are omitted from
(a) in the interest of clarity.

Severd variations of R-trees have been devised, differing in the way nodesare split or combined during
insertion or deletion. In our experiments we make use of avariant called the R*-tree [6]. It differs from the
conventional R-tree in employing more sophisticated i nsertion and node-splitting algorithms that attempt to
minimize a combination of overlap between bounding rectangles and their total area. In addition, when R-
tree node p overflows, instead of immediately splitting p, the R*-tree insertion algorithm first tries to see
if some of the entriesin p could possibly fit better in another node. Thisis achieved by reinserting a fixed
fraction of the entriesin p. Thisincreases the constructiontime for theindex, but usualy resultsin less node
overlap and therefore in improved query response time.
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4 Incremental Nearest Neighbor Algorithm

Most agorithmsthat traverse tree structuresin atop-down manner use some form of depth-first or breadth-
first tree traversal. Finding aleaf node containing a query object ¢ in aspatia index can be donein adepth-
first manner by recursively descending the tree structure. With this method, the recursion stack keeps track
of what nodes have yet to be visited. Having reached aleaf, we need to be able to extend thistechniqueto
find the nearest object, as the leaf may not actually contain the nearest neighbor. The problem here is that
we have to unwind the recursion to find the nearest object. Moreover, if we want to find the second nearest
object, the solution becomes even tougher. With breadth-first traversal, the nodes of the tree are visited level
by level, and aqueueis used to keep track of nodesthat have yet to be visited. However, with thistechnique,
alot of work hasto be done beforereaching aleaf node containing¢. To resolvethe problemswith depth-first
and breadth-first traversal, theincremental nearest neighbor algorithm employswhat may betermed best-first
traversal. When deciding what node to traverse next, it picks the node with the least distance in the set of
all nodesthat have yet to be visited. This means that instead of using a stack or a plain queue to keep track
of the nodesto be visited, we use a priority queue where the distance from the query object is used as akey.
The key feature of our solution isthat the objects aswell as the nodes are stored in the priority queue.

This section is organized as follows: In Section 4.1 we specify what conditions must hold for our in-
cremental nearest neighbor agorithm to be applicable (e.g., conditions on the index, spatial object types,
distance functions, etc.). In Section 4.2 we present the general incremental nearest neighbor algorithm in
detail. In Section 4.3 we discuss ways to exploit the particular nature of the R-tree spatial index, whilein
Section 4.4 we give an example of the execution of the algorithm on a simple R-tree structure. Severa vari-
ants of the algorithm are described in Section 4.5. In Section 4.6 we present some analytical resultsfor the
algorithm, whilein Section 4.7 we prove its correctness. Finally, in Section 4.8 we show how to deal witha
large priority queue.

4.1 Introduction

Our incremental nearest neighbor a gorithm can be applied to virtually any hierarchical spatial datastructure.
In fact, it is generally applicable to any data structure based on hierarchical containment/partitioning (e.g.,
see[1]). Inour description, wewill assumeatree structure (although our method isapplicableto more general
structures), where each tree node represents some regions of space and where objects (or pointers to them
in an external table) are stored in the leaf nodes whose regionsintersect the objects. In the remainder of this
section, we do not make a distinction between a node and the region that it represents; the meaning should
be clear from the context. A basic requirement for the method to be applicable is that the region covered
by anode must be completely contained within the region(s) of the parent node(s)®. Examples of structures
that satisfy this requirement include quadtrees [47], R-trees [24], RT -trees [50], L SD-trees [28], and k-d-B-
trees[44]. In al these examples, the node region is rectangular, but thisis not arequirement. Our algorithm
handlesthe possibility of an object being represented in more than oneleaf node, asinthe PMR quadtree[42]
and Rt -tree [50]. Although we assume in our exposition that each node has only one parent and that only
leaf nodes store objects, the algorithm could easily be adapted to handle other cases (such asthe hB-tree [39]
and the cell tree with oversize shelves [23]).

Observethat the data objectsaswell asthe query objectscan be of arbitrary type (e.g., points, rectangles,
polygons, etc.). The only requirement isthat consistent distance functionsd,, and d,, be used for calculating
the distance from the query object ¢ to data objects and to nodes. This isto ensure that each object is en-
countered in at least one node that is no farther from the query object than the object itself; otherwise, the

YFor structures in which each node can have more than one parent (e.g., the hB-tree [39] or Partition Fieldtree [19]) the node
region must be fully contained in the union of the regions of the parent nodes.
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strictly nondecreasing distancesof elementsretrieved from the queue cannot be guaranteed. Consistency can
be defined formally as follows: (In the definition, we do not make any assumptions about the nature of the
index hierarchy.)

Definition Let d be the combination of functionsd, and d,,, and let e C N denote the fact that
item e iscontained in exactly the set of nodes NV (i.e,, if e isan object, NV isthe set of leaf nodes
referencing the object, and if e isanode, V isitsset of parent nodes?). Thefunctionsd, and d,,
are consistent iff for any query object ¢ and any object or nodee inthehierarchica datastructure
thereexistsn in N, wheree C N, suchthat d(¢,n) < d(q, €).

Thisdefinitionisstrictly tied to the hierarchy defined by the data structure. However, since thishierarchy is
influenced by properties of the node regions and data objects, we can usually recast the definition in terms
of these properties. For example, in spatial data structures the containment of objectsin leaf nodesand child
nodesin parent nodes is based on spatia containment; thusthe C in the definition al so denotes spatia con-
tainment. In other words, e C N means that the union of the node regions for the nodesin N completely
encloses the region covered by the object or node e. Informally, our definition of consistency means that if
pisthepointin e (or, more accurately, in the region that correspondsto it) closest to ¢, then p must also be
contained in the region covered by some nodein N. Note that since we assume spatial indexes that form
atree hierarchy (i.e., each nonroot node has exactly one parent), in the case of nodes the definition above
simplifiesto the following condition: if »’ isachild node of node n, then d,,(¢,n) < d,(q,n’).

Anessy way to ensure consistency isto baseboth functionson thesamemetric d,, (p; , p2 ) for points; com-
mon choices of metricsincludethe Euclidean, Manhattan and Chessboard metrics. Wethendefined(q, ¢) :=
ming,, eq pee dp(p1, p2), Where e is either a spatial object or a node region. It isimportant to note that this
is not the only way to define consistent distance functions. When d is defined based on ametric d,,, its con-
sistency is guaranteed by the properties of d,,, specifically, nonnegativity and the triangle inequaity. The
nonnegativity property states, among other things, that d,(p, p) = 0, and the triangle inequality states that
dy(p1,p3) < dp(p1,p2) + dy(p2, p3). Sincee isspatialy containedin V, e and N have pointsin common,
so their distanceis zero. Thus, according to the triangleinequality, d(q, e) < d(q, N )+ d(N,e) = d(q, N),
using a broad definition of d (to alow d( N, e), which equals 0). Notethat if the distance functions are de-
fined in thisway, the distance from aquery object to anodethat intersectsit is zero (i.e., it isnot equa tothe
distanceto the boundary of the node region).

Theincremental nearest neighbor a gorithm works in any number of dimensions, although the examples
we give are restricted to two dimensions. Also, the query object need not be in the space of the dataset.

4.2 Algorithm Description

Wefirst consider aregular recursivetop-downtraversal of theindex tolocate aleaf node containingthe query
object. Note that there may be more than one such node. The traversal isinitiated with the root node of the
gpatial index (i.e., the node spanning the whole index space) as the second argument.

FINDL EAF(QueryObject, Node)

1 if QueryObject isin node Node then
2 if Nodeisaleaf nodethen

3 Report leaf node Node

4 dse

2In most spatial data structures, each node has only one parent node; the hB-tree is an exception.
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5 for each Child of node Node do

6 FINDL EAF(QueryObject, Child)
7 enddo

8 endif

9 endif

Thefirst task isto extend the a gorithmto find the obj ect nearest to the query object. In particular, once a
leaf node contai ning QueryObject has been found inline 3, we could start by examining the objects contained
inthat node. However, the object closest to the query object might reside in another node. Finding that node
may infact require unwinding therecursion to thetop and descending again deeper into thetree. Furthermore,
once that node has been found, it does not aid in finding the next nearest object.

To resolvethisdilemma, we replace the recursion stack of the regular top-down traversal with a priority
gueue. In addition to using the priority queue for nodes, objects are also put on the queue as leaf nodes are
processed. The key used to order the el ements on the queue is distance from the query object. In order to
distinguish between two elements at equal distances from the query object, we adopt the convention that
nodes are ordered before objects, while objects are ordered according to some arbitrary (but unique) rule.
This secondary ordering makes it possibleto avoid reporting an object more than once, which is necessary
when using adisjoint decomposition, e.g., aPMR quadtree [42] or an R -tree [50], in which nonpoint objects
may be associated with more than one node.

A nodeis not examined until it reaches the head of the queue. At thistime, all nodes and objects closer to
the query object have been examined. Initially, the node spanning the wholeindex space is the sole element
in the priority queue. At subsequent steps, the element at the head of the queue (i.e., the closest element not
yet examined) isretrieved, and thisisrepeated until the queue hasbeen emptied. Informally, we canvisualize
the progress of the algorithm for a query object ¢ as follows, when ¢ is a point (see Figure 2). We start by
locating the leaf node(s) containing ¢. Next, imagine a circle centered at ¢ being expanded from a starting
radius of 0; we call thiscircle the search region. Each timethe circle hitsthe boundary of anoderegion, the
contents of that node are put on the queue, and each time the circle hits an object, we have found the abject
next nearest to ¢. Notethat when the circle hits anode or an object, we are guaranteed that the node or object
isalready in the priority queue, since the node that containsit must already have been hit (thisis guaranteed
by the consistency condition).

Figure 3 presents the algorithm. Lines 1-2 initialize the queue. Notice that it is not realy necessary to
providethe correct distance when enqueueing the root node, since it will always be dequeued first. Inline 9,
the next closest object isreported. At that point, some other routine (such asaquery engine) can take control,
possibly resuming the algorithm at a later time to get the next closest object, or dternately terminating it if
no more objects are desired.

Recall that for some types of spatial indexes, aspatial object may span several nodes. In such acase, the
algorithm must guard against objects being reported more than once [2]. Thetest (i.e., the if statement) in
line 12 ensures that objects that have already been reported are not put on the queue again. (Note that this
test is not needed in the case when Element is a nonleaf node, as it holds implicitly by the assumption that
child nodesare fully contained in their parent nodes.) For thisto work properly, nodesmust beretrieved from
the queue before spatia objects at the same distance. Otherwise, an object may be retrieved from the queue
before anode » containing it that is at the same distance from the query object (this means that the object
was contained in another node that has aready been dequeued). When the object is then encountered again
in node n, there is no way of knowing that it has aready been reported. The loop in lines 6-8 eliminates
duplicate instances of an object from the queue. By inducing an ordering on objects that are at the same
distance from the query object, al of the instances of an object will be clustered at the front of the queue
when thefirst instance reaches the front. We explicitly check for duplicatesin this manner because for many
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Figure 2: The circle around query object ¢ depicts the search region after re-
porting o as next nearest object. For simplicity, the leaf nodes are represented
by a grid; in most spatial indexes, the shapes of the leaf nodes are more irregu-
lar than in a grid. Only the shaded leaf nodes are accessed by the incremental
nearest neighbor algorithm. The region with darker shading is where we find
the objects in the priority queue.

INCNEAREST(QueryObject, Spatiallndex)

1 Queue — NEWPRIORITY QUEUE()

2 ENQUEUE(Queue, Spatiallndex.RootNode, 0)
3 whilenot ISEMPTY(Queue) do

4  Element — DEQUEUE(Queue)

5 if Elementisaspatial object then

6 while Element = FIRST(Queue) do

7 DELETEFIRST(Queue)

8 enddo

9 Report Element

10 dsaif Elementisaleaf nodethen

11 for each Object in leaf node Element do

12 if DIsT(QueryObject, Object) > DisT(QueryObject, Element) then
13 ENQUEUE(Queue, Object, DisT(QueryObject, Object))

14 endif

15 enddo

16 else/* Element isanonleaf node*/

17 for each Child node of node Element in Spatial Index do

18 ENQUEUE(Queue, Child, Di1sT(QueryObject, Child))

19 enddo

20 endif

21 enddo

Figure 3: Incremental nearest neighbor algorithm.

priority queue implementations (e.g., binary heap), it is not efficient to detect duplicates among the queue
elements, as these implementations only maintain a partial among the elements. A possible aternativeis
to use a priority queue implementation that maintains a total order among all the queue elements (e.g., a
bal anced binary tree) and thusis able to detect duplicates efficiently.
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4.3 Adaptingto R-trees

In this section, we demonstrate how to adapt the general incremental algorithm presented above to R-trees
by expl oiting some of the unique properties of R-trees. If the spatial objects are stored external to the R-tree,
such that leaf nodes contain only bounding rectanglesfor objects, then this adaptation leads to a considerably
more efficient (and conceptually different) incremental algorithm. This enables the bounding rectangles to
be used as pruning devices, thereby reducing the disk 1/0 needed to access the spatial descriptions of the
objects. In addition, R-trees store each object just once, making it unnecessary to worry about reporting an
object more than once. This & so removes the need to enforce the secondary ordering on the priority queue
used by the general algorithm (see Section 4.2).

The inputs to the R-tree incrementa nearest neighbor agorithm are a query object ¢ and an R-tree R
containing a set of spatial data objects. Aswith the general incremental nearest neighbor algorithm, the data
objects as well as the query object may be of any dimension and of arbitrary type (e.g., points, rectangles,
polygons, etc.), as long as consistent distance functions are used for cal culating the distance from ¢ to data
objects and bounding rectangles. In the case of an R-tree, thismeans that if e isadata object or arectangle
completely contained in rectangle r, then d(q, r) < d(q, €).

The general algorithm can be used virtually unchanged if object geometry is stored in the R-tree leaf
nodes, the only changes being the ones already described. If the spatial objects are stored externa to the R-
tree, the primary difference from the general algorithmisin the use of the bounding rectangles stored in the
leaf nodes. To exploit that information, athird type of queue element isintroduced: object bounding rectan-
gle. Thedistanceof an object bounding rectangleisnever greater than thedistanceof the object, provided the
distance functions used are consistent. Informally, the modificationsto the algorithm are as follows: When
an R-tree leaf isbeing processed in the main loop of the a gorithm, instead of computing thereal distances of
the objects, the distances of their bounding boxes are computed and inserted into the queue. Only when an
object’s bounding box is retrieved from the queue is the actual distance computed. If the object is closer to
the query aobject than the next element on the priority queue, it can be reported as the next nearest neighbor.
Otherwise, the object isinserted into the queue with itsreal distance.

Figure 4 shows our agorithm. In lines 1-2, the queueisinitialized. In line 9, the next closest object is
reported. Inline7, an object p isenqueued with itsreal distance as the key after it has been determined that
there are elements on the queue with akey lessthanthereal distancefrom p to the query object ¢. If thereare
no such elements, p isreported as the next nearest object. Line 13 enqueues an object bounding rectangle;
brackets around Object signal that it is not the object itself but instead the bounding rectangle along with a
pointer to the corresponding abject. The general incremental nearest neighbor agorithm had an extratest at
this point to guard against reporting duplicates, but that is not needed here.

The R-tree variant given above can be used for any spatia data structure method that separates the stor-
age of bounding rectangles and the actual geometric descriptionsof objects. For complex objects, for exam-
ple polygons, one can even conceive of several levels of refinement, e.g., with the use of orthogona poly-

gons[17].

44 Example

Asan example, supposethat we want to find the three nearest neighborsto query point g inthe R-treegivenin
Figure 1, wherethe spatial objectsare line segmentswhich are stored external to the R-tree. Below, we show
the steps of the algorithm and the contents of the priority queue. The algorithm must compute the distances
between g and the line segments and bounding rectangles. These distances are given in Table 1 (BR means
boundingrectangle). They are based on an arbitrary coordinate system and are approximate. When depicting
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INCNEAREST(QueryObject, R-tree)

1 Queue — NEWPRIORITY QUEUE()

2 ENQUEUE(Queue, R-tree.RootNode, 0)

3 whilenot ISEMPTY(Queue) do

4  Element — DEQUEUE(Queue)

5 if Elementisan abject or its bounding rectangle then

6 if Element is the bounding rectangle of Object and not I SEMPTY (Queue)
and D1sT(QueryObject, Object) > FIRST(Queue).Key then
7 ENQUEUE(Queue, Object, DisT(QueryObject, Object))
8 ese
9 Report Element (or if bounding rectangle, the associated object)
as the next nearest object
10 endif

11 eseif Element isaleaf nodethen
12 for each entry (Object, Rect) in leaf node Element do

13 ENQUEUE(Queue, [Object], DisT(QueryObject, Rect))
14 enddo

15 ese/* Element isanonleaf node*/

16 for each entry (Node, Rect) in node Element do

17 ENQUEUE(Queue, Node, DisT(QueryObject, Rect))
18 enddo

19 endif

20 enddo

Figure 4: Incremental nearest neighbor algorithm for an R-tree where spatial
objects are stored external to the R-tree.

Seg. | Dist. | BRDist.

a 17 13 BR | Dist.
b 48 27 RO 0
c 57 53 RL 0
d 59 30 R2 0
e 48 45 R3 | 13
f 86 74 R4 | 11
9 81 74 R5 0
h 17 17 R6 | 44
i 21 0

Table 1: Distances of line segments and bounding rectangles from the query
point ¢ in the R-tree of Figure 1.

the contents of the priority queue, the line segments and bounding rectangles are listed with their distances,
inincreasing order of distance, with ties broken using a phabetical ordering. Bounding rectangles of objects
are denoted by the corresponding object names embedded in brackets (e.g., [ h] ). The algorithm starts by
enqueueing RO, after which it executes the following steps:

1. Dequeue RO, enqueue R1 and R2. Queue: {(R1, 0), (R2, 0)}.
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2. Dequeue R1, enqueue R3 and R4. Queue: {(R2, 0), (R4, 11), (R3, 13)}.

3. Dequeue R2, enqueue R5 and R6. Queue: {(R5, 0), (R4, 11), (R3, 13), (R6, 44)}.

4. Dequeue R5, enqueue[c] and[i] (i.e, the bounding rectanglesof c andi ). Queue: {([i], 0),
(R4, 11), (R3, 13), (R6, 44), ([ c], 53)}.

5. Dequeue[i]. Thedistanceof i is21, whichislarger than the distance of R4, so enqueuei . Queue:
{(R4, 11), (R3, 13), (i , 21), (R6, 44), ([ c], 53)}.

6. Dequeue R4, and enqueue[ d] ,[ 9], and[ h] . Queue: {(R3, 13), ([ h], 17), (i, 21), ([ d], 30),
(R6, 44), ([c],53),([d]. 74)}.

7. DequeueR3, enqueue[ a] and[ b] . Queue: {([ a] , 13),([ h], 17),(i , 21),([ b], 27), ([ d], 30),
(R6, 44), ([c],53),([g]. 74)}.

8. Dequeue[ a] . Thedistanceof a is17, whichisnot larger thanthe distanceof [ h] , soa isreported as
nearest neighbor. Queue: {([ h], 17),(i , 21),([ b], 27), ([ d], 30), (R6, 44),([c], 53),([ 9], 74)}.

9. Dequeue| h] . Thedistanceof h is17, whichisnot larger than the distanceof i , so h is reported as
second nearest neighbor. Queue: {(i , 21), ([ b] , 27), ([ d], 30), (R6, 44),([c], 53),( a], 74)}.

10. Dequeuei and report it as third nearest neighbor.

Observe that node R6 is left on the priority queue at the end of the execution. This correspondsto the
k-nearest neighbor agorithm not being invoked on that node (see Section 5.2). For larger examples, the
incremental algorithm will generally achieve more pruning than the k-nearest neighbor algorithm, but never
less.

Also note that the second and third nearest neighborswere obtained with very little additional work once
the nearest neighbor was found. Thisis often the case with the incremental nearest neighbor agorithm re-
gardless of the underlying spatial index. In other words, once the nearest neighbor has been found, the next
few nearest neighbors can be retrieved with virtually no additional work.

45 Variants

With relatively minor modifications, the incremental nearest neighbor a gorithm can be used to find the far-
thest object from the query object. In this case, the queue elements are sorted in decreasing order of their
distances. Thisis not enough, though, since objects or nodes contained in a node » are generaly at larger
distances from the query object ¢ than » is. This means that elements would be enqueued with larger keys
than the node they are contained in, which breaks the condition that elements are dequeued in decreasing
order of distance. Instead, the key used for anode » on the queue must be an upper bound on the distance
from ¢ toan objectinthesubtreeat n, €., dmax(¢, n) = max,¢, d,(q¢, p). Thefunctionimplementing d.,ax
must satisfy a consistency condition similar to that defined abovefor d,,; the only differenceisthat for dy,ax,
wereplace < inthe condition by >.

Another extensionto thea gorithmisto allow aminimum and a maximum to beimposed on the distances
of abjectsthat are reported. However, in order to effectively utilize a minimum, the distance function diy, .«
defined above is needed. Then, a node n is put on the queue only if duax(g, n) is greater or equd to the
minimum desired distance. Notice that in this case, the algorithm performs a spatia selection operation in
addition to the ranking.
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Figure5 givesaversion of the algorithm with these two extensions added. The arguments Min and Max
specify the minimum and maximum desired distance, and DoFarthest isaBoolean variablethat istrue when
the farthest object isdesired. In the latter case, negative distances are used as keysfor the priority queue, so
that elements get sorted in decreasing order of distance. The condition KeySign(d — e) > 0 inline 19 of
Figure 5 encompasses the conditionsd > e and d < e, for when DoFarthest is false and true, respectively.
In line 16, the key of the leaf nodeis assigned to e. Thisis the minimum or maximum distance of the node,
depending on the value of DoFarthest. Thereason for multiplyingthe key by KeySignin line 16 isto cancel
out the effect of multiplyingthe value of d by KeySign in line 33, which makes it negative when looking for
the farthest abjects.

A powerful way of extending theincremental nearest neighbor a gorithmisto combineit with other spa-
tial queriesand/or restrictionson the objectsor nodes. Asan example, the algorithm can be combined with a
range query by checking each object and node against the range prior to inserting it onto the priority queue,
and rejecting those that do not fall in the range. Many such combined queries can be obtained by manipulat-
ing the distance functions so that they return specia valuesfor objects and nodesthat should be rejected.

Theincremental nearest neighbor algorithmcan clearly beused to solvethetraditional k-nearest neighbor
problem, i.e., given k& and aquery object ¢ find the & nearest neighborsof ¢. Thisisdoneby simply retrieving
k neighbors with the algorithm and terminating once they have al been determined.

4.6 Analysis

Performing a comprehensive theoretical analysis of the incremental nearest neighbor agorithm is compli-
cated, especially for high-dimensional spaces. Prior work in this areais limited to the case where both the
data objects and the query abject are points[8, 26]. A number of simplifying assumptionswere made, e.g.,
that the data objectsare uniformly distributedin the dataspace. In thissection, we discuss some of theissues
involved, and sketch a rudimentary analysis for two-dimensional points, based on the onein [26].

Wewish to analyzethe situation after finding the & nearest neighbors. Let o bethe k% nearest neighbor of
thequery object ¢, andlet r bethedistance of o from¢. Theregionwithindistancer from ¢ iscalled thesearch
region. Sinceweassumethat ¢ isapoint, the search regionisacircle (or ahyperspherein higher dimensions)
with radius r. Figure 2 depictsthis scenario. Observe that all objectsinside the search region have aready
been reported by the algorithm (as the next nearest object), while all nodes intersecting the search region
have been examined and their contents put on the priority queue. A further insight can be obtained about
the contents of the priority queue by noting that if » isanode that is completely inside the search region, al
nodes and objectsin the subtree rooted at » have already been taken off the queue. Thusall elementsonthe
priority queue are contained in nodesintersecting the boundary of the search region (the dark shaded region
in Figure 2).

Before proceeding any further, we point out that the a gorithm does not access any nodes or objects that
lie entirely outside the search region (i.e., that are farther from ¢ than o is). Thisfollows directly from the
gueue order and the consistency conditions. In particular, the el ements are retrieved from the priority queue
in order of distance, and the consistency conditions guarantee that we never insert elements into the queue
with smaller distances than that of the element last dequeued. Conversely, any algorithm that uses a spatia
index must visit al the nodes that intersect the search region; otherwise, it may miss some objects that are
closer to the query object than o. Thuswe have established that the algorithm visits the minimal number of
nodes necessary for finding the & nearest neighbor. This can be characterized by saying that the algorithm
is optimal with respect to the structure of the spatial index. However, this does not mean that the algorithm
is optimal with respect to the nearest neighbor problem; how close the algorithm comes to being optimal in
this respect depends on the spatial index.
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INCNEAREST(QueryObject, Spatiallndex, Min, Max, DoFarthest)

1 Queue — NEWPRIORITY QUEUE()

2 ENQUEUE(Queue, Spatiallndex.RootNode, 0)

3 if DoFarthest then

4

KeySgn «— —1

5 dse

6

KeySgn «— 1

7 endif
8 whilenot ISEMPTY(Queue) do

9 Element — DEQUEUE(Queue)
10 if Elementisaspatial object then
11 while Element = FIRST(Queue) do
12 DELETEFIRST(Queue)
13 enddo
14 Report Element
15 elsef Element isaleaf nodethen
16 e — Element.Key*KeySign
17 for each Object in leaf node Element do
18 d — Di1sT(QueryObject, Object)
19 if d > Minand d < Max and KeySign«(d — ¢) > 0 then
20 ENQUEUE(Queue, Object, KeySign * d)
21 endif
22 enddo
23  dse/* Element isanonleaf node*/
24 for each Child node of node Element in Spatial Index do
25 dmin — MINDIST(QueryObject,Child)
26 dmax — MAXDIST(QueryObject,Child)
27 if dpax > Minand dp,;, < Maxthen
28 if DoFarthest then
29 d — dmax
30 else
31 d — dpin
32 endif
33 ENQUEUE(Queue, Child, KeySign * d)
34 endif
35 enddo
36 endif
37 enddo

Figure 5. Enhanced incremental nearest neighbor algorithm

13

Generdlly, two steps are needed to derive performance measures for the incremental nearest neighbor

algorithm. First, the expected area of the search region is determined. Then, based on the expected area
of the search region and an assumed distribution of the locations and sizes of the leaf nodes, we can de-
rive such measures as the expected number of |eaf nodes accessed by the agorithm (i.e., intersected by the
search region) or the expected number of objectsin the priority queue. Henrich [26] describes one such ap-
proach, which uses a number of simplifying assumptions. In particular, it assumes N uniformly distributed
data pointsin the two-dimensional interval [0, 1] x [0, 1], the leaf nodes are assumed to form a grid at the
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lowest level of the spatia index with average occupancy of ¢ points, and the search region is assumed to be
completely contained in the data space. Since we assume uniformly distributed points, the expected area of
the search regionisk /N and the expected area of theleaf noderegionsise/N. Theareaof acircle of radius

ris7r?, sofor the search region we have nr? = k/N, which meansthat itsradiusisr = ,/%. The | esaf

node regions are squares, so their sidelengthiss = +/¢/N. Henrich [26] points out that the number of | eaf
noderegionsintersected by the boundary of the search region isthe same as that intersected by the boundary
of itscircumscribed square. Each of thefour sidesof the circumscribed squareintersects | 2r/s| < 2r/s |eaf
node regions. Since each two adjacent sidesintersect the same leaf noderegion at a corner of the square, the
expected number of leaf node regionsintersected by the search region is bounded by

4(2r/s—1):4(27%;]v)—1):4(2 %—1).

It is reasonable to assume that, on the average, half of the ¢ pointsin these leaf nodes are inside the search
region, whilehalf are outside. Thustheexpected number of pointsremaining inthe priority queue (the points
in the dark shaded regionin Figure 2) is at most

54(2 ﬁ—1):%(2 L ):i@—zczz%x/c_k—%.
2 TC TC VL3

The number of pointsinside the search region (the light shaded region in Figure 2) is k. Thus the expected
number of pointsin leaf nodesintersected by the search regionisat most & 4 2.26+/ck — 2¢. Since each | eaf
node contains ¢ points, the expected number of leaf nodes that were accessed to get these pointsis bounded

by k/c + 2.26\/k/c — 2.

To summarize, the expected number of leaf node accesses is O(k + /) and the expected number of
objects in the priority queueis O(v/k). Intuitively, the “extrawork” done by the algorithm comes from the
boundary of the search region. Roughly speaking, the & term in the expected number of leaf node accesses
accountsfor theleaf nodescompletely insidethe search region, whilethe /% term accountsfor theleaf nodes
intersected by the boundary of thesearch region. Thepointson thepriority queuelie outsidethe search region
(since otherwisethey would have been taken off the queue) but insideleaf nodesintersected by the boundary
of the search region. If the average leaf node occupancy and average node fan-out are fairly high (say 50 or
more), the number of |eaf node accesses dominates the number of nonleaf node accesses, and the number of
objects on the priority queue greatly exceeds the number of nodes on the queue. Thus we can approximate
the total number of node accesses and total number of priority queue elements by the number of leaf node
accesses and the number of objects on the priority queue. However, thetraversal from the root of the spatial
index to aleaf node containing the query object will add an O(log N') term to both of these measures.

If the spatial index is disk-based, the cost of disk accessesislikely to dominatethe cost of priority queue
operations. However, if the spatial index ismemory-based, thepriority queueoperationsarethesinglelargest
cost factor for the algorithm. In typical priority queue implementations (e.g., binary heap), the cost of each
insertion and deletion operation is O (log m ) where m isthe size of the priority queue. The number of objects
insertedintothepriority queueisO(k++/'k), eachfor acost of O(log v/k) (sincethe expected sizeisbounded
by O(V'k)), for atota cost of O(k + V&) - O(logvVk) = O(klogk) (again, if we take the nonleaf nodes
into account, the formulas become somewhat more complicated).

The analysis that we have outlined is based on assumptions that generally do not hold in practice. In
particular, thedataisrarely uniformly distributed and the search region often extends beyond the data space.
Nevertheless, our analysis allowsfairly close predictions of actual behavior for two-dimensional point data
even when these assumptions do not hold. For higher dimensions the situation is somewhat more compli-
cated. A detailed analysisin that context is presented in [8].
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4.7 Correctness

Now let usturn to the correctness of the algorithmin Figure 3. We ignore for the moment the issue of re-
porting an object more than once. Given adata object o, defineits ancestor set, denoted by A(o), to include
o itsdlf, leaf nodes n that contain o for which d,(¢,0) > d,(q,n) (at least one such node is guaranteed to
exist by the consistency of the distance functions), and all ancestors »’ of n. Applied recursively, the con-
sistency property ensuresthat d,(q, 0) > d,(q,n’). The elementsin A(o) can beinterpreted as representing
the abject 0. Thefollowing theorem guarantees that an unreported object always has a representative on the
gueue. Thisdirectly impliesthat every object will eventually be reported, since only bounded numbers of
objects and nodes are ever put on the queue.

Theorem Let R bethe set of objects already reported, and ¢) the set of elements on the queue.
The following is an invariant for the outer while-loop of INCNEAREST: For each object o in
SpatialIndex, we have A(o) N (Q U R) # 0 (i.e., at least oneelement in A(o) isin @ orin R).

Proof: We provethetheorem for an arbitrary object o by induction. Sincewe choose o arbitrarily,
the proof holds for all objects. The induction is on the number of loop executions. If we can
show that theinvariant holdsbefore thefirst execution, and that no loop executionfalsifiesit (i.e.,
makesit not hold after the execution of theloop, assuming that it held before the execution), then
we have shown that the invariant always holds. Clearly, it holdsinitialy, asthe only element on
the queue is the root node of Spatiallndex, and the root is an ancestor of all nodes and thusisin
A(o) for o.

Now assume that theinvariant holds at the beginning of an execution of thewhile-loop. We
will show that it also holds at the end of it. If o € R (i.e., o has been reported), the invariant
trivially holds, as o will not be affected during the loop execution. Otherwise, by the assumption
that theinvariant holds, thereexistssomea € A(o) suchthata € ). Theinvariant isunaffected
if the next element to be dequeued is not «, so let usassume that « will be dequeued next.

If @ = o, then o is subsequently reported, thereby moving from ) to R, and theinvariant is
maintained. If « isanode, we consider the case of aleaf and nonleaf node separately:

1. If e isaleaf node, thefor-loop at line 11 enqueues al objects with adistance from ¢ of at
least d,,(¢,a) (i.e, at least DIST( QueryObject, Element)). Since o is stored in a (recall
that « € A(o)) andsinced,(q,0) > d,.(q,a) by the construction of A(o), o isindeed put
on the queue.

2. If a isanonleaf node, then all its child nodes are enqueued. Since a isin A(o) (i.e, a is
an ancestor of aleaf noder that contains o), at least one of the child nodesof a isin A(o),
maintaining the invariant.

Thus we see that for both leaf and nonleaf nodes, at least one of the enqueued elementsis
in A(o). Thustheinvariant is maintained for object o. Since o was chosen arbitrarily, we have
thus shown that the invariant holdsfor al objects. m

Asmentioned, thetheorem guaranteesthat an unreported object always has arepresentative onthe queue.
Since elements are retrieved from the queuein order of distance, and all elementsin A(o) are no farther from
the query point than o, a some point o will be put on the queue and eventually reported. Also, when o is
reported, it isindeed the next closest object to ¢. If not, then there exists an unreported object o’ closer to q.
However, sinceall representativesof o’ are also closer to ¢ than o is, at least one of them would be dequeued
before o, contradicting the assumption that o was most recently dequeued.
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The correctness of the duplicate removal (lines 6-8 in Figure 3) follows directly from the ordering im-
posed on the priority queue. Thusthe only way an object can be reported more than onceisif it isinserted
again into the queue after it has been reported. However, thisis avoided by the test in line 12, and the fact
that nodes are always processed before objects at the same distance from the query object.

4.8 Priority Queue

The cost of priority queue operations plays a role in the performance of the incremental nearest neighbor
algorithm. The larger the queue size gets, the more costly each operation becomes. Also, if the queue gets
too largetofit in memory, its contents must be stored in adisk-based structure instead of in memory, making
each operation even more costly. An example of the worst case of the queue size for the R-tree incremental
nearest neighbor agorithm arises when &l leaf nodes are within distance d from the query object ¢, while
all data objects are farther away from ¢ than d. Thisis shown in Figure 6 where the query object as well
as the data objects are points. In this case, al leaf nodes must be processed by the incrementa algorithm,
and all data objects must be inserted into the priority queue before the nearest neighbor can be determined.
Note that any nearest neighbor algorithm that usesthis R-tree hasto visit all the leaf nodes, since the nearest
neighbor isfarther away from the query object than all the leaf nodes, and there is no other way to make sure
that we have seen the nearest neighbor. Furthermore, note that a worst case like that depicted in Figure 6 is
highly unlikely to arisein practice sinceit depends on a particular configuration of both the data objects and
the query object.

Figure 6: An example of an R-tree of points with node capacity of 8, showing a
worst case for nearest neighbor search.

Aspointed out in Section 4.6, the objects on the priority queue are contained in leaf nodesintersected by
the boundary of the search region. For two-dimensional uniformly distributed data pointswe mentioned that
the expected number of pointsin the priority queue when finding the & nearest neighborsis O(v/k). Even
if k isaslarge as severa hundred million (of course, the data set has to be even larger than &), the size of
the priority queue is still manageable for keeping in memory. However, more complex objects than points
and very skewed datadistributionsmay cause larger proportionsof the objectsto beinserted into the priority
gueue. Moreover, as the number of dimensionsgrows, the size of the priority queue as afunction of & tends
to get larger (see Section 7). Thuswe must be prepared to deal with avery large priority queue.

In cases where the priority queue exceeds the size of available memory it must be stored in whole or in
part in a disk-resident structure. One possibility is to use a B-tree structure to store the entire contents of
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the priority queue. With proper buffer management, we should be able to arrange that the B-tree nodes that
store el ements with smaller distances (which will get dequeued early) will be kept in memory. However, we
believe that when the priority queue actualy fitsin memory, using B-trees will be considerably slower than
using fast heap-based approaches [20], since the B-tree must expend more work on maintaining the queue
elementsin fully sorted order. In contrast, heap methods impose a much looser structure on the el ements. A
hybrid scheme for storing the priority queue, where aportion of the priority queueis kept in memory and a
portion is kept on disk, therefore seems more appropriate.

A simpleway to implement ahybrid memory/disk-based priority queueisto partition the queue elements
based on distance. Below, we outline how this can be done. The contents of the priority queue are split into
threetiers. Thefirst tier is kept in a memory-based heap structure, while the second and third tiers are kept
inadisk file (the difference is that alittle more structure isimposed on the contents of the second tier). Let
Dy, Dy, Do, ..., D, besomemonotonically increasing sequence, where Dy = 0 and D,,, isan upper bound
onthelargest possibledistancefrom the query object ¢ to adataobject (e.g., thedistancefrom ¢ to thefarthest
corner of the data space). We use the sequence to define ranges of distances, and associate different ranges
with the various tiers. When a new element with a distance of » from the query object isinserted into the
priority queue, that element gets added to the tier whose associated distance range matches . Initidly, tier 1
is associated with the distance range [ Dy, D1 ) (i.e., queue elementsin thisrange are stored in the memory-
based heap structure), tier 2 with therange [D4, D,,), and tier 3with therange[D,1, D, ). The contents of
tier 2 aredivided into p ranges, [D+, D3), [D2, D3), ..., [D,, Dyy1). Thevalue of p depends on how many
ranges it is cost-effective to maintain, but it can be as high as m. When tier 1 is exhausted, we move the
elements in distance range [ Dy, D3) from tier 2 to tier 1 and associate tier 1 with that distance range. The
next time tier 1 is exhausted, we move elements in distance range [ D2, Ds) into tier 1, and so on. If this
happens often enough, eventually we will exhaust tier 2. When this happens, we scan the entire contents of
tier 3 and rebuild tiers 1 and 2 with new ranges. Note that moving elements from tier 3 to tier 2 only when
tier 2 is exhausted rather than each timetier 1 is exhausted reduces the number of scans of tier 3, which may
contain alarge number of elements.

In general, when the distance of the elements at the head of the priority queueisintherange [D;, D;1)
for somei = 0,...,m (i.e, al neighborswith distances less than D; from ¢ have aready been reported),
then tier 1 is associated with therange [D;, D;41), tier 2withtherange [D; 41, D;ys+1), and tier 3 with the
range [D;yst2, Do), Wheres = p — (i mod p). We keep the elementsin tier 2 in a set of linked lists, one
for eachinterval [D;, D; ;) wherej = ¢ + 1,...,¢ + s. Inorder to save on disk 1/Os, we can associate
abuffer with each of these linked lists and group elements into pages of fixed size. An alternative to using
linked lists within the same file is to use a separate file for each range. Also, rather than associating range
[Dit1,Diys11) withtier 2, we can associate with it theentirerange [D; 11, D;4 41 ), S0 that newly inserted
elements in that range get inserted into tier 2 rather than tier 3. However, we still do not want to scan tier
3 each time we exhaust tier 1, so tier 3 will aso contain elements in the range [D; 4541, Ditp41). These
elements get moved into tier 2 when tier 3 gets scanned next, which happenswhen i mod p = 0.

A variation of thistechniqueisto use an additional tier, between tier 1 and tier 2, in which elements are
stored in an unsorted list in memory. Theideais that because we limit the size of the memory-based heap,
the insertion and deletion operationson it are less expensive. Keeping the new tier 2 in memory but outside
the heap makes it inexpensiveto add elementsto it (i.e., this does not require disk 1/0s). Moreover, if only
asmall number of neighborsis requested, the elementsin tier 2 will never need to be placed on the heap.

The remaining question is how to choose the sequence Dy, D1, D5, ..., D,,. A naiveway isto simply
guess some distance threshold D, and then set D; = i - Dy. Alternatively, we can assume some data
distributionand useit to derive an appropriate sequence. For example, recall from Section 4.6 that under the
assumptions made there, the expected number of leaf nodesintersected by the boundary of asearch region of
radius r isbounded by 4(2r/s — 1), where s = \/¢/N isthe expected sidelength of each leaf node region.
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Again, assuming that half of the pointsin these nodes (i.e., ¢/2) are outside the search region, the expected
number of pointsonthe priority queueisat most $4(2r/s—1) = 2¢(2r/s—1). Assumingthat we have space
in memory for M priority queue elements meansthat D; must satisfy theequationi - M = 2¢(2D;/s — 1),

so that Y,
D; = (’2 +1)/2-s.

C

Of course, this derivation is based on assumptions that generally do not hold in practice. Nevertheless, it
should work fairly well in practice for two-dimensional points. Moreover, it gives an indication of how to
obtain such a sequence for other ways of analyzing the size of the priority queue.

5 k-Nearest Neighbor Search in R-trees

An dternative approach to nearest neighbor search in R-trees was proposed in [45]. This approachis appli-
cablewhen finding the £ nearest neighborswhere k isfixed in advance. Thisisin contrast to theincremental
nearest neighbor agorithm, where £ does not have to be fixed in advance. The key idea of the k-nearest
neighbor algorithm isto maintain aglobal list of the candidate & nearest neighbors as the R-tree is traversed
in adepth-first manner. Aswewill see, the fact that the k-nearest neighbor a gorithm employs a pure depth-
first traversal means that at any step the algorithm can only make local decisions about which node to visit
(i.e., thenext nodeto visit must be a child node of the current node), whereas our incremental nearest neigh-
bor algorithm makes global decisions based on the contents of the priority queue (i.e., it can choose among
the child nodes of all nodes that have already been visited).

Inthissection, wefirst describeasomewhat simplified version of the k-nearest neighbor algorithmin [45]
and show an exampl e of its execution. Next, we prove that our simplified versionisin fact equivaent to the
algorithm presented in [45]: Both versions visit the same nodes in the R-tree. Finally, we show how the
k-nearest neighbor algorithm can be transformed in a sequence of stepsinto an incremental algorithm.

5.1 Algorithm Description

In the k-nearest neighbor algorithm [45], the R-tree istraversed in a depth-first manner. The complications
mentioned in Section 4 that arise in performing nearest neighbor search with a depth-first traversal are over-
come by maintaining alist of the candidate & nearest neighbors. In particular, once we reach aleaf node
containing the query object, we insert the contents of that node into the candidate list, and unwind the re-
cursive traversal of the tree. Once the candidate list contains & members, the largest distance of any of its
members from the query object can be used to prune the search.

Figure 7 showsthe k-nearest neighbor algorithm. In the figure, NearestList denotesthelist of the & can-
didate nearest neighbors, and NearestList.MaxDist denotes the largest distance from the query object of any
of the members of NearestList; if NearestList contains fewer than £ members, this distance is taken to be
oo. When an object isinserted into NearestList in line 4 of KNEARESTTRAVERSAL, an existing member is
replaced if the list already contains £ members. In particular, we replace the member that is farthest from
the query object (i.e., the one at distance NearestList.MaxDist). Before inserting an object into NearestList,
wefirst make surethat its distance from the query object issmaller than NearestList.MaxDist (line 3 of KN-
EARESTTRAVERSAL). Notethat NearestList.MaxDist decreases monotonically as more objectsare inserted
into the list, since we always replace objects with objects closer to the query object.

In KNEARESTTRAVERSAL, if Node is a honleaf node, its child nodes are visited in order of distance
from the query object. Thisis done by building the list ActiveBranchList of the entriesin Node, and sorting
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it by distance from the query object (see Section 5.3 for different ways of defining thisorder). Next, weiter-
ate through thelist (in the sorted order) and recursively invoke KNEARESTTRAVERSAL on the child nodes.
Once the distance of Child from the query object is larger than NearestList.MaxDist, we ignore Child and
therest of the entriesin ActiveBranchList. We can do this because this means that no object in the subtree of
Child (or the remaining entries in ActiveBranchList) will get inserted into NearestList.

KNEAREST(k, QueryObject, Spatial Index)

1 NearestList < NEwWLIST(k)
2 KNEARESTTRAVERSAL(NearestList, &, QueryObject, Spatial Index.RootNode)
3 return NearestList

KNEARESTTRAVERSAL (NearestList, &, QueryObject, Node)

1 if Nodeis aleaf node then
2 for each Object in Node do

3 if DIsT(QueryObject, Object) < NearestList.MaxDist then
4 INSERT(NearestList, Di1sT(QueryObject, Object), Object)
5 endif
6 enddo
7 ese
8 ActiveBranchList — entriesin Node
9  SORTBRANCHLIST(QueryObject, ActiveBranchList)
10 for each Child nodein ActiveBranchList do
11 if DIST(QueryObject, Child) < NearestList.MaxDist then
12 KNEARESTTRAVERSAL (NearestList, &, QueryObject, Child)
13 ese
14 exit loop
15 endif
16 enddo
17 endif

Figure 7: k-nearest neighbor algorithm.

Thedifference between the k-nearest neighbor algorithmin Figure 7 and the original presentationin[45]
isinthetreatment of ActiveBranchList. Weuse only one pruning strategyto liminateentriesfrom considera-
tion, by comparing their distancesto NearestList.MaxDist, while[45] identifiestwo other pruning strategies.
However, in Section 5.4 we will show that the other two pruning strategies in fact do not allow any more
pruning than the one that we use.

If the objects are stored outside the R-tree (i.e., the R-tree leaf nodes contain bounding rectangles and
object references), a minor optimization can be made in line 4 of KNEARESTTRAVERSAL. We first com-
pute the distance from the query abject to the bounding rectangle. Only if this distanceis less than Near-
estList.MaxDist do we compute the real distance from Object to the query object. Otherwise, Object is not
accessed, thereby potentially saving adisk 1/0, asin this scenario the objects are stored outside the R-tree.
Recall that d(q, ) < d(q, o) if r isabounding rectangle of theobject o, i.e., the distance of o from ¢ isnever
less than the distance of r from ¢.

In[45] itissuggested that a sorted buffer be used to store NearestList. However, we found that for large
values of %, the manipulation of NearestList started to become a magjor factor in the execution time of the al-
gorithm. Therefore, we replaced the sorted buffer with asimple priority queuestructure, sorted in decreasing
order of distance, thereby making it easy to replace the farthest object.
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5.2 Example

As an example of the algorithm, we describe its use in finding the three nearest neighborsto query point g
in the R-tree given in Figure 1. Below, we show the steps of the algorithm and the contents of the Active-
BranchListsand of NearestList. The example makes use of the distances between g and the line segments
and bounding rectangles given in Table 1. An invocation with node = is denoted by £-NN(z). We start by
applyingit to theroot of the R-tree, RO. Next, we describethe subsequent invocationsof the algorithm. Each
of the line segment elements in NearestList is listed along with its distance from g. In our specification of
NearestList we also list the maximum distance used for pruning (i.e., NearestList.MaxDist). Initially, Near-
estList is empty and the maximum distanceis oc.

1. E-NN(RO): ActiveBranchListfor RO is(R1, R2).

(8 E-NN(R1): ActiveBranchListfor Rl is (R4, R3).

i. k-NN(R4): insertd, g, h on NearestList: {(h, 17), (d, 59), (g, 81) : 81}.

ii. k-NN(R3): insert a, b in NearestList (replacing d, g): {(h, 17), (a, 17), (b, 48) : 48}.
(b) £-NN(R2): ActiveBranchList for R2 is(R5, R6).

i. k-NN(R5): i replacesb, but c istoodistant: {(h, 17), (a, 17), (i, 21) : 21}.

ii. k-NN(R6): thisinvocation does not occur, as the distance of R6 from g is > 21.

The fina contents of NearestList is {(h, 17), (a, 17), (i , 21)} which is returned as the list of the three
nearest neighbors of q.

5.3 NodeOrdering and Metrics

The ordering used to sort the elementsin ActiveBranchList in Figure 7 can be based on various metrics for
measuring the distances between QueryObject and the elements’ bounding rectangles. Two such metrics are
considered in [45], MINDIST and MINMAXDIST. For bounding rectangle r of node n, MINDIST(q, ) is
the minimum possible distance from ¢ to an object in the subtree rooted at », while MINMAXDIST(q, )
is the maximum distance from ¢ a which an object in the subtree rooted at » is guaranteed to be found
(i.e, it isthe minimum of the maximum distances at which an object can be found). MINDIST and MIN-
MAXxDisT are cdculated by using the geometry (i.e., position and size) of the bounding rectangle » of node
n and do not require examining the actual contents of ». A more precise definition is given as follows.
MINDIST(q, r) is the distance from ¢ to the closest point on the boundary of » (not necessarily a corner),
while MINMAXDIST(¢, r) isthe distance from ¢ to the closest corner of r that is “adjacent” to the corner
farthest from ¢. Figure 8 showstwo examples of the calculation of MINDIST and MINMAXDIST, which are
shown with a solid and a broken line, respectively. Notice that for the bounding rectangle in Figure 8athe
distance from ¢ to « islessthan the distance from ¢ to b, thereby accounting for the value of MINMAXDIST
being equal to the former rather than the latter, while the oppositeis true for Figure 8b. In some sense, the
two orderings represent the optimistic (MINDIST) and the pessimistic (MINMAXDIST) choice. To seethis,
observe that if 1 and ro are minimum bounding rectangles in order of increasing value of MINDIST (i.e.,
MINDIST(q,71) <MINDIST(¢, r2)), then at best, 7, containsan object o0, at adistanceclosetoitsMINDIST
value, such that DIST(¢, 01) <MINDIST(¢, r2); but thisneed not hold, as r; may contain an object closer to
q. If ry and ro arein order of increasing MINMAXDI ST value, on the other hand, then in the worst case, the
object in r; nearest to ¢ is at distance MINMAXDIST(¢, r1 ), which isno larger than MINMAXDIST (¢, 72).

Experiments reported in [45] showed that ordering ActiveBranchList using MINDIST consistently per-
formed better than using MINMAXD1ST. Thiswasconfirmed in our experiments, although we do notinclude
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Figure 8: An example of MINDIST (solid line) and MINMAXDIST (broken line)
for a bounding rectangle r. The distance of the object o from ¢ is bounded from
below by MINDIST(¢, r) and from above by MINMAXDIST(q, ). Notice that in
(b) point & is closer to ¢ than point « while this is not the case in (a).

that result in Section 6 which describes our experimental findings. We suspect that thisindicatesthat the op-
timism inherent in MINDIST usually provides a better estimate of the distance of the nearest object than the
pessimisminherentin MINMAXDIST, sothat MINDIST order will in general lead to the nearest object(s) be-
ing found earlier inthe ActiveBranchList. In thispaper we therefore assume that ActiveBranchList isordered
using MINDIsT. Infact, the agorithm in Figure 7 depends on this, as we discuss at the end of Section 5.4.

Themetricshave other uses, regardlessof which oneisused for ordering ActiveBranchList. SinceMINDIST
represents the minimum distance at which an object could be found in a bounding rectangle r, it provides a
means of pruning nodes from the search, given that a bound on the maximum distance is available. On the
other hand, for any boundingrectangler, MINMAXDIST(¢, r) isan upper bound on the distance of the object
o nearest to ¢. It should be clear that MINMAXDIST by itself does not help in pruning the search, as objects
closer to ¢ could be found in elements of » at positionswith higher MINMAXDIST values. Moreover, since
it only bounds the distance at which the closest e ement can be found, this property is of limited value, as it
is only useful when we are seeking the nearest neighbor (i.e., £ = 1).

5.4 Pruning Strategies

As aready mentioned, the algorithm of [45] employsa set of three pruning strategiesto prune entries from
ActiveBranchList asthe entriesare processed. Two classesof pruning strategiesareidentifiedin [45], termed
downward pruning and upward pruning. In downward pruning, entries on ActiveBranchList are eliminated
prior to processing thenodes (i.e., before entering thefor-loop in line 10 of KNEARESTTRAVERSAL in Fig-
ure 7). In upward pruning, entries on ActiveBranchList are eliminated after processing each node (i.e., after
returning from the recursive call to KNEARESTTRAVERSAL in line 10 in Figure 7). Of the three pruning
strategies discussed in [45], two are said to be applicable to downward pruning and one to upward pruning.
Below, we will discuss these three pruning strategies in turn, and show that one of them is sufficient when
used in a combination of upward and downward pruning?.

Strategy 1 isusedindownward pruning. It allowspruning an entry from ActiveBranchList whose bound-
ing rectangle ry issuchthat MINDIST(¢, 1) >MINMAXDIST(¢, 3 ), wherer, issome other bounding rect-
anglein ActiveBranchList. However, as aready pointed out, using MINMAXDIST for pruning is of limited
valueasitisonly useful when k& = 1.

31t may appear that we use this pruning strategy only for upward pruning in line 11 of KNEARESTTRAVERSAL in Figure 7.
However, since the condition is checked before the recursive call to KNEARESTTRAVERSAL, the if statement actually does both
upward and downward pruning.
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Strategy 2 prunes an object o when D1ST(¢, 0) >MINMAXDIST(q, r), where r is some bounding rect-
angle. Again, thisstrategy is only applicableto £ = 1. This strategy is claimed to be of usein downward
pruning in [45], but its inclusion is somewhat puzzling, since it does not help in pruning nodes from the
search. It ispossiblethat the authorsintended strategy 2 to be used to prune objectsin leaf nodes. However,
this does not appear to be particularly fruitful, since it still requires the objectsto be accessed and their dis-
tances from ¢ calculated. Another possibleexplanation for theinclusion of thisstrategy isthat it can be used
to discard the nearest object found in a subtree s in ActiveBranchList after s has been processed. However,
the purpose of thisis not clear, since a better candidate will replace this object later on, anyway.

Strategy 3 prunesany nodefrom ActiveBranchList whoseboundingrectangler issuchthat MINDIST(q, 7) >
NearestList. MaxDist. 1t isapplicablefor any value of k£ and in both downward and upward pruning. Note
that although strategy 3 is not explicitly labeled as a downward pruning strategy in [45], its use in down-
ward pruning is noted. In particular, before entering the for-loop in line 10 of KNEARESTTRAVERSAL in
Figure 7, we can eliminate entries in ActiveBranchList with distances larger than NearestList.MaxDist (no
pruning will occur, though, unless NearestList containsat |least £ entries).

Recalling that strategy 1 is only applicable when & = 1, it can be shown that even in this case apply-
ing strategy 3 in upward pruning eliminates at least as many bounding rectangles as applying strategy 1 in
downward pruning. To seethis, let » be the bounding rectanglein ActiveBranchList with the smallest MIN-
MAXDIsT value. Using strategy 1, we can prune any entry in ActiveBranchList with bounding rectangle
such that MINDIST(¢, ') >MINMAXDIST(q, r). However, strategy 1 will not prune r or any entry in Ac-
tiveBranchList preceding it, regardless of the ordering used. If ActiveBranchList isordered based on MIN-
MAXDisT, this clearly holds, since MINDIST(q, 7) <MINMAXDIST(q, ). If ActiveBranchList is ordered
based on MINDIST, the nodes preceding » have MINDIST values smaller than that of r, so their MINDIST
values must aso be smaller than MINMAXDIST(¢, ). Now, let us see what entries can be pruned from
ActiveBranchList by strategy 3 after processing the node corresponding to ». In particular, at that point,
DisT(¢,0) <MINMAXDIST(q,r) where o is the candidate nearest object; this follows directly from the
definition of MINMAXDIST. Therefore, when strategy 3 (based on DIST(¢, 0)) is now applied to Active-
BranchList, it will prune at least as many entries as strategy 1 (based on MINMAXDIST(q, )).

Thefact that we have eliminated strategies1 and 2, and we areinterestedin finding morethan & neighbors,
impliesthat MINMAXDIST isnot necessary for pruning asit is not involved in strategy 3. Thus, assuming
that MINMAXDIST isnot used for node ordering, the CPU cost of the algorithmis reduced, since we do not
have to compute the MINMAXDIST value of each bounding rectangle; thisis especially important because
MINMAXDIST ismore expensive to compute than MINDIST. We also observe that thereis really no need
to distinguish between downward and upward pruning in the sense that there isno need to explicitly remove
items from ActiveBranchList. Instead, we just test each element on ActiveBranchList when its turn comes.
If ActiveBranchListisordered according to MINDIST, then once we prune one element, we can terminate all
computation at thislevel, as al remaining e ements have larger MINDIST values. Thisis exactly what we
dointheif statement in line 11 of KNEARESTTRAVERSAL in Figure7.

55 Transformation

In this section we show how the k-nearest neighbor algorithm can be transformed into an incrementa ago-
rithm, and that the result isidentical to our R-tree incremental algorithm. This discussion reveals the main
difference between the two a gorithms, namely that the control structure of the k-nearest neighbor algorithm
isfragmented among the nodes on the path from theroot to the current node (as specified in the ActiveBranch-
List of each invocation of the al gorithm), whiletheincremental nearest neighbor al gorithm employsaunified
control structure embodied in its priority queue.
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Recall that the R-tree k-nearest neighbor algorithm traverses the R-tree in a depth-first manner. It keeps
track of the state of thetraversal (i.e., which nodes or bounding rectanglesit has yet to process) by use of an
ActiveBranchList for each level (notethat at most one nodeisactive at each level at any giventime). In addi-
tion, initsorigina formulation (i.e., assuming a sorted buffer implementation) it keeps track of the distances
from the query object of the data objectsthat it has seen by use of NearestList sorted in increasing order of
distancefrom the query object. Output of the & nearest neighborsonly occurs at the end of thetraversa since
the R-treeis being traversed in its entirety (subject to the pruning of nodesin ActiveBranchList).

If wewant to transformthe R-tree k-nearest neighbor a gorithminto anincremental algorithm, we needto
also keep track of the nodesin the R-tree that have been encountered (i.e., inserted into an ActiveBranchList)
but not processed. These are the elements of the various instances of ActiveBranchList; let B denote their
union. We assume that el ements are removed from NearestList asthey are processed. Withtheaid of B, itis
now possibleto tell if thefirst element o in NearestList should be reported as the next nearest neighbor to q.
In particular, thisisthecaseif o iscloser to ¢ than theclosest nodein B, asall objectsnot yet encountered are
in subtrees of nodesin B. Without the global knowledgethat B embodies, it is not possibleto report even
the nearest neighbor until we have unwound the recursive traversal of the algorithm up to the root node of
the R-tree, because before then we do not know what isin the other subtrees of the root.

Thek-nearest neighbor a gorithm can be modified to maintai n thisglobal unprocessed nodelist B, thereby
enabling it to report nearest neighborsincrementally. This process can be made more efficient by keeping B
in sorted order based on distance from ¢. However, this still leaves open the question of how to efficiently
add and remove nodes from B.

Having made this maodification, we can go even further and change the control structure. In particular,
instead of keeping to the strict depth-first traversal, thelist B can beused to guidethetraversal, i.e., the node
in B closest to ¢ istaken as the next node to process. Asanodeis processed, it is deleted from B, and as
anonleaf nodeis processed, all its entries are added to B. Note aso that as described above, B issorted in
MINDIST order. It could be ordered by MINMAXDIST, but such an ordering has the disadvantage that the
node on B nearest to ¢ would not be immediately accessible. Furthermore, we observe that the penalty for
choosing to process a wrong node is far less than the penalty for doing so in the k-nearest algorithm since
all that isdoneisto inspect the node’s entries, rather than traversing its entire subtree (subject to pruning, of
course).

Note that with this transformation it is now possible to allow an unbounded %, as the last element in
NearestLigt, i.e., the one farthest from ¢, no longer playsarole. Of course, thisaso means that NearestList
is no longer bounded, except by the total number of objectsin the R-tree.

Theentire process can be performed most easily by merging B and NearestList into onelist called Com-
binedNearestList. By ordering CombinedNearestList inincreasing order of distance we are ableto preserve
therole of the previous contents of ActiveBranchList, in that nodes that would have been pruned will be at
greater distancesin the CombinedNearestList than the k" nearest object. Thusthey and their subtrees will
not be traversed when outputting the k£ nearest neighbors. Observethat the transformed a gorithm makes use
only of the MINDIST distance metric, thereby rendering moot the issue of whether or not to use the MiIN-
MAXDIST [45] metric. Also, thetransformed algorithmwill in general achieve more pruning of nodes than
the original k-nearest neighbor algorithm.

We conclude our discussion of the k-nearest neighbor a gorithm by pointing out that the transformation
yields an algorithm equivalent to the incremental agorithm presented earlier when CombinedNearestListis
organized with a priority queue.
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6 Experimental Results

In order to evaluate the R-tree incremental nearest neighbor agorithm of Figure 4 (denoted by INN), we
compared it to the result of using the R-tree k-nearest neighbor agorithm of [45] (denoted by %£-NN) for dis-
tance browsing (Section 6.1). We a so measured theincremental cost of using INN, i.e., the cost of obtaining
the k 4+ 1°* neighbor once we have already obtained the k™ neighbor (Section 6.2). By varying the number
of objectsthat are browsed, we were able to see the true advantage of our method of computing the nearest
neighborsincrementaly rather than committing ourselves to a predetermined number of nearest neighbors,
as would be the case if we used the k-nearest neighbor algorithm. (Remember that we do not know in ad-
vance how many objects will be browsed before finding the desired object.) Finally, we compare INN with
k-NN for computing the result of a k-nearest neighbor query (Section 6.3). These studies were performed
for small numbers of neighbors (i.e., less than 25), as thisis the most common situation in which distance
browsing is useful. Nevertheless, we a so treat the case of alarge number of neighborsin Section 6.3.

In the experiments mentioned above we measured the execution time, the disk 1/0 behavior and the num-
ber of distance computationsfor two representative maps. In order to discern whether the size of the maps
was a factor, we performed experiments in which the size was varied (Section 6.4). In addition, for an ex-
treme case, we experimented with a very large data set (Section 6.5). Finally, in Section 6.6 we report the
maximum size of the priority queue for the experimentsin Sections 6.3 and 6.4.

The data sets used in the experiments consisted of line segments, both real-world data and randomly
generated data. Therea -world data consisted of four datasetsfrom the TIGER/LineFile[43] (see Figure 9):

1. Howard County: 17,421 line segments.
2. Water in the Washington DC metro area: 37,495 line segments.
3. Prince George's County: 59,551 line segments.

4. Roads in the Washington DC metro area: 200,482 line segments.

Therandomly generated line segment maps were constructed by generating random infinitelinesin a man-
ner independent of translation and scaling of the coordinate system [38]. These lines were clipped to the
map area to obtain line segments, and then subdivided further at their intersection pointswith other line seg-
ments so that at the end, line segments meet only at endpoints. Note that the random maps do not necessarily
model real-world maps perfectly. In particular, by their construction, random maps cover an entire square
area, whereas thisis not the case for most real maps (e.g., TIGER/LineFile county maps). Furthermore, the
random maps tend to be rather uniform, while real maps tend to have dense clusters of small line segments
mixed with more sparsely covered areas. Neverthel ess, these randomly generated maps do capture someim-
portant features of real maps (e.g., there is a low probability of more than four line segments meeting at a
point), and they enabled usto run the experiments on awide range of map sizes for maps with similar char-
acteristics.

Our experimentsdiffer from thosein [45], which used a Hilbert-packed R-tree [31, 46], whereas we used
an R*-tree. The Hilbert-packed R-tree is a static structure, constructed by applying a Peano-Hilbert space
ordering (e.g., [47]) tospatia objectsonthebasisof their centroids. Theleaf nodesof the R-treeare then built
by filling them with the objects, and the nonleaf nodes are built on top, with bounding rectangles computed
for the nodes. Notice that the conventional R-tree node splitting rules were not applied in the construction
of the Hilbert-packed R-tree since each node isfilled to capacity by the Hilbert-packed R-tree construction
algorithm. Asweare interested in dynamic environmentswe choseto usethe R*-tree rather than the Hilbert-
packed R-tree for our experiments except where noted.
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Figure 9: The four real-world data sets from the TIGER/Line File: (a) Howard,
(b) Water, (c) PG, and (d) Roads.

Most of the data sets that we used were small enough to fit in main memory of many modern computers
(except in the experimentsreported in Section 6.5). Nevertheless, we used a disk-based R-tree structure, and
employed buffers to store a limited number of recently used R-tree nodes (128). We therefore believe that
our resultswill scalewell tolarge data sets. Thefact that we employ buffered I/O, with the added possibility
of arequested disk block being in adisk cache or in operating system buffers, complicates the comparison
between the two agorithms. There are two extremes: for each 1/O, the requested disk block is found in
memory, or every /O leads to disk activity. Given a query for a fixed number of neighbors, theincremental
nearest neighbor (INN) a gorithm shows less improvement over the k-nearest neighbor algorithm (k-NN)
in the former case (i.e., if the entire data sets resides in memory), and may even be slower, as will be seen
for the small random data sets. Thisis mainly due to the overhead incurred by priority queue operations.
However, for the other extreme the INN algorithm would show even more advantage than we found, as it
always requests fewer R-tree nodes and objectsthan the £-NN agorithm.

For each experiment, weran multiple querieson the same data set for the same number of neighbors. This
was done so that morethan one query point could betested, aswell asto make surethat thetiming resultswere
meaningful (given the timing granularity of the system we used). Since our R-tree implementation utilizes
buffered 1/0, this means that a query may access disk blocks that have aready been loaded into the buffer
by earlier queriesin the same sequence. We fed that thiswas a reasonable choice to make, sincethe buffers
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were small compared to the data size, and clearing them prior to each query would have affected the timing
results. Also, in area world scenario, it is likely that a user will execute more than one query for a given

map.

We use three measures for comparing the algorithms: execution time, R-tree node /O (frequently re-
ferred toasdisk1/0O[6, 32]), and object distance calculations. The R-tree node I/O isreported asthe number
of accesses, and may not correspond to actual disk I/O if nodes can be found in database or system buffers.
However, we have found that the number of accesses predicts the relative performance of actual disk 110
reasonably well. Furthermore, any saving dueto buffering will show up in reduced executiontime. Thuswe
used the disk 1/O characterization.

In al the experimentsthat we conducted, the mapswere embedded ina 16K by 16K grid, and the capacity
of each R-tree node was 50. In order to simplify the analysis of the execution time results, we choseto store
the actual line segmentsin the R-tree leaf nodesinstead of just their bounding boxes. Also, the organization
of the external object storage has alarge effect on the performance, and thusintroduces an extravariableinto
the comparison of the two algorithms. Query points were uniformly distributed over the space covered by
the map data, and the distance functions used to measure the distances of linesand bounding rectanglesfrom
the query points were based on the squared Euclidean metric (in order to avoid computing sguare roots).
The experiments were run sufficiently often to obtain consistent results with a different query point each
time. Execution times are reported in milliseconds per query; they include the CPU time consumed by the
algorithmanditssystemcalls. Weused aSPARCstation 5 Model 70 rated at 60 SPECint92 and 47 SPECfp92,
and a GNU C++ compiler set for maximum optimization (—O3).

6.1 Cumulative Cost of Distance Browsing

Inthissectionwefocuson thedistance browsing query when wedo not know in advance how many neighbors
will be needed before the query terminates. In thiscase, we need to reapply the k-nearest neighbor algorithm
asthevaueof k£ changes. In contrast, in the case of theincremental nearest neighbor agorithm, we need to
reinvokethe algorithm to obtain just one neighbor (i.e., the next nearest one). For these experimentswe used
the map of Prince George's County (denoted by PG in the figures) as well as arandomly generated line map
of asimilar size, containing 64,000 lines (denoted by R64K). We included the random line map to seeif the
performance was affected by some unknown characteristics of the PG map.

Figures 10 through 12 show each measure’s cumulative cost for distance browsing through the database
by finding the neighborsincrementally. There are anumber of ways of using a k-nearest neighbor a gorithm
to performdistancebrowsing. In our tests(showninthefigures) we usetwo such methods: (1) Execute4-NN
each time we need anew neighbor. (2) Invoke £-NN for every five neighbors. Thus, for example, in case (2)
the cost of computing the 11 through 14* neighborsisthe same as the cost of computing the 15 neighbor
(which requires invoking the £-NN algorithm for £ =5, 10, and 15). From the figures, it is clear that using
theincremental nearest neighbor (INN) algorithmfor distancebrowsing significantly outperformssimulating
incremental accesswith the £-NN agorithm. In fact, the difference quickly becomes an order of magnitude.
The figures use a logarithmic scale for the y-axis in order to bring out relative scale. Since the differences
were so great, in order to simplify the presentation, we include results only for the £-NN agorithm for the
PG map, as the results for the random data were similar.

The method that we used above for choosing the value of & when performing distance browsing with
the £-NN agorithm is not the best that we can do for larger values of k. For example, it would be better to
multiply £ by 2 each time the algorithm must be re-invoked. In addition, the £-NN a gorithm can be adapted
to make it more suitable for use in distance browsing. In particular, after finding the m nearest neighbors
and determining that we must find the m’ > m nearest neighbors, we can use the distance of the mm** nearest
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neighbor as a minimum distance when the £-NN algorithm is re-invoked with & = m/ (actualy, k is set
to m’ — m, since the m nearest neighbors would be excluded from the search). This minimum distance
can be used to prune the search in much the same way as we described using minimum distance in the INN
agorithmin Section 4.5. Some complicationsariseif other objects have the same distancefrom ¢ asthe m
nearest neighbor. The best way to resolvethisisto return all neighborswith that distance, which means that
sometimes we obtain more neighbors than we requested. In Figure 13 we compare the execution time when
using such an adapted &£-NN agorithm (labelled “ Prune”) for distance browsing to the execution time when
using the INN algorithm. Also, we show the result for the unmodified algorithm, where we must restart the
search from scratch when the £-NN a gorithm must be re-invoked (labelled “Restart”). We show the results
only for thereal-world data set (PG), as they were almost identical when using the random data set.

We use two different starting values for & in Figure 13, namely 5 and 50 (shown in parentheses). Each
time the k-NN algorithmis re-invoked, & is doubled. The figure showsthat if the £-NN algorithm must be
re-invoked at least once, it usually takes more than twice (and up to nearly five times) as long as the INN
algorithm. Using the “Prune” variant of the £-NN algorithm does not pay off unless a rather large number
of neighborsis needed (over 100 or 200 in these experiments). The reason why this variant takes longer for
asmaller number of neighborsis that not enough nodes get pruned to offset the cost of more node distance
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computations(for each nodewe must compute two distances, aminimum and amaximum, instead of just the
minimum). Another observation is that the £-NN approach is highly sensitive to theinitia value of &, and
whichinitia valueis better depends on how many neighborswe need (which we do not know in advancein
distance browsing). The spikes on the curves occur where the £-NN agorithm is re-invoked an additional
time for higher values of &, and between a spike and the next low point, no more neighbors are computed”.
The reason the slope of the curve decreases after each spikeisthat in the range from a spiketo the next low
point, the cost of the £-NN approach remains constant (since no more neighborsare computed) whilethe cost
of the INN approach increases gradually as we must compute additional neighbors. Note that the absolute
low point on the two curves corresponds to the case where the number of neighbors needed happensto be
equal totheinitial valueof £ (5 and 50, respectively). For thosevaluesof £, the £-NN algorithmis not much
slower than the INN algorithm (about 25% slower for £ = 5 and 14% slower for & = 50).

6.2 Incremental Cost of Distance Browsing

Theresultsof the experiments conducted in Section 6.1 show thetotal cost of distance browsing after retriev-

ing the k% neighbor. Using INN to implement each browsing step requires us to examine just one neighbor
regardless of how many browsing steps we have aready executed. In contrast, use of k-NN for distance
browsing requires us to examine & + 1 neighbors when & browsing steps have aready been executed. In
this section, we compare the two algorithmsin terms of the cost of each browsing step (i.e., theincremental

cost). Thisisshown in Figures 14 through 16. For the INN agorithm, the incremental cost can be seen to
fluctuate somewhat, but it isalways at |east one order of magnitude less than the cost of the £-NN algorithm
once the first neighbor has been obtained. Although not shown here, we found that this holds for all values
of k. Again, we use alogarithmic scale for the y-axis so that the fluctuation in the cost of the incremental

algorithm can be seen more clearly.

We evaluated the incremental execution time for up to 1000 neighbors in the PG map. Interestingly,
we found that the incremental execution time clusters around an average of about .04 ms after the first 100
neighborsor so. Thisisin agreement with the results that we will discussin Section 6.3, where we find that
the average execution time per neighbor isaround .04 ms when retrieving afew thousand neighbors or more
in the PG and R64K maps. Thuswe seethat for a given map, the incremental execution time is remarkably
close to constant after a small fraction of the objects have been retrieved (for the PG map this was around
100 neighborsor less than 0.2% of the map size).

For the R-tree node disk 1/0s (Figure 15), theincremental algorithm (INN) was at |east an order of mag-
nitude better than &£-NN after the first neighbor had been found. INN appears to be decreasing (i.e., between
.1and .2 after 25 neighbors), but levels off after afew hundred neighbors have been found. (The graphisnot
a step function because the number of node accesses is averaged over many queries.)

For the object distance calculations (Figure 16), theincremental agorithm (INN) was at |east an order of
magnitude better than £-NN after thefirst few neighborshad been found. Theimprovement approachestwo
orders of magnitude when 25 neighbors have been found, and continuesin this manner for larger values of k
(not shown here). The average number of distance cal culations performed for each incremental invocationis
seen to be decreasing. This continues as more neighborsare retrieved and is below 1.2 after 300 neighbors.
ThusINN quickly reaches a stage of accessing only about one object per reported neighbor.

“There should beaspikeat 5 neighborsfor “ Prune(5)”, butinstead it occursat 6 neighbors. Thereasonfor thisisthat occasionally
when requesting the nearest five neighbors, the sixth nearest neighbor has the same distance as thefifth one, so the £-NN algorithm
does not need to be re-invoked when we want to obtain the sixth neighbor (the same is true for the second spike at 10 neighbors).
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6.3 k-Nearest Neighbor Queries

We now consider what the cost would beif we used theincremental nearest neighbor algorithmto solvethe -
nearest neighbor problem. In other words, instead of browsingthe database on the basi sof distance, obtaining
one neighbor at atime, we address the related problem of finding all & neighbors at once, aswe would do if
we knew in advance how many neighborswe need. Itisinterestingto seeif aperformance penalty isincurred
in solving this classical problem by using our incremental algorithm, rather than using approaches such as
the £-NN agorithmwhich obtain al k& neighborsat once. We ran a sequence of testsin the same manner as
thosereported in Sections 6.1 and 6.2; the resultsare shownin Figures 17 through 19. From these figureswe
observethat using the INN agorithm leadsto no sacrifice of performance. Infact, theincremental algorithm
outperforms the k-nearest neighbor agorithm for the two maps for all values of k.

In addition to the experiments mentioned above, we ran k-nearest neighbor queriesfor values of £ from
1 uptothesizeof the dataset. Theresults of these experiments are reported in Figures 20 through 22, where
the cost measures are divided by the number % of nearest neighbors, so that we are reporting the cost per
neighbor. For theincremental nearest neighbor algorithm, thisvaueis close to the average incremental cost
for all but the smallest values of & (for small %, the cost of retrieving the first neighbor dominates the cost).
Dividing the cost measures by & makes it possible to distinguish the cost measures for large values of &,
whichis difficult otherwise. In Figures 20-22, the y axis uses alogarithmic scale.
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For the execution time (Figure 17), we see that the two algorithms have similar growth patterns, with k-
NN being somewhat slower than INN (about 11-14% for PG and 4-10% for R64K). While the improvement
of INN over £-NN ismodest for values of k& up to 25, Figure 20 revea s that the difference widensas & grows
larger, up to 75% for PG and 87% for R64K (for &k = 2 = 32,768). Even for vaues of £ as small as
several hundred, the improvement of INN over £-NN is 20-30%. Note how the performance of INN for the
two mapsisvery similar, whereas the performance of £-NN iswarsefor the PG map than for the R64K map.
Thisobservation holdsfor the other two cost measures aswell. Thissuggeststhat INN ismuch less sensitive
than £-NN to the distribution of data objects.

For very large values of k, we may ask whether it isnot better to simply cal cul ate distancesfor the entire
database and then sort on the distance. If all the objects are ranked with the INN algorithm (or the £-NN
algorithm), we must also compute the distancesfor all the objectsin the database. The question then reduces
to whether the overhead of theINN al gorithm (for computing di stances of nodes and manipulatingthe priority
gueue) exceeds the cost of sorting all the distance values once they have been computed. Interestingly, we
found that for the PG map, using the INN algorithm to rank all the objects was faster than computing all the
distances and sorting them, whereas the k-NN algorithm was alittle slower than the sorting approach. Of
course, thisresult cannot be generalized, as it depends on numerous factors, such as size of the data set, the
gpatial index being used, and whether the spatia objects are stored directly in the leaf nodes of the R-tree or
in an external object table.

For the R-tree node disk 1/Os (Figure 18) we see that INN is always better than &£-NN, whilethe rate of
growth issimilar for both and appearsto belinear in & for low values of k. In fact, we found that this same
pattern held for all valuesof &, aswe seein Figure21. Thefigures show that for each valueof &, INN achieves
more pruning of the input tree than £-NN. This partially explainsits better execution time performance. For
values of % ranging between 26 and 21°, INN accesses 20-53% fewer nodes for PG and 12-35% for R64K,
with the largest difference occurring at & = 2° for both maps.
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Figure 18: R-tree node disk 1/O for k- Figure 19: Object distance calcula-
nearest neighbor query. tions for k-nearest neighbor query.

For the object distance calculations (Figure 19), we seethat the INN a gorithm again outperforms the k-
NN algorithm. Figure 22 showsthat thisholdsfor all valuesof %, except when ranking all the map objects (in
which case thenumber of distance cal cul ations equal sthe number of map objectsin both cases, asno pruning
of objectsor nodesis possible). The shapes of the curvesin Figure 22 can be seen to be very similar to those
in Figure 21. Thisis not surprising when we redlize that the number of distance calculationsis proportional
to the number of R-tree |leaf nodes that are accessed, and the leaf nodes in an R-tree greatly outnumber the
nonleaf nodes.

Figure 23 shows the fraction of total execution time that is attributed to disk I/O operationsin the above
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experiments. We compute this by recording the node accesses performed during the execution of the al-
gorithms, and measuring the time needed to do nothing but access those nodes. The figure shows that the
fraction of time spent by the INN algorithm in doing 1/O isrelatively constant, but starts to decrease for a
large number of neighbors. In contrast, the fraction of time spent by the £-NN agorithmin doing 1/0 has a
much larger variation, initially increasing rapidly, and decreasing significantly as the number of neighbors
needed increases. Infact, eventualy thefraction of time spentin doing 1/0 by the £-NN agorithmis consid-
erably lessthan that spent by the INN algorithm asthe number of neighborsincreases; thusthe INN algorithm
becomes more efficient from a CPU cost perspective. (This may be due, in part, to the fact that for alarge
number of neighbors, the priority queue for the INN algorithm is considerably smaller than the NearestList
maintained by the &£-NN agorithm, as discussed in Section 6.6 and seen in Figure 31.)
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6.4 Resultsfor Varying Data Size

In the previous sections we investigated the performance of the two algorithms by varying the number of
neighborsfor both distance browsing and computing the & nearest neighborsfor similarly sized data sets. It
is important that the performance of the algorithms remain reasonable even when the size of the data set is
increased. To verify that thisisindeed the case, wetested the performance of INN and £-NN on both random
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and real-world map data. Our experiments showed the same rel ationshipsfor the two algorithms between the
cumulativeand incremental costsof distancebrowsing, aswell as computing the & nearest neighbors, that we
found in the experimentsreported in Sections6.1-6.3 (provided the mapsare nontrivia insize). In particular,
they confirmed the superiority of INN over £-NN. In theinterest of saving space we do not show theseresults
here.

In the rest of this section, we focus on the relative behavior of the algorithms when finding the nearest
neighbor (i.e, £ = 1). Thisoperation isimportant asit is thefirst step in distance browsing, and as we saw
in Section 6.2 its execution time dominates the cost of distance browsing for small values of k.

Figures 24 through 26 show the performance of the two algorithms when finding the nearest neighbor.
The z-axisin thefigure islog, N, where N is the number of line segments. The real-world maps appear
in the same order in which they were described above (from left to right: Howard County, Water, Prince
George's County, and Roads). The random maps that we tested contained 1000, 2000, 4000, 8000, 16000,
32000, 64000, 128000 and 256000 line segments.

For the execution time (Figure 24), we see that the INN algorithm is faster for most of the maps; &£-NN
took from 10-19% more time for the real-world maps, and up to 14% more timefor the randomly generated
maps. The exceptions are the three smallest randomly generated maps. This can be explained partly by the
fact that these maps were small enough to fit in the R-tree node buffer, and partly by the fact that their small
sizes gave lessroom for improvement (see Figures 25 and 26). Even so, for larger values of &, INN became
better than &£-NN for these datasets. For al therandomly generated maps, which have similar characteristics,
the rate of growth of the execution time can be seen to be nearly identical for thetwo agorithms. In fact, the
rate of growth appears to be very nearly logarithmic in the number of line segments (recall that the z-axis
usesalog scale). The execution timesfor the real-world maps correl ate remarkably well with the execution
times for the random maps of comparable size.
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For the R-tree node disk I/Os (Figure 25) we find the same rel ative behavior of the algorithms, with INN
being always better than k-NN, while the rate of growth is similar for both. The rate of growth appears to
be logarithmic in the number of line segments. This compares with the results reported in [45] for £-NN,
whereit was observed that the number of R-tree node accesses grew linearly with the height of the tree. Our
experiments are not in exact agreement with that observation, but asymptotically, the two observations are
equivalent, sincein R-trees the height of the tree growslogarithmically with the number of objects.

For the object distance calculations (Figure 26), again, INN performs better than %-NN.
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tions for finding one neighbor. data set.

6.5 Resultsfor Large Data Sets

Admittedly, the data sets that we used in the experiments reported above were moderate in size. For the
largest data set that we used, the spatial index occupies approximately 9 MB of disk space, which is small
enough to fit into the main memory of most modern computers. Even so, in our experiments, we only used
asmall amount of main memory for buffers (128 nodes), and the size of the priority queue remained small
compared to the data size (100 KB in the worst case for the experiments in Section 6.3, or about 3% of the
size of the map files). Thuswe believethat our resultswill aso hold for larger data sets, i .e., data sets much
larger than the size of main memory.

In order to verify thisclaim, we conducted an experiment with arandomly generated data set of 8 million
lines. Asit was prohibitively slow to build an R*-tree for such alarge data set, we built instead a Hilbert-
packed R-tree [31], which occupied almost 300 MB. We used the same level of fan-out (50) and the same
amount of buffering (128 nodes) asin our previous experiments (though it might have been better to use a
larger fan-out and buffer sizes for such a large data set). Incidentally, we found that both algorithms per-
formed more poorly with a Hilbert-packed R-tree than with an R*-tree for the same data set. This appearsto
be dueto the greater amount of node overlap in the Hilbert-packed R-tree. Theincremental nearest neighbor
algorithm proved to be much less sensitive to the level of node overlap, due to its superior pruning of the
R-tree nodes.

Figures 27—29 show theresults of our experimentson thislarge map, which consisted of £-nearest neigh-
bor queries for values of k& from 1 through the size of the data set (8 million). Unfortunately, we were not
ableto run the £-NN algorithmfor £ = 8 million, as there was not enough memory to hold the neighbor list
for 8 million neighbors. Thisisin contrast to the INN algorithm, where the priority queue contained at most
about 83,000 elements, or about 1% of the number of neighbors. The speedup in execution time for INN
over k-NN ranged from 1.8t05.8. £-NN accessed from 1.8 to 5.3 times as many nodes and performed up to
6 times as many distance calculationsas INN.

6.6 Priority Queue Size

In Section 4.8 we showed that in the worst case, al the data objects must be inserted into the priority queue
when using the incremental nearest neighbor algorithm. In our experiments, however, we found that the
priority queue remained modest in size. The size of the priority queue affects the performance of queue op-
erations during the agorithm’'s execution. Also, a very large queue requires a disk-based implementation,
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Figure 28: Node disk I/Os for large Figure 29: Object distance calcula-
data set. tions for large data set.

thereby slowing the algorithm down. However, in most applications the maximum queue size remains rel-
atively modest, which permits using a memory-based data structure for the queue. For example, consider
Figure 30, which shows the maximum size of the queue when computing the nearest neighbor (i.e., & = 1)
using the same datasetsasin Section 6.4. Noticethat for theworst case situati on described above, in thisfirst
step of distance browsing for the given query object, all objects must be inserted into the queue before de-
termining the nearest neighbor. From thefigureit is evident that the maximum queue size grows remarkably
slowly as the number of line segments increases. The results for the random maps suggest that this growth
islogarithmic in the number of line segments.

Figure 31 shows the maximum size of the priority queue when using the incrementa nearest neighbor
algorithm after & distance browsing operations for the maps used in Section 6.1 (£ ranged from 1 up to the
size of the map). In the figure, the y-axisislogarithmic. We see that the maximum queue size M grows
extremely slowly. Note also that M isrelatively small (less than 5% in the worse case) in comparison with
the sum of the number of data objects and R-tree nodes for the two comparably-sized maps, which is M’s
theoretical maximum. When & reaches avalue of 2!° ~ 1000, the priority queue needed by the incremental
nearest neighbor algorithm is smaller than the priority queue needed to store the sorted buffer for the £-NN
algorithm. A similar picture emerged for the large map used in Section 6.5, where the size of the priority
gueue was an even smaller fraction of the map size (1% in the worst case).
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7 High-Dimensional Space

As dready pointed out, the incremental nearest neighbor algorithm isindependent of the dimensionality of
the data objectsand isequally applicableto dataembedded in low-dimensional and high-dimensional spaces.
Unfortunately, it is difficult to effectively index high-dimensional data and nearest neighbor search also be-
comes more costly. In this section we address some of the issuesthat arise. Asit is hard to reason about
arbitrary data distributions, some of the conclusionswe draw are based on uniformly-distributed data.

High-dimensional data arisesin a number of current applications, including multimedia databases, data
warehouses, and information retrieval. Usually, such dataislimited to points, but more general objects also
arise [8]. Asan example of an application that |eads to high-dimensional data, color histograms have been
used in image databases to allow searching for images with a specific color or with a combination of colors
similar to some query image. The colorsin animage are described by d-dimensional vectors, in which each
element encodes the intensity of a particular range of colors (e.g., by using RGB vaues). To compare the
closeness of the sets of colorsin two images, a complex distance function is used, involving matrix multi-
plication. Using that distance function, we can use a nearest neighbor search on an image database to find
the image closest in color to some query image. The number of dimensions, d, for color histogramsis typi-
cally 64, 100 or 256. In other applications, the number of dimensions can be even higher (as much as several
thousand).

Most spatial indexing structures do not work very well for high dimensions. The R-tree, for example,
has been found to degenerate for dimensions higher than 7 or so [9]. Specifically, what happensisthat even
for range queries with small query windows, so many of the index pages must be read that reading themis
more expensive than sequentia scan of the data. Several indexing structures have been proposed to address
thisissue; for example the X-tree [9] and L SD"-tree [27], based on the R-tree and L SD-tree, respectively.
However, even these often do not provide much speedup compared to sequential scan for dimensionsabove
20 or so. An approach often taken to speed up accessto point dataof very high dimensionisto map the points
into aspace of lower dimension[18, 34], in which casewe can usetheincremental nearest neighbor a gorithm
on the lower-dimensional space. In order to guarantee the accuracy of the result, the output of the algorithm
can befiltered based on the distances of the corresponding higher-dimensional points[48]. Another approach
is to abandon the goa of indexing the data points based on space occupancy and instead use properties of
the distance metric employed (see the discussion of the metric space model in Section 2). If ahierararchical
index method based on distance (e.g., [11, 14, 52]) isemployed, our algorithmis still applicable. Infact, the
k-nearest neighbor algorithm presented in [14] is similar to our algorithmin that it uses a priority queue for
nodesto guidethe traversal of theindex.

If we usethe Euclidean distance metric, the nearest neighbor search region (Section 4.6) isspherical. On
the other hand, the node regions for most types of spatial index structures are hyper-rectangular in shape.
Thishasthe effect of making nearest neighbor search more expensive, as more points are accessed than nec-
essary. To seewhy thisistrue, consider that in two dimensions the areas of a square and a circle, both with
radius r, are 4r? and 772, respectively. Thus the ratio of the area of the circle to the area of the square is
7/4 = 79%. Inthree dimensionstheratio of the volume of a sphere to the volume of a cube is about 52%,
and in four dimensionsthe corresponding ratio for a hypersphere and hypercubeis 10%. In general, the ra
tio between the volume of a hypersphere and its circumscribed hypercube decreases exponentially with the
number of dimensions. Intuitively, the reason for thisisthat the number of “corners’ of the hypercube grows
exponentialy with dimension. Thiseffect hasadirect consequencefor nearest neighbor search using the Eu-
clidean distance metric. To see why, let us assume that we have uniformly-distributed data pointsinside a
hypercube of radiusr and asearch region of radius r centered inside the hypercube; the hypercube represents
the smallest bounding box of the set of hyper-rectangular leaf node regionsthat intersect the search region.
Then the proportion of the data points inside the search region decreases exponentially with the number of
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dimensions; e.g., for four dimensions, only about 10% are inside the search region. The large number of
data pointsinside the hypercube but outside the search region represent wasted effort for a nearest neighbor
search. In order to alleviate this effect, spatia index structures that use hyperspheres as node regions [55]
have been proposed for usein nearest neighbor applicationsfor higher dimensions. However, sincethis can
lead to a much higher level of overlap between nodes than using hyperrectangles, a compromise is to use
shapes formed by intersectionsof hyperspheres and hyperrectangles[35], essentially smoothing out the cor-
ners of the hyperrectangles.

In Section 4.6 we pointed out that the objects on the priority queue are contained in the leaf nodes in-
tersected by the boundary of the search region (and similarly for the nodes on the priority queue). Asthe
number of dimensions grows, the ratio of the number leaf nodes intersected by the boundary of the search
region to the number of leaf nodes intersected by the interior of the search region tends to grow. Thusthe
sizeof thepriority queue also tendsto grow with the number of dimensions. For uniformly-distributed points
spread evenly among the leaf nodes, where each |eaf node covers about the same amount of space, it can be
shown that thisratio grows exponentially with the number of dimensions. Thisistrueevenif both the search
region and leaf node regions are hypercubes (i.e., if we use the Chessboard metric ..,). Of course, thisis
only of major significance when the number of desired neighborsis large, since the volume of the search
region depends on the number of neighbors.

Some of the problems arising from operating in high-dimensional spaces can be alleviated by relaxing
the requirement that the nearest neighbors be computed exactly. Our goal isto report neighborsas quickly as
possible. In the incremental nearest neighbor algorithm, when an object o is dightly farther from the query
object ¢ than a node =, the algorithm must process n before reporting o. In a high-dimensiona space, as
we have seen, this may cause a lot of extrawork. Instead, what we can do isto report o as the next nearest
neighbor if its distance from ¢ is not “much” larger than that of . In particular, suppose o is the object on
the priority queue closest to ¢, and » is the node on the queue closest to ¢. We propose to report o as the
next (approximate) nearest neighbor if d,(¢,0) < (1 + ¢)d, (g, n), where ¢ is some nonnegative constant.
This leads to a definition of approximate nearest neighbor that conforms to that in [4]: if r isthe distance
of the k** nearest neighbor, then the distances of the objects returned by an approximate k-nearest neighbor
search must be no larger than (1 + €)r. Obviously, for e = 0 we get the exact result, and the larger ¢ is,
the less exact theresult is. The only change required to the incremental nearest neighbor a gorithm to make
it approximate in this sense is in the key used for nodes on the priority queue. Specifically, for a node n
we use (1 + €)d,(q,n) as akey instead of d,,(¢q,n). In[4]°, it was found that a significant reduction in
node accesses results from finding the & approximate nearest neighbors as opposed to the & exact nearest
neighbors. Moreover, with relatively high probability, the result is the same in the exact and approximate
cases. For example, for approximate nearest neighbor search in 16 dimensionsusing ¢ = 3 (meaning that a
300% relative error in distance is allowed), it was found [4] that the speedup in execution time was on the
order of 10 to 50 over exact nearest neighbor search, whilethe average relative error was only 10% and the
true nearest neighbor was found almost half the time.

8 Concluding Remarks

A detailed comparison of two approaches to browsing spatial objectsin an R-tree on the basis of their dis-
tancesfrom an arbitrary spatia query object waspresented. It was shownthat anincremental algorithm (INN)
significantly outperforms (in terms of execution time, R-tree node disk 1/0, and object distance cal cul ations)
a solution based on a k-nearest neighbor algorithm (k-NN). This was true even when the £-NN approach
was optimized for this application by carefully choosing the increments for & and using previous search re-

5The algorithm described in [4] is not incremental, but it accessesthe same set of nodes as the incremental nearest neighbor
algorithm modified as described above
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sultsfor pruning when the £-NN algorithm must be re-invoked. The incremental approach was also found
to have superior performance when applied to the problem of computing the & nearest neighbors of a given
guery object. Our experiments confirm that the INN algorithm achieves a higher level of pruning than the
k-NN agorithm. Thisisimportant as it reduces the amount of R-tree node disk I/0O aswell as the number of
distance cal cul ations, which, when combined, account for a major portion of the execution time. Moreover,
as the data sets became larger, the superiority of INN a gorithm became more pronounced.

The experimental results were in reasonably close agreement with our rudimentary analysis of the INN
algorithm, which predicts that the number of node accessesisO(k + vk +log N ), where k is the number of
neighborsand NV thesize of thedataset. The superior performance of our agorithmin the experimenta study
was perhaps not surprising, aswe prove informally that, at any step in its execution, the incremental nearest
neighbor algorithm is optimal with respect to the spatial data structure that is employed. From a practical
standpoint, this means that a minimum number of nodesis visited in order to report each object. In other
words, upon reporting the k** neighbor o;, of the query object ¢, the algorithm has only accessed nodes that
liewithin adistance of d(¢, o) of ¢. Our adaptation of the algorithm to the R-tree has the added benefit that
aminimum number of objectsis accessed, i.e., only objects whose minimum bounding rectangles liewithin
adistance of d(q, o) of q.

Intheexperimentsreported in Section 6, we used an R-treevariant inwhich thespatial objectswerestored
directly in the leaf nodes of the R-tree. Thisis not aways practical, especialy for complex and variable-
size objects such as polygons. The other alternativeis to store the objectsin an externa file, in which case
the leaf nodes store the bounding boxes of the spatial objects and pointers to the objects. We performed
additional experimentswhere the maps used in Section 6 were stored in such an R-tree, and we used the INN
variant givenin Figure 4%. These experimentsrevealed an even larger advantage for theincremental nearest
neighbor algorithm over the k-nearest neighbor algorithm (typically over 50%). Thisis primarily because
the INN algorithm accessed many fewer data objects (for the purpose of calculating their distancesfrom the
guery object) than the £-NN agorithm. The &£-NN algorithm typically accessed 4-6 times as many objects
asthe INN algorithmfor low values of £, and up to twice as many for values of & as high as 5% of the map
size. Reducing the number of object accesses and object distance cal culations when using the incremental
algorithm has an even greater effect in terms of reducing the execution time for more compl ex spatial objects

(e.g., polygons).

In aworst-case scenario, al the leaf nodesin the spatia data structure must be accessed (see Figure 4.8
and the discussion in Section 4.8). In contrast to the incremental agorithm presented in Figure 3, the vari-
ant presented in Figure 4 for the R-tree implementation where the spatial objects are stored external to the
R-tree alleviatesthe worst case described above by making use of bounding rectanglesin leaf nodes, thereby
enabling it to avoid accessing many dataobjectsfrom disk’. In particular, inthe original version of the algo-
rithm, the spatial index was not assumed to have bounding rectangles, which meant that for thisworst caseall
data objects had to be accessed from disk in order to measure their distances from the query object. The use
of bounding rectangles stored in the tree leads to a considerably more efficient (and conceptually different)
incremental algorithm for R-trees in that the bounding boxes can be used as pruning devices to reduce disk
1/0 for accessing spatia descriptions of objects.

Future work involves comparing the behavior of theincremental nearest neighbor algorithm on different
spatial data structures such as PMR quadtrees, R-trees, and R*-trees, as well as adapting the algorithm to
other classes of index structures, such as distance-based indexes [11, 14, 52]. We also wish to investigate

S5We decided to report only the results of experiments where the spatial objects are stored in the leaf nodes rather than external
to the R-tree. Thiswas done, in part, because the organization of the external object storage has a large effect on the performance,
and thus introduces an extra variable into the comparison of the algorithms.

"Recall from footnote 6 that we decided to report only the experimentsin which the spatial objects are stored in the leaf nodes
rather than external to the R-tree.
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further the use of the algorithm with very large data sets and in high-dimensiona spaces, where the priority
gueue may have to be stored on disk.
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