
CMSC 351:Spring 2011 Michelle Hugue

Note: Monday 2/21 Lecture

...Or, What Dr. Hugue swapped and merged instead of compared.

Merge Sort Trio: 3 Different Solutions, all in Θ(n log n)

During Monday’s lecture I was attempting to illustrate two points. In the process, my brain sneaked
in one more point while talking about point 2. So actually, I initially had correct stuff on the board
which corresponded to my initial comments. Then somehow, I launched point 3 below without
finishing point 2. I apologize for any confusion and hope this little note helps.

1. The first point was that we have been asking you two kinds of questions about recursions:
ones where you need to get an exact solution, and ones where you need only give or prove
the asymptotic complexity of the recursion. This point is illustrated for each of the following
examples.

2. The second point was that the initial value or cost of dealing with a single element in the
recurrence, typically T (1), need not be one. As long as it’s a constant, it has no effect on the
asymptotic complexity and only changes the exact solution by a constant multiple of n. See
Example 2 below.

3. The third point had to do with the practical situation where programs normally do not use
the ’divide and conquer’ to decompose down to a single element.

That is, it’s more likely to halt the divide part of the merge sort process when the number
of elements is some number larger than 1; thus, the recursion tree would not go all the way
down to the T (1) stage, but, rather, would stop when there were say, 25 or 24 elements left
per set. So, the last row of the recursion tree would not correspond to executing n copies of
T (1), but rather, n/(16) copies of T (16). This reduces the number of rows remaining in the
original tree by 4 (which is log 16); so, the summation would be from 5 (which is 1 + log 16)
to log n.

Example 3 gives a general version of this result in terms of n = b as the value of n such that
T (b) = A, for some postive constant A. To check your understanding, you should be able to
get the exact solution for the example above by letting b = 16 and T (16) = A in the solution
to Example 3.

How should you read this note? What you should do is check all these items using the examples
given below for the three slightly different formulations of the merge sort problem. You must make
sure that at least points one and two above make sense. Several readings might be needed. Then
tackle point three.

Here are the specific details, most of which were on the board, but lost some of the glue required
to stick the correct parts together. Essentially, each has an exact solution which can be expressed
as the sum of n log n and cn for some positive constant c. That means each is in Θ(n log n).

1



Example 1. Standard Merge Sort

T (n) =

{

1 if n = 1,
2T (n/2) + n otherwise.

Exact Solution: T (n) = n log n + n

Asymptotic Complexity: Θ(n log n)

Work for Exact solution of Example 1 from adding column of Recursion Tree:

T (n) = T (1)n +
log n
∑

i=1

n ≡ n + n
log n
∑

i=1

1 ≡ n log n + n

Example 2. Merge-Sort with Constant Cost A for n = 1

T (n) =

{

A if n = 1,
2T (n/2) + n otherwise.

Exact Solution: T (n) = n log n + An

Asymptotic Complexity: Θ(n log n)

Work for Exact solution from column of Recursion Tree for Example 2.

T (n) = T (1)n + n
log n
∑

i=1

1 = An + n log n

Example 3. Early Terminating Merge-Sort, with Constant Cost A for Constant Minimim Number
of Elements n = b

T (n) =

{

A if n = b,
2T (n/2) + n otherwise.

Exact Solution: T (n) = ((A/b) − log b)n + nlogn

Asymptotic Complexity: Θ(n log n)

Work for Exact solution of Example 3 from column of Recursion Tree.

T (n) = T (b)(n/b) + n
log n
∑

i=(log b+1)

1 ≡ (A/b)n+n(log n−(log b+1)+1) ≡ ((A/b)−log b)n+n log n.

2


