Handed out September 9, 2011. Due within the first 15 minutes of class September 22, 2011.
Note: You may discuss homework problems and general solution strategies with classmates. However, you must write up the solutions yourself, and document any and all resources appropriately. ${ }^{1}$

Problem 1. Derive a closed form solution for the following summation using constructive induction assuming that $n \geq 0$.

$$
\sum_{i=0}^{n} i^{3}
$$

Problem 2. Prove by mathematical induction on n, where $n \geq 0$:

$$
\sum_{i=0}^{n}(i+1) i(i-1)=\left(\frac{n(n+1)}{2}\right)^{2}-\frac{n(n+1)}{2}
$$

Problem 3. The product of two $n \times n$ matrices $A * B$ is defined to be the $n \times n$ matrix C where

$$
c_{i j}=\sum_{k=0}^{n-1} a_{i k} b_{k j} .
$$

a. Write pseudo code to multiply two nxn matices.
b. Use a triple sum to count the number of multiplications.
c. Simplify the summation.
d. Use a triple sum to count the number of additions. Simplify the summation.

Problem 4 Consider a slightly different matrix multiplcation problem. Assume that U is an $n \times n$ upper triangular matrix, where the entries below the diagonal are always zero. That is, for $i>j$, the value of $u_{i j} \equiv 0$. Assume that L is an $n \times n$ lower triangular matrix, in which the entries above the diagonal are all zero. That is, for $i<j$, the value of $l_{i j} \equiv 0$.
a. Write psuedo code to (efficiently) multiply an nxn upper triangular matrix, U, by an nxn lower triangular matrix, L.
b. Use a triple sum to count the number of multiplications.
c. Simplify the summation.
d. Use a triple sum to count the number of additions. Simplify the summation.

[^0]
[^0]: ${ }^{1}$ If I were documenting my lectures or this homework, I'd have to write something like: Katz, Mitchell, private conversation. Kruskal, Clyde, inspired problem 3 and 4.

