CMSC 311 Computer Organization

Jolly Numbers Notes
or Representing Numbers in the Computer

Conventions

An essential skill in computer science is the ability to understand the different interpretations of 8-bit, 16-bit,
32-bit, and 64-bit long strings of binary digits (0’s and 1’s), since all computing control decisions and data
processing operations involve such constructs.

The ability to convert between binary and decimal representations of integers and reals, without digital
or mechanical assistance, is a required skill. In fact, memorizing as many powers of 2 as you can never hurts.
Neither does learning the binary and decimal values of 1K, 1M, 1G, and 1T.

Unless the problem requires a specific base, please feel free to work in powers of 2, 8, 10, or 16, for MY
convenience. Whatever makes you more comfortable. Why? Because no calculators will be permitted on
exams. If it excites you to use one when you work problems , or to check your homework, be my guest.
However, you will be required to have mastered these conversions your self and to demonstrate such ability.
So, showing your work will help you receive credit for knowing what to do, even if the numbers don’t quite
dance correctly below your writing implement.

Unless otherwise stated, the rightmost bit is also the the least significant bit, corresponding to the value
in the 2° position in the base-2 interpretation of the number. And, since I can’t count anyway, for long
strings of 0’s and 1’s, your grouping of digits into ”fours” is fine, as is using octal (base 8) or hex (base 16).
Again, this is allowed for your personal work as long as you get the requested format for your answer.

For example, the 32-bit binary string

(11110000111101011010111100001111)
is much easier for me to read in any of the following forms:

¢ In base 2, but grouped into 3-bit chunks and converted, becomes base 8, or octal

(11 110 000 111 101 011 010 111 100 001 111) (base 2)

(36 075 327 617) (base 8)

e In base 2, but grouped into 4-bit chunks, becomes base 16 or hexadecimal.

(1111 0000 1111 0101 1010 1111 0000 1111) (base 2)

(FOF5 AFOF) (base 16 or H)

Add this to the rules and regs for the rest of the semester, and keep in mind in doing labs and in taking
exams. Oh, by the way, absolutely no calculators for exams. No exceptions.

Notation

Given k + 1 bits, with bits numbered bybg_1bg_2 - . . bab1 by, we assume that bit by corresponding to the least
significant bit. Then the sequence of bits on the left is the binary number equivalent of the decimal number
represented by the summation on the right. Since each bit can only take values from the alphabet {0,1}, a
string of k 4+ 1 bits so numbered can represent up to 2¥*! unique patterns. The type representation adopted
for this string of bits determines how the string will be interpreted, as described below.



Unsigned Binary

The simplest representation assumes that all numbers are positive integers, with bit by giving the coefficient
of 20, b; giving the coefficient of 2!, and so on, up to by as the coefficient of 2%.
More formally, we have:

k
(bkbk—1bk—2 ... babibg)2 = (E b:2)10

=0

For example, the binary version of 2087 is shown below:

(1000 0010 0101) = (1 x 2" +1x 25+ 1 x 22 +1 x 2%)49

Rule of Thumb: An n-bit string of all ones has the value of 2" — 1.

Sign(ed) Magnitude

In sign magnitude (or signed magnitude), the uppermost or most significant bit (msb) is referred to as the
sign bit. The remaining (k— 1) bits are the size or magnitude of the number, with this bit string interpreted
as a (k—1) bit unsigned binary number. If the sign bit is zero, and all the other bits are zero, the the number
is zero. If the sign bit is zero, and at least one other bit is non-zero, than the number is positive. If the
sign bit is one, and at least one other bit is one, then the number is negative. The bit pattern with msb=1
and all other bits zero, is NOT negative zero; some machines adopt a “large negative” value for it, other
machines make it illegal. We will treat it as an illegal bit pattern.
Using the notation from the previous section, we have:

k—1
(bbr—1bk—2 - babrbo)2 = (1) D b:2%)10
i=0

The number 2087,¢ from the previous section requires 13 bits now: twelve to capture the size or mag-
nitude of the number, and one, the msb, set to 0, to signify that the number is positive.

(0 1000 0010 0101)y = (—=1)° (I x 2" +1x254+1x224+1x2%;,

The negative of 208719, given by —2087;¢ matches the previous value in every bit but the msb, which is
now 1 because we are representing a negative number.

(1 1000 0010 0101)y = (—=1)*(1 x 2" +1x 25 +1x 22 +1 x 2%

While this is a nice, logical way of implementing signed integers, if you attempt to add the representations
for positive and negative 2087 in base 2, you don’t get “0”, which is the answer in base 10. So, when we
want to do arithmetic, we need to move to yet another way of representing integers.

Sign(ed) 2’s Complement

Signed 2’s complement (or sign 2’s complement) (s2c) is a modification of the sign-magnitude form in which
addition and subtraction work the way that you expect them to. The price we pay is that we can’t read a
negative number directly. The high order bit is still the sign bit, and a “1” still indicates a negative number.
Furthermore, zero is represented by all zeros and, for this course, a “1” followed by all zeros is still an illegal
value for us.

The relationship between a number and its s2¢ equivalent is formalized in the following, and explained
below.

k—1
(brbr—1br—2 - . . bab1bo)a = ((—1)* (by + Z(bk @ bi)2%)10

i=0



The s2c form of a positive integer is identical to the sign-magnitude form of the positive integer. So, our
“example” number 2087 is still given by 13 bits: twelve to capture the magnitude of the number, and one,
the msb, set to 0, to signify that the number is positive.

(0 1000 0010 0101); = (—=1)® (I x 2" +1x2°4+1x 2% +1x 2%

In order to encode or determine the s2¢ form of a negative integer, we first write down the s2c¢ form
of its positive form. Then, we bit-wise complement all bits of that number (the zeros become ones, the
ones become zeros). This is called forming the one’s complement. Once we’ve done that, we form the 2’s
complement by adding 1 to the bit string that we have. The result is the s2¢ form.

So, for -2087, we start with

+208710 = (0 1000 0010 0101),

We complement all the bits, yielding the intermediate expression
(1 0111 1101 1010)

Then, we add 1, to get

—208710 = (1 0111 1101 1011)

To “decode” a number in s2c form, first check the sign bit. If the sign bit is zero, the conversion is
identical to that shown for sign-magnitude positive numbers above. If the sign bit is one, then we know
the number is negative. Now that we know the sign, we must decode to get the magnitude. This is done
by complementing all the bits and adding one. The magnitude of the resulting number will be that of the
negative number you started with.

For example, consider the following 13-bit number in s2c form:

1111111111110

Because the msb is “1”, we know that the number is negative. It remains to determine the magnitude of the
number. First, we take the complement of all the bits, referred to as computing the 1’s complement.

0000000000001

Next, we add “1” to the above value to get:

0000000000010

Since the above value is positive 2 in binary, the value we started with, all ones except for the least
significant bit, must be the s2¢ form of -2.

Note: Suppose you are asked to compute a s2c equivalent of either positive or negative 2087 above, but
the representation must be longer than 13 bits, say 16. All you have to do is extend the sign bit! If the
number is positive, fill to the new msb with zeros. If the number is negative, fill to the new msb with ones.
This sign extension works for any s2c value.

Fixed Point?—Integral in Our Book

Since the discussion above considers only whole numbers, why is this the fixed point worksheet? Well,
technically the binary point is to the right of the least significant bit (digit) in the representations shown
above. Furthermore, you can express a subset of the rational numbers by moving the binary point to the
left in any of the above representations. Note that in fixed point notations, the position of the binary point
is assumed—that is, no space needs to be devoted to it because the number of places or digits to the right of
the binary point is predefined-literally, fixed.

For example, a 32-bit fixed point number might have 8 bits representing the binary fractional part of the
number, and the remaining 24 bits will be the integer part. The only difference from the previous expressions



is that, like in base 10, the first position to the right of the binary point corresponds to 27!; the next is 22
and so on, down to 278 for 8 bits. We don’t see fixed point like this very often anymore, because with the
exception of machines with fixed accuracy (such as cash registers, where the the smallest difference between
values is 1 cent.

regardless, as long as you know where the binary point is, and it never moves, technically you are dealing
with fixed point notation.

Conversion: Signed Magnitude to 2’s Complement

The book is very helpful to a mathematician, and explains how to do it from a software-like function
standpoint. Mechanically, if the number is positive, you are done. If the number is negative, then you retain
the sign bit, complement all the other bits and add a “1” in the least significant bit position.



