CMSC 311 Computer Organization

Jolly Numbers Worksheet -NO CALCULATORS-

Summer, 2000 Dr. Hugue

- 1. Write the decimal number, (108_{10}) , as an unsigned binary number. Express your answer in hexadecimal and octal as well.
- 2. Write the hexadecimal number, (108₁₆), as a decimal number.
- 3. What is the largest integer (in decimal) that can be expressed as a 32-bit unsigned binary number? Note: as always, you may express your answer in terms of powers of two or 16 if you like.
- 4. Write the decimal number (-2100_{10}) as a 16-bit sign magnitude number. Express your answer in hexadecimal as well.
- 5. Express the hexadecimal number $(7A0F_{16})$ as a base 10 number, assuming that the original hexadecimal number is in **sign magnitude** form. Repeat assuming unsigned binary form.
- 6. Express the hexadecimal number $(F401_{16})$ as a base 10 number, assuming that the original hexadecimal number is in **sign magnitude** form. Repeat assuming unsigned binary form.
- 7. Convert the following "decimal fractions" to 32-bit fixed point equivalents, where the "binary fraction" is the lower 16 bits, and the "binary integer" part is the upper 16 bits. The "binary integer" part is stored as a sign magnitude number. You may give your answer in hexadecimal for convenience. Also indicate which representations are exact, and which are approximations because of truncations. Is underflow present anywhere?
 - (a) 125.25
 - (b) -456.089
 - (c) 512.0000000025
 - (d) 104.11111
 - (e) -116.8888
- 8. Express the fixed point numbers above using 32-bit IEEE floating-point notation.
- 9. Express both operands in signed 2's complement, and perform the indicated operations. (Note: don't forget to sign-extend the numbers so that all arithmetic is performed between numbers of the same size.)
 - (a) 46 120
 - (b) -(-1654 + 2098)
 - (c) 25246 + 21670
 - (d) (-256 1248)
 - (e) 116 (-76)
- 10. Which of the operations in the previous problem, if any, can be performed correctly using 16-bit signed 2's complement arithmetic.