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The Densest Double-Lattice Packing
of a Convex Polygon

DAVID M. MOUNT

ABSTRACT. A lattice packing of a planar body is an infinite packing of the
plane by translated copies of the body where the copies are translated to
the points of a lattice. A double-lattice packing is a union of two lattice
packings such that a 180° rotation about some point interchanges the two
packings. We show that the densest double-lattice packing of an n-sided
convex polygon can be computed in O(n) time.

1. Introductio.

Packing problems such as the knapsack problem and bin packing prob-
lem are well known in the fields of algorithm design and operations re-
search because of their many applications to problems such as stock-cutting
in computer-aided manufacturing. Because general formulations of these
~ problems are known to be NP-complete [5], it is of interest to discover for-

- mulations of these problems which are solvable in polynomial time and yet
are of general enough interest to be useful in applications. One such formu-
lation is that of finding the densest (infinite) packing of congruent copies of
a single polygon in the plane. More formally, given a simple polygon P, the
problem is to determine an infinite collection of rigidly transformed copies
of P in the plane having pairwise disjoint interiors, such that density of the
system (intuitively the fraction of the plane covered by copies) is maximized.
This problem is of interest in packing applications where a large number of
identical 2-dimensional objects are to be packed into a large container. If the
size of the objects is small relative to the size of the container, then a reason-
able heuristic is to determine the densest infinite packing of the objects in the
plane, and then truncate the packing to fit the container (see Figure 1(a)).
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FiGuURE 1. Lattice packings.

Mount and Silverman showed that for an n-sided convex polygon, the
densest packing in the plane, allowing only translations not rotations, could
be computed in O(n) time. In proving this result they applied a classical
theorem due to Rogers [14] which states that the densest packing by translates
of a convex body is generated by a lattice, that is, a system of points defined by
all integer linear combinations of two independent vectors (see Figure 1(b)).
They showed how to compute the densest lattice packing in O(n) time.

One major shortcoming in Mount and Silverman’s result is that it does not
allow objects to be rotated. Although this is reasonable for packing applica-
tions where the packing domain has a directional grain (e.g. when cutting
fabric), better packing densities are achievable if rotation is allowed. For
example, if the objects to be packed are triangles then the densest packing
by translates has density 2/3 [2], while if rotation is allowed then a packing
of density 1, a tiling, is possible by mating each triangle with a 180° rota-
tion of itself to form a parallelogram, and then tiling the plane with these
parallelograms. » o '

When rotation is allowed we know of no general simple structure, such as
the lattice, which is guaranteed to generate the densest packing. For example,
Figure 2(a) shows an example due to Heesch of a pentagon which, if allowed
to rotate, can tile the plane with a periodic structure [7] (see also [6, p. 31]).
Perhaps the simplest packing structure which allows rotation is a double-
lattice packing, which is the union of two lattice packings, such that a rotation
by 180° about some point interchanges the two packings. The packing of
Figure 2(b) is an example of a double-lattice packing of a regular pentagon,
and the triangle tiling described earlier is also an example.

In this paper we describe an O(n) algorithm for determining the densest
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(a) (b)
FiGURE 2. Packing with rotation.

double-lattice packing of a convex #n-sided polygon P. Our result is based
on a reduction due to G. Kuperberg and W. Kuperberg [9]. They showed that
the densest double-lattice packing of a convex body can be derived by finding
a certain type of inscribed parallelogram, called an extensive parallelogram,
of minimum area. '

The problem of finding the densest packings of a convex object in Eu-
clidean space has a rich history. See Rogers [15] and Fejes-Toth [3] for sur-
veys of this field. The related subject of tilings has been also been studied [6].
There have been relatively few computational results in this area. In addition
to Mount and Silverman’s result, De Pano described a linear time algorithm
for packing congruent copies of a convex polygon in the plane (where rota-
tions are allowed) such that the density of the resulting packing is at least
3/4 [1]. The packing generated by De Pano’s algorithm (which is based on a
construction given by Kuperberg [10]) is also a double-lattice packing, but it
is not necessarily the densest double-lattice packing for the given input.

In §2 we present the geometrical underpinnings of the algorithm and show
how to reduce the packing problem to a problem of finding a certain min-
imum area inscribed parallelogram, called the half-length parallelogram. In
§3 we derive a rotating calipers algorithm for finding this parallelogram and
analyze the algorithm’s running time.

2. Double-lattice packings and parallelograms

Throughout this paper P will denote an n-sided convex polygon in the
real plane, R’. For v € R? , the translate of P by v, P+ v, is the set of
points {p +v|p € P}. Let —P denote the set {—x|x € P}, a rotation of
P through 180° about the origin. For a given pair of linearly independent
vectors # and v, the lattice generated by u and v is the set of vectors

L(u,v)={iu+jv| i and j integers}.
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The vectors # and v span a basic parallelogram of the lattice.

Consider an infinite system of bodies resulting by translating P by each
vector in a lattice, L(u,v). If the interiors of this system are pairwise
disjoint, then we say that u and v define a lattice packing of P. The
density of a lattice packing is the ratio of the area of P to the area of the basic
parallelogram, the absolute value of det (u, v) . The density of a packing is at
most 1, where equality occurs if the packing is a tiling of the plane (implying
that P is either a parallelogram or a centrally symmetric hexagon).

A double-lattice packing is the union of two lattice packings such that a
180° rotation about some point interchanges these two packings. (Figure 2(b)
gives an example. A possible point of rotation is shown.) It is easy to see
that the density of a double-lattice packing is the ratio of twice the area of
P to the area of the basic parallelogram.

G. Kuperberg and W. Kuperberg [9] showed that there exists a double-
lattice packing for any convex body P of density at least v/3/2, matching
existing lower bound for lattice packings of centrally symmetric convex bodies
[11, 4]. For convex polygons with three or four sides, there exist double-lattice
packings that tile the plane. The Kuperberg’s also conjecture that the densest
packings by congruent copies of regular pentagons and regular heptagons are
double-lattice packings. It is not hard to show that any lattice packing of a
convex body can be converted into a double-lattice packing of equal density,
and hence double-lattice packings can achieve at least as good densities as
lattice packings for any given convex polygon.

Given a convex polygon P, a chord of P is any line segment whose end-
points lic on the boundary of P. Define the angle of a line segment of
nonzero length to be the arctangent of the slope of the line segment normal-
ized to the interval [0°, 180°). Given an angle 6, the length of P at angle
6 is the length of the longest chord of P whose angle is 0, and the width of
P at the angle 4 is the perpendicular distance between the two parallel lines
of support for P whose angle is 6. A chord is of maximal length for a given
angle if and only if there exist two parallel lines of support for P that pass
through the endpoints of the chord. We call such a chord a 6-diameter. The
diameter chord at a given angle need not be unique, but it is easy to see that
for any angle 6 there exists a §-diameter such that at least one endpoint of
the chord coincides with a vertex of P.

An inscribed parallelogram is said to be extensive if the length of each of
its sides is at least one-half the length of the diameter in the same direction
as that side (see Figure 3(a)). Kuperberg and Kuperberg showed that there
is a close relationship between dense double-lattice packings and extensive
parallelograms [9]. They observed that if O is an extensive parallelogram
inscribed in P, then a double-lattice packing for P can be generated as
follows. Translate Q and P simultaneously so that one of the vertices of Q
coincides with the origin, and let ¥ and v be the vectors that span Q. By
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FiGURE 3. Extensive parallelogram and double-lattice packing.

translating P U —P to each point of the lattice generated by 2u and 2v, it
follows from the convexity of P and the definition of extensive parallelogram
that the resulting system is a double-lattice packing for P (see Figure 3(b)).

THEOREM (G. Kuperberg and W. Kuperberg). If P is a convex body, there
exists a densest double-lattice packing for P which is generated by a minimum
area extensive parallelogram inscribed in P .

“Two distinct parallel chords of equal length in P define a parallelogram
inscribed within P. If the angle of these chords is 6 then we call this
parallelogram a O-parallelogram. The parallel chords are the bases of the
@-parallelogram. The length of a @-parallelogram is the length of its bases,
and the width of a O-parallelogram is the perpendicular distance between
the two lines containing its bases. The area of a f-parallelogram is just the
product of its length and width. A half-length 0-parallelogram for P is a
f-parallelogram whose bases are half the length of the 0-diameter of P (see
Figure 4).

A convex planar body is said to be strictly convex if its boundary contains
no line segments. Observe that for a strictly convex body (i.e., a convex body
containing no line segment on its boundary) there are exactly two chords par-
allel to and of half the length of the #-diameter, and thus there is a unique
half-length 6-parallelogram. If a convex polygon has one or two edges which
are parallel to and greater than half the length of the 6-diameter then there
may be infinitely many half-length 6-parallelograms. These parallelograms
arise by selecting the bases of the parallelogram to be any subsegment of the
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FIGURE 4. The half-length parallelogram.

appropriate length from one of these parallel edges (an example is shown in
Figure 8on p. 256). Since all parallelograms generated in this manner have
equal area, for our purposes it suffices to select any one of them arbitrarily,
e.g. by sliding its bases as far counterclockwise along this edge as possible.
By assuming that all g-parallelograms are slid into such a canonical configu-
ration, we can talk about the unique half-length g-parallelogram for a given
0.

The Kuperberg’s remark without proof [9] that in order to compute the
minimum area extensive parallelogram inscribed in P, it suffices to consider
the set of half-length @-parallelograms for each 6 between 0 and 180°. (By
symmetry the @-parallelograms repeat cyclically with period 180° .) For the
sake of completeness we present a proof of this remark. -

THEOREM 2.1. A minimum area extensive parallelogram inscribed in a con-
vex polygon P is achieved by a half-length 6-parallelogram for some angle 0
between 0 and 180° .

Prook. It suffices to prove that for every 6, (1) every half-length -
parallelogram is extensive, and (2) an extensive f-parallelogram is locally
minimal if and only if itis a half-length #-parallelogram.

To show (1) let a and b be the bases of a half-length #-parallelogram
Q,andlet ¢ bea g-diameter. Consider a convex quadrilateral R which is
bounded by the two lines passing through the left endpoint of ¢ and the left
endpoints of a and b, and the two lines passing through the right endpoint
of ¢ and the right endpoints of a and b (see Figure 5(a)). Because a and
b are parallel to and of half the length of ¢, it follows that the endpoints of
a and b lie on the midpoints of the sides of R. Thus Q is extensive for
R since its width and length are exactly one-half the width and length of R,
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FIGURE 5. Minimality of the half-length parallelogram.

respectively. Consider the angle ¢ of the sides of Q other than a and b.
It is a simple consequence of convexity that the longest chord for P at the
angle ¢ lies entirely within R . It follows that the width of Q is at least half
the width of P. Since P and R have the same 6#-diameter, the length of
Q is at least half the length of P. Therefore Q is extensive for P.

We will prove (2) for strictly convex bodies. (Although P is not strictly
convex, it can be approximated by a convergent sequence of strictly con-
vex bodies, and we can select a convergent subsequence of minimum ex-
tensive parallelograms.) If P is strictly convex, then there is a unique 6-
parallelogram for each given length. As the length increases, the width of the
O-parallelograms decrease. We show that the area of the 60-parallelograms,
as a function of length, is upward convex. Hence the minimum of this func-
tion over any interval is. achieved at an endpoint of the interval. Thus the
minimum extensive parallelogram must be a half-length 6-parallelogram.

_ Consider two lengths / and /', 0 </ < [' < |c|. Let Q and Q' be
the @-parallelograms with these respective lengths. Let w and w’ be the
respective widths of Q and Q' (see Figure 5(b)). Consider the four lines
segments which join each of the four vertices of Q to its corresponding vertex
of Q. Foreach p, 0<p < 1,let ¢g=1—-p. Thereis an interpolated
parallelogram of length pl + g/’ and width pw + qw’ whose vertices lie on
these four lines segments. (The endpoints of this parallelogram are weighted
averages of corresponding pairs of endpoints of Q and Q'.) »

By the convexity of P, each interpolated parallelogram is enclosed within
P, and so6 the @-parallelogram of the same length, p/ + ¢/', has area no
smaller than this interpolated parallelogram. Hence it suffices to show that
the area of the interpolated parallelogram is not less than the corresponding
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weighted average of the areas of O and Q', that is
p(lw) + q(l'w') < (pl + ql')(pw + qu).

To prove this, first observe that because / < ' and P is strictly convex
we have w > w'. Clearly 0 < pq < 1. Thus we have

0<pg(l' = Hw —w').
By simple manipulations and the facts that I —p=g¢g and 1 —¢ =p we get

pa(l' = Dw —w') = (pl + ql)pw + qw') — (plw + ql'w)
0 < (pl +ql)pw + qu') — (plw + gl'w")
pw) +q('w") < (pl + ql')(pw + qu'),

completing the proof. O

3. The algorithm

In the previous section we introduced the notion of a half-length paral-
lelogram inscribed in the n-sided convex polygon P and showed that the
problem of finding the densest double-packing can be reduced to computing
the minimum area half-length parallelogram. In this section we show how to
compute this minimum area half-length parallelogram. We employ the tech-
nique of rotating calipers [16]. For each angle , 0° < 6 < 180°, we com-
pute (explicitly or implicitly) a representative half-length 6-parallelogram
(recalling our assumption that we can break ties among multiple half-length
O-parallelograms arbitrarily since they have equal area). It suffices to con-
sider only 180 degrees of rotation because the half-length parallelogram in
the directions 6 and 180° + 6 are equal.

As in all rotating caliper algorithms, we define a finite set of critical angles
6 at which we explicitly compute the half-length 6-parallelogram. An angle
@ is said to be critical if either (1) both endpoints of the diameter chord in
the direction 6 coincide with vertices of the polygon (recall that we may al-
ways assume that at least one endpoint of the diameter chord coincides with
a vertex of P), or (2) an endpoint of the f-parallelogram coincides with a
vertex of P. We will show that between any two consecutive critical angles,
the diameter and the half-length parallelograms vary in a simple continuous
way. This fact will allow us to compute the next critical angle in O(1) time,
and to determine the minimum area half-length parallelogram between a pair
of consecutive critical angles in O(1) time. In addition we will show that as
@ increases, the points of contact between the half-length 6-parallelogram
and the diameter in the direction 6 will move monotonically counterclock-
wise around the boundary of P. From this property, which is called the
interspersing property, it will follow that there are O(n) critical angles.

The algorithm consists of three basic steps where the second and third
steps are repeated until 6 > 180°.
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Initialization: Compute an initial half-length 6-parallelogram and a di-
ameter for 0 =0°.

Advancing to the next critical angle: Given an arbitrary 6, a half-length
f-parallelogram, and a f-diameter, determine the next critical angle
6’ > 6 and determine the half-length 6’-parallelogram and the 6'-
diameter.

Minimizing between critical angles: Between a pair of consecutive crit-
ical angles 6 and 6’ determine the minimum area half-length par-
allelogram for all angles in the interval [6, 0'].

Each of these steps will be treated separately in this section.

3.1. Initialization. Let us first consider the problem of finding the initial
half-length 8-parallelogram and 6-diameter for 6 = 0. Consider a toprost
vertex of P (with maximum y-coordinate) and a bottommost vertex of P
(with minimum y-coordinate). These two vertices subdivide the boundary
of P into a left side and a right side. By shooting a horizontal ray from
each vertex on one side to the opposite side, we decompose the interior of
P into a sequence of trapezoids with horizontal bases (where the topmost
and bottommost trapezoids may degenerate to triangles) (see Figure 6). This
trapezoidal decomposition can be computed in O(n) time by merging the
sorted lists of vertices on the left side of P with the vertices of the right side
by y-coordinate.

By scanning through this list of trapezoids, it is an easy matter to find the
maximum trapezoid base, which forms the horizontal diameter of P, and to
find the two trapezoids, one lying above and one lying below the diameter,
which contain the horizontal chords whose length is one half the length of the
diameter. These chords are the bases for the initial half-length parallelogram.

FiGURE 6. Computing the initial half-length parallelogram.
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The total running time of this algorithm is clearly O(n). (Observe that
because the horizontal width function is convex, we could have computed
the initial half-length parallelogram in O(log2 n) time by performing a type
of binary search on the y-coordinates of the polygon. However, this linear
time algorithm is simpler and suffices for our purposes.)

3.2. Advancing to the next critical angle. Next we consider how vertices of
the half-length parallelogram move incrementally as the directional angle 6
rotates through a small angle starting with some initial value 6,. We use the

notation ab to denote the directed segment from point a to point 5. By
translating the tail of the segment to the origin, a directed segment ab can
naturally be identified with the vector b — a. We will think of the edges of
P as segments directed counterclockwise around the boundary of P, so that
the tail and head of an edge are the clockwise and counterclockwise vertices
of the edge, respectively. We consider each edge of P to be closed at its
tail and open at its head, so that a vertex belongs to the edge following it in
counterclockwise order about the boundary.

We begin by analyzing the movement of the diameter chord as 6 increases.
This analysis was given by Toussaint in describing his rotating calipers algo-
rithm for finding the diameter of a convex polygon [16], but we repeat it
here for completeness. Let ¢,(6) and c,(6) denote the endpoints of a 6-
diameter (see Figure 7). Recall that there exist two parallel lines of support
for P passing through the endpoints of this chord. If either endpoint lies in
the interior of some edge, then these support lines are uniquely determined.
If both of the endpoints lie on vertices of P, then there may be an infinite
number of parallel support lines to choose from. We make the convention
of selecting the extreme counterclockwise angle for these lines, and thus we
are assured that at least one of the lines of support will be colinear with one
of the edges following ¢, (0) or ¢,(f) in counterclockwise order. This selec-
tion can be made in constant time by analyzing the angles of the edges of P
which lie clockwise of the current diameter chord’s endpoints.

Suppose that the one of the support lines is colinear with the edge e of P
which lies just counterclockwise of ¢ (0). As 6 increases, the point c¢,(6)
remains fixed and ¢, (6) travels counterclockwise along the edge e (see Fig-
ure 7(a)). The supporting lines for the diameter do not change until c,(6)
reaches the vertex at the head of e. If this is not the case, then the other
support line is colinear with the edge which lies just counterclockwise of c, .
In this case ¢ (¢) remains fixed and ¢,(6) travels monotonically along this
edge until reaching the next vertex (see Figure 7(b)). The angle at which this
event occurs is denoted 6. Clearly 6, > 6,.

Next we consider how the endpoints of the bases of the #-parallelogram
vary with 6. (As we will see later, we do not deal with € directly as an
angle measured, say, in degrees. Rather the varying angle will be expressed
parametrically and all quantities depending on angles will be simple linear

-, o e ek
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FIGURE 7. The movement of the diameter chord.

functions.) We first define two intermediate values that will be helpful. For
6, < 6 <6, C(0) denotes the vector which is one-half the length of the
diameter chord at the angle 6, and let D(0) be the net motion of head of
this vector as 6 increases from 6, . That is, :

[am—

C(0) = 5(c,(0) —¢,(0)),  D(8) = C(6) — C(6,).
For 6 in the range 6, < 6 < 6,, the quantities ¢,(0), c,(9), C(0) and

D(6) can be computed in constant time. Clearly D(6,) =0. If cl and c2
denote the heads of the edges on which ¢; and c, lie, then D(6,) is either
equal to (1 /2)(cl ¢;) or (1/2)(c, — cz) depending on whether the ¢, or
¢, is the moving, endpomt of the diameter chord.

Let a, and a, denote the the endpoints of one of the base chords of the
half-length 6, -parallelogram. (An analogous construction can be applied to
the other base chord from b, to b,.) Let a' and a; denote the heads of the
edges on which a1 and a, he For the sake of illustration, assume that the
chords z;@, and b b, are horizontal and directed from left to right. Let a1
and a2 denote the heads of the edges on which g, and a, lie, respectlvely

For i =1, 2, let A, denote the directed segment a_c; Notice that #,

of nonzero length (by our convention that a vertex of P lies on the next
edge in counterclockwise order) and 4, is directed counterclockwise about
the boundary -P.

For an angle 6, let a,(0), denote the position of the corresponding end-
point for the half-length @-parallelogram. We will show that as 6 increases
from 6,, a,(8) travels monotonically along h; , and furthermore the length
of the motion vector a,(0) — a,(6,) is related to the length of D(6) by a
constant scale factor. '

Suppose that the segments h, and h, are parallel to one another. Observe
that because P is convex and a,a, is parallel to and of strictly lesser length
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by

FiGURE 8. Sliding along an edge of P.

than the diameter, a, and @, must lie on the same edge of P (see Figure 8).
This edge is parallel to the diameter chord. If this is the case, as mentioned
earlier, we map this Go-parallelogram into canonical position by “sliding”
the chord 4,4, counterclockwise along this edge until the left endpoint a4,
is coincident with a vertex of P. (For the case of the chord Z)Tb—; it will be
the right endpoint b, which becomes coincident with a vertex of P.) This
transformation does not alter the area of the parallelogram. After sliding, we
reevaluate s, and h,. By our convention that a vertex belongs to the next
counterclockwise edge, it follows that /4, and h, are no longer parallel.

Let H, and H, denote the vectors corresponding to the directed segments
h, and h,. The parameters o, and a, which will define the incremental
motion of a,(6) and a,(0) are introduced in the following lemma.

LeMMA 3.1. There exist two unique nonnegative constants a; and a,, at
least one of which is nonzero, such that D(6,) = a,H, — o H,.

ProOF. Since 4, and h, are not parallel to each other and are of nonzero

length, H, and H, form a basis for R?. Because D(6,) is nonzero there
exist two unique o, and o, which cannot both be equal to zero such that
D(6,) = a,H, - aH, . To see that both o, and «, are nonnegative, imag-
ine for the sake of concreteness that the diameter chord is horizontal and
directed from left to right and that @ a, lies horizontally above this chord.
Clearly a, lies on the left side of P’s boundary and a, lies on the right
side of P’s boundary, and thus the vectors —H, and H, must each have
nonnegative vertical components (see Figure 9). Because D(6,) is parallel to
the supporting lines passing through the endpoints of the diameter chord, it
follows from convexity that D(6,) lies within the minor angle subtended by
~H, and H,. Thus «, and a, are both nonnegative. O
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FIGURE 9. Rotating a base chord of the half-length paralielogram.

Rather than deal with angles and trigonometric functions directly, we can
instead associate each angle 6 in the range 6, < 0 < 6, uniquely with a
parameter 0 <7 < 1. In particular, we can associate § with the ratio ()
of the lengths of the (parallel) vectors D(6,) to D(0). In other words, ()
is uniquely defined by the equation #(8)D(6,) = D(#). Observe that since
D(6,) is nonzero, #(#) is a monotonically strictly increasing function of 6.

Using this parametric representation of angles, for all sufficiently small
angles (essentially up to the next critical angle), we can define the continuous
motion of the endpoints of each base of the half-length §-parallelogram as a
simple linear function of this parameter.

LEMMA 3.2. Let )

“ " max(a,, o)’
For each angle 6 for which 0 < ¢(0) < min(z,, 1), we have the following:

(1) The endpoints a,(0) and a,(0) lie on the respective segments h, and
h,. ‘

(i1) As 6 increases these endpoints move monotonically counterclockwise
along these segments, and in particular

a,(0)=a, +10)a,H,,  a)0)=a,+10)a,H,

(iii) For the value of 6 for which. t(0) =t,, at least one of the endpoints
of the base ai(é))az(eg coincides with a vertex of P.

Proor. First observe that because a, and «, are both nonnegative and
both cannot be zero, ¢, is defined and positive. Define 6 , 1o be the angle for
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which #(6,) =1,. Consider any 8, 6, <6 < min(6,, 6,) . For these values
of 6, we have 0 < t(f) <min(l,¢,). For i=1, 2, by simple substitution
we have 4,(0) = a, +1(0)o,H, . Clearly #(8)a; <1 so a,(6) lies somewhere
along the segment A, , establishing (). Indeed, if 6 = 6,, then either a,(6)
or a,(8) coincides with the head of its respective edge (depending on the
a-value which dominates in the definition of ¢,), establishing (iii).

To show that a,(0) and a,(0) are the endpoints of the base chord of the
half-length 6-parallelogram, it suffices to show that a,(0) —a,(0) = C(0).

a,(0) —a,(0) = (a, + t(6)a,H,) — (a, + t(0)a H))
= (a, — a,) + 1(0) (e, H, — o H,)
= C(6,) + t(6)D(6,)
= C(6,) + D(6)
= C(6).

Together with the observation that this motion function is positive and linear
in ¢ establishes (ii). O

By applying a similar construction for the base chord b b, we derive an

angle 0, > 0, at which the moving chord bl'(O)bz(Gi first encounters an
endpoint of P. Let
6" =min(d,, 6,, 6,).

For all angles 6, 6, < # < 8", each endpoint of the f-diameter and each
vertex of the half-length 6-parallelograms moves along a single edge of P.
Furthermore, the exact location of these endpoints and vertices can be deter-
mined by simple linear combinations as shown in Lemma 3.2. At the angle
0" at least one of these points coincides with a vertex of P, hence 8" is
the next critical angle. The vertex which becomes critical depends on which
of 6,, 6, and 0, is minimum. At this point the edges of contact with the
vertices must be reevaluated, and we are ready to repeat the process to find
the next critical angle.

We can now summarize the algorithm for advancing from the half-length
parallelogram at some angle 6, (not necessarily a critical angle) to the next

—

critical angle. Let ¢¢; denote the current diameter chord and let @ja, and
El_b; denote the current base chords for the half-length parallelogram. We
observe that at no time is it necessary to compute the actual angles at which
the given events occur, but rather to compute the parameters ¢, and 7, from
which these angles are derived. The parameter value ¢ = 1 corresponds to
the motion which rotates the diameter chord to its next critical placement.

ALGORITHM. (Advancing to the next critical half-length parallelogram):

(1) Rotate the lines of support fqr P passing through ¢, and ¢, to their
most counterclockwise orientation. If one of the support lines is
colinear with the edge on which ¢, lies, thenlet D := (1/2)(¢c, — c;) ,

li
il
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where c; is the head of the edge on which ¢, Lies. Otherwise let
D= (1 /2)(c; —¢,) where c; is the head of the edge on which oy
lies. In the first case ¢, is the moving endpoint of the diameter, and
in the other case ¢, is the moving endpoint. (D is D(6,) defined
earlier.)

(2) If a, and a, both lie on the same edge of P, then slide these end-
points counterclockwise along this edge while maintaining a constant
distance between the two of them until one reaches a vertex of P.
Determine the new edge on which this vertex lies.

(3) Let a; and a; denote the heads of the edges on which a, and a,
lie, respectively. Let H, = a; —a,;,and let H, := a; —a,.

(4) Determine constants o, and a, suchthat D = a,H, - a H, . (These
constants describe the relative movement of a,(0) and a,(0) along
the segments 4, and A, in terms of the movement of the diameter
endpoint.) ‘

(5) Let ¢, := 1/ max(e,, a,) . (This is the maximum motion parameter
before a,(0) or a,(6) reaches a vertex of P.)

(6) Repeat steps (2) through (5) replacing b, and b, for a, and a,,
respectively. Let B, B,, and t, denote the results. v

(7) Let ¢ := min(z,, ¢,, 1). This determines the motion to the next
critical event.

(8) Let _
a, = (1-a;")a, + ozlzf*al'1 a, = (1-oyt")a,+ azt*a;
by = (1-=pB,1")b, + B,1"b| by, = (1-B,t")b, + B,t"b,.

If ¢, is the moving endpoint of the diameter chord then let ¢, =
1 * * /1 . * * 7 1
(1 =1¢)c, +t°c; and otherwise let Gi=(1=-)+1tc,.

A convex combination of two points (vectors) a and a4’ in the plane is a
linear combination (1 —#)a + ta’, for some real t, 0<¢< 1. Summarizing
the above algorithm, we have :

LeMMA 3.3. Given a half-length 6-parallelogram. Q and the corresponding
8-diameter, the next critical half-length parallelogram Q" and diameter can be
computed in constant time. Furthermore, the set of half-length parallelograms
Jor all intermediate angles can be computed as convex combinations of the
corresponding endpoints of Q and Q.

Because each motion performed by the algorithm is locally counterclock-
wise we also have :

(Interspersing Property). Astheangle 8 rotates counterclockwise, the points
of contact between the parallelogram move counterclockwise (or remain sta-
tionary) along the boundary of the P.
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As a consequence of the interspersing property we also have a bound on
the number of critical events. Recall that by symmetry of half-length paral-
lelograms, it suffices to consider rotating 6 through 180°.

LeEMmMA 3.4. Given a convex polygon P with n vertices, the number of
critical angles is 3n over a rotation of 180°.

Proor. Let @@, and ZTIEZ denote the initial base chords. By Theo-
rem 3.4, as 6 rotates through 180°, the vertex a, will rotate monotonically
counterclockwise to b,, and b, will rotate monotonically counterclockwise
to a,. Thus, between these two vertices, exactly n critical angles will be
generated, corresponding to the moments at which these vectors become in-
cident with vertices of P. Likewise, the two vertices a, and b, will generate
a total of n critical events. Finally each of the endpoints of the diameter
chord in the direction €, will rotate counterclockwise about the boundary of
P until they exchange places. Thus, the number of event points generated
by the diameter chord will also be . This yields 3n total event points. O

From this last result and Lemma 3.3 we have the following corollary.

COROLLARY. Given an n-sided convex polygon P, in O(n) time we can
compute the ordered sequence of half-length parallelograms at each of the crit-
ical angles from 0° to 180°.

3.3. Minimizing between two critical angles. To complete the algorithm it
suffices to show how to compute the minimum area half-length parallelo-
gram between two consecutive critical angles in constant time. Let 6 and
6' be two angles such that there is no critical angle between them, and let
Q={(a,a,,b ,b,) and 0 = (a'1 , a'2 , b; , b;) be the vertices of the corre-
sponding half-length parallelograms, respectively. Because there are no criti-
cal angles between 6 and 6", corresponding pairs vertices (a, and a; , for
example) lie on the same edges of P. By Lemma 3.3 it follows that all half-
length parallelograms between these two can be interpolated by considering
convex combinations of corresponding vertices of Q and Q'. For i =1, 2
and 0 <t <1, define a,(t) = (1 - t)a; + ta; and b,(t) = (1 -0)b, + tbl'.. Let
us assume that the vertices of Q are enumerated so that the chords @@, and
bl_b; are parallel and similarly directed. Taking the point b, as the origin
of the parallelogram, the vectors defining this parallelogram are b,(t) — b, (f)
and a,(t) — b,(t). Thus the area of the interpolated parallelogram is given
by the absolute value of the determinant

det(b, (1) — b,(t), a,(t) - b,(2)).

This determinant is a polynomial of degree two in the invariant ¢, and this
polynomial can be computed in O(1) time given the endpoints of the two
parallelograms Q and Q. Therefore, by differentiating the polynomial sym-
bolically, we can determine the minima in the interval [0, 1] in constant
time.
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The entire algorithm for determining the densest double-lattice packing of
a convex polygon is given below. The correctness and O(r) running time of
this algorithm follow from the previous discussion.

ArLcoriTEM. (Finding the maximum density double-lattice packing):

(1) Compute an initial half-length parallelogram @ for 6 =0.

(2) While 6 < 180° do:

(a) Advance to the next critical half-length parallelogram Q' using
Algorithm 3.2.

(b) Determine the minimum area half-length parallelogram between
Q and Q' by the method described above.

(c) Let Q:=Q'. ‘

(3) Let Q= (a,, a,, b,, b)) be the minimum area half-length parallelo-
gram found in step (2b). Translate Q so that b, coincides with the
origin. Let v = b, — b, and let v = a, — b, . Pack P in the plane
using the lattice generated by 2u and 2v and pack. —P using this
same lattice.

4. Concluding remarks

We have shown that the problem of computing the densest double-lattice
packing of a convex polygon is solvable in linear time. There are a number
of interesting open problems suggested by this work. The first is to generalize
the problem to the densest double-lattice packings of other types of shapes in
the plane, for example, the connected union of two convex polygons, or star-
shaped polygons. Unfortunately, the characterization of the densest packing
in terms of extensive parallelograms relies heavily on convexity. A second
problem is to consider other periodic structures analogous to the double-
lattice for packings which allow rotation and which may be more economical
for other types of convex polygons.
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