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ABSTRACT

Given a set P of n points in Rd, a fundamental problem in computational geometry
is concerned with finding the smallest shape of some type that encloses all the points
of P . Well-known instances of this problem include finding the smallest enclosing box,
minimum volume ball, and minimum volume annulus. In this paper we consider the
following variant: Given a set of n points in Rd, find the smallest shape in question that
contains at least k points or a certain quantile of the data. This type of problem is known
as a k-enclosing problem. We present a simple algorithmic framework for computing
quantile approximations for the minimum strip, ellipsoid, and annulus containing a given
quantile of the points. The algorithms run in O(n log n) time.
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1. Introduction

Given a set P of n points in Rd, a fundamental problem in computational ge-
ometry is concerned with finding the smallest enclosing “range” of P . Well-known
instances of this problem include finding the minimal enclosing box,23 smallest en-
closing simplex,24 minimum volume ball,31,37 (2-D) smallest ellipsoid,30,37,6 and
minimum width/volume annulus.1,19,13 It will be assumed throughout that the
range in question is a generalized simplex, which is defined to be the intersection
of a constant number of halfspaces, or can be transformed into such a range by a
suitable lifting into a higher dimensional space. We also assume that the points are
in general position. That is, we assume that no d + 1 points are cohyperplanar,
no two distinct d-tuples of points define parallel hyperplanes, etc. These assump-
tions are not difficult to overcome by taking some care in the implementation of
the algorithm, and can certainly be overcome formally through the use of standard
methods of simulating nondegenerate configurations of points.9 We consider here
the following generic variant.

Problem definition: Given a set P of n points in d-dimensional space, and a
generalized simplex range, R, find the smallest instance of R that contains at
least k points or a certain quantile of the data.

This variant is known as a k-enclosing problem. Instances include enclosing k

points by a circle18,11 and finding the smallest axis-parallel rectangle enclosing k

points.29 Although it has been studied to some extent in computational geometry
the algorithms proposed deal mainly with specific cases, and their running times
are relatively high (O(n2 log n) and O(n3), respectively, for the minimum enclosing
circle and axis-parallel rectangle in the plane).

Our main motivation for studying this variant stems from the growing need for
efficient data analysis techniques that are robust to outlying and noisy observations.
In recent years, there has been a great deal of interest in robust statistical estimators,
because of their lack of sensitivity to outliers. The basic measure of the robustness
of an estimator is its breakdown point, which is defined to be the fraction (up to
50%) of outlying data points that can corrupt the estimator. As it turns out, a
number of highly robust estimators are defined in terms equivalent to the above
generic problem formulation. In this paper, we will consider the following robust
estimators:

• Rousseeuw’s least median-of-squares (LMS) regression estimator25 is among
the best known 50% breakdown-point estimators. As will be clarified below,
it corresponds to finding the narrowest hyperstrip containing at least half of
the data points.

• The minimum volume ball (MVB) estimator is an LMS-like location estima-
tor, which corresponds to finding the ball of minimum volume enclosing at
least half of the data,25 and the minimum volume ellipsoid (MVE) is defined
similarly for ellipses.25,26,27
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• The minimum width/volume annulus (MWA/MVA) estimator corresponds to
finding an annulus of smallest volume/width that contains at least half of the
data.

In some applications the number of outliers may exceed 50%, so it is common
to generalize the problem definitions with respect to a specific rank. That is, in
addition to the point set P , an algorithm will be given a (residual) rank k, where
k ≤ n, and will return the smallest corresponding range instance that contains at
least k of the points. It is often more natural to represent k as a given quantile, or
fraction, of the size of the data set. That is, given the quantile q, where 0 < q < 1,
we set k = dnqe. We will assume this latter formulation henceforth.

We will see below that exact computation of these robust estimators involves
a high computational cost. In this paper we derive efficient approximations for
the estimators in question through the use of quantile approximation. Consider
the LMS estimator for example. First observe that it is not really reasonable to
approximate the coefficients of the hyperplane of fit, since the data may not lie on
a hyperplane in the first place. One reasonable approach is to compute a width
approximation. In addition to the point set P and the quantile q, the algorithm is
given a real εw > 0, and produces a hyperstrip containing at least a fraction q of the
points, such that the width of the hyperstrip is at most (1 + εw)wopt, where wopt is
the width of the LMS hyperstrip. The approach that we will consider here is called
a quantile approximation. Given the desired quantile q and a quantile error bound
εq, the algorithm returns a hyperstrip that contains at least (1 − εq)qn points and
is no wider than the LMS hyperstrip.

Similarly to the LMS estimator, we can extend the notion of quantile approxi-
mation naturally to our other robust estimators. For example, the MVE estimator
is a hyperellipsoid that contains at least (1−εq)qn points and is not larger in volume
than MVEP (q), where MVEP (q) denotes the minimum volume ellipsoid containing
dqne points of the data.

Our main result is that quantile approximations for all these estimators can be
computed efficiently.
Theorem 1 For a fixed quantile, εq-quantile approximations for the LMS, MVE,
and MWA estimators in Rd for fixed d, as well for the MVA estimator in the plane
can be computed in time

O

(
n log n +

(
1
εq

)O(d)
)

.

For fixed εq this is O(n log n).
This paper is organized as follows. In Section 2 we survey background and

previous results on the estimators of interest. In Section 3 we draw on the notion
of ε-approximation17 to present a generic algorithmic framework for quantile ap-
proximation. In Section 4 we show that this framework leads to efficient quantile
approximation algorithms for the robust estimators in question. In addition, we will
show that the theoretical framework derived in this paper applies to any k-enclosing
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problem satisfying certain conditions. One such example is finding the minimal axis-
parallel hyper-rectangle that encloses k of the points. Section 5 contains a proof of
one of the technical lemmas needed for our results. Section 6 provides concluding
remarks.

2. Background and previous results

While outlying and noisy data can be handled successfully by the use of ro-
bust statistical estimators, the efficient computation of these estimators continues
to pose a formidable algorithmic challenge. In this subsection we provide addi-
tional background on the computation of robust estimators and other k-enclosing
problems.

2.1. Least median of squares regression estimator

The LMS hyperplane estimator is defined formally as follows. Let P = {pi =
(xi1, . . . , xid), i = 1, . . . , n}, be a set of n points in Rd. Given a hyperplane H : xd =
θ1x1 + . . . + θd−1xd−1 + θd, the residual of a point (ξ1, ξ2, . . . , ξd) with respect to H

is ξd − (θ1ξ1 + . . . + θd−1ξd−1 + θd). The least median-of-squares (LMS) regression
hyperplane for P is the hyperplane H that minimizes the median of the squared
residuals of P with respect to H. Put symbolically, this is the hyperplane H which
minimizes (medi ri

2), where ri denotes the residual of point pi with respect to H.
In contrast, the ordinary least squares (OLS) estimator minimizes the sum of the
squared residuals. Intuitively, if less than half of the points are outliers, then these
points cannot adversely affect the median squared residual, which explains why
LMS is a 50% breakdown point estimator. Observe that the median of the squared
residuals is the same as the square of the median of the absolute values of the
residuals. Henceforth we dispense with the squaring operation, and just describe
the computation in terms of the absolute values of the residuals.

(a) (b) (c)
Figure 1: (a) A road segment with outlying pixels. (b) Its OLS line fit. (c) Its LMS
line fit.

To view the LMS estimator as a k-enclosing problem, define a hyperstrip σ =
(H1,H2) to be the closed region in Rd lying between two nonvertical parallel hy-
perplanes H1 and H2. The vertical width of a hyperstrip, width(σ), is the length of
its intersection with the xd axis. Define LMSP (q) to be the hyperstrip of minimum
vertical width that encloses at least dqne points from the set P . It is easy to see
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that the center hyperplane of LMSP (1/2) is the desired LMS regression hyperplane,
and that the width of the hyperstrip is twice the magnitude of the median residual.
We call LMSP (1/2) the LMS hyperstrip.

In addition to having a high breakdown-point, the LMS estimator is regression-,
scale-, and affine-equivariant, which means that the estimate transforms “properly”
under these types of transformations (see Ref. [26], pp. 116–117, for exact defini-
tions). The LMS estimator may be used in its own right or as an initial step in a
more complex estimation scheme.38 It has been widely used in numerous applica-
tions of science and technology, and is considered a standard technique for robust
data analysis. Our main motivation for studying the LMS estimator stems from
its usage in computer vision (see, e.g., Refs. [20,33,34,22]). For example, Figure 1
demonstrates the enhanced performance obtained by LMS versus OLS (for d = 2)
in detecting straight road segments in a noisy aerial image.22

An exact algorithm for computing the LMS hyperstrip is due to Stromberg.35

Define an elemental subset for the LMS problem to be a subset of d+1 points. Each
such subset defines a constant number (depending on d but not n) of hyperstrips.
Stromberg shows that the optimal solution is realized by one of these hyperstrips. He
presents an algorithm with worst-case complexity O(nd+2 log n). For our purposes,
it suffices to use a simpler O(nd+2) time algorithm due to Agulló.4 His algorithm
considers all

(
n

d+1

)
elemental subsets and computes the number of points within

each resulting hyperstrip. Among all hyperstrips containing the desired number
of points, the strip of minimum width is returned. Obviously, these algorithms
are impractical for large values of n. For d = 2, the best algorithm known for
finding the LMS strip is the topological plane-sweep algorithm due to Edelsbrunner
and Souvaine10,32. It runs in O(n2) time and requires O(n) space. However, even
quadratic running time is unacceptably high for many applications involving large
data sets.

For this reason, what is often used in practice is a simple Monte Carlo ap-
proximation algorithm which runs in O(n log n) time for fixed d.26 This algorithm
randomly samples some constant number of d-tuples of points depending on the ex-
pected fraction of outliers and the user’s desired confidence in the final result, but
not on n. For each sampled tuple the coefficients of the hyperplane passing through
these points are computed, and in O(n log n) time it is possible to approximate the
hyperplane having those coefficients that minimize the k-th smallest squared resid-
ual. The intercept is computed by a reduction to a 1-dimensional LMS problem.
Rousseeuw26 shows that if a constant fraction of points does indeed lie on or very
close to a hyperplane, then this sampling procedure will return the correct result
with the desired confidence. However, if the data fail to satisfy this assumption,
then there are no guarantees (even probabilistic) on the results of this algorithm.
Likewise, the feasible set algorithm due to Hawkins,15 an alternative Monte Carlo
approximation, does not guarantee an error bound on the computed estimate either.
Hence, neither of these Monte Carlo algorithms provides a completely satisfactory
solution to the problem.
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2.2. Minimum volume disk estimators

In addition to regression analysis/function fitting, the LMS principle can be
extended to location and covariance estimation of mutivariate data. For example,
the minimum volume ball (MVB) estimator can be defined formally as follows.
Given P = {pi = (xi1, . . . , xid)}, i = 1, . . . , n, find the minimum volume sphere
that covers at least half of the data. This corresponds to locating a point in Rd

such that its median distance (with respect to each of the points in P ) is minimized.
As previously mentioned, algorithms have been proposed in the planar case,18,11 but
their complexity is rather high in the worst case, i.e., when k = n/2. This definition
can be generalized as follows. Given a multivariate data set in Rd, find the minimum
volume ellipsoid (MVE) that covers at least half of the data points. The MVB/MVE
estimators also have a 50% breakdown point and they are translation-, scale-, and
rotation-equivariant. Furthermore, the MVE estimator is affine-equivariant for any
nonsingular affine transformation (see Ref. [26], p. 258).

Studying these estimators is of interest due to their usage in data clustering.
Figure 2 illustrates, for example, the advantage gained by using an MVE estimator
(as opposed to a standard maximum likelihood estimator (MLE)) in the presence
of outliers. (The ellipse depicted in the figure is not the actual MVE, but is due to
postprocessing applied to the actual MVE.)
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Figure 2: Cluster estimates for a contaminated set of data; MVE (bold) vs. MLE.
Source: Rousseeuw and Leroy, p. 261.

An exact algorithm for the MVE estimator is due to Cook, Hawkins, and
Weisberg.5 The algorithm considers all subsets of the data of size n/2 and runs
essentially in time O

(
n

n/2

)
. A recent algorithm by Agulló3 appears to be more

efficient in practice.
More commonly used algorithms are the Monte-Carlo approximations due to

Rousseeuw (Ref. [26], pp. 258–262) and Hawkins.16 However, as was noted in the
previous subsection, such algorithms provide no guarantee on the accuracy of the
result.
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2.3. Minimum width/volume annulus

Similarly to a minimum volume disk, we may define a minimum width/volume
annulus (MWA/MVA) as an annulus with the smallest width/volume that covers
at least half of the data. (See Fig. 3 below.) We know of no efficient algorithm for
solving this variant of the problem.
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Figure 3: An illustration of a minimum width/volume annulus containing at least
half of the data.

Another interesting k-enclosing problem is that of finding the smallest axis-
parallel hyper-rectangle that encloses k points of the data. There are a number
of algorithms for solving the problem in the plane. They can be computed in
O(k2n log n) time and O(kn) space,2 O(n log n+k2n) time and O(kn) space,12 and
O(n log n + k2n) time and O(n) space.8 Recently, Segal and Kedem presented a
more general algorithm in d-dimensional space. Their algorithm requires O(dn +
dk(n − k)2(d−1)) time and O(dn) space.29 If k is roughly n/2 then, even in the plane,
all of the above algorithms require Ω(n3) time.

3. Generic Approach to Quantile Approximation.

We define our algorithmic framework in the abstract setting of set systems (also
called range spaces). First, define a set system to be a pair (P,Σ), where P is a set
and Σ is a collection of subsets of P . For the applications of interest, the elements
of Σ can each be thought of as the subset of P contained within some shape, e.g.,
strip, ball, ellipse, or box. We will use the terms shape and range rather than set
when referring to these geometric objects.

Given ε > 0, a subset A ⊆ P is an ε-approximation for P relative to the set
system if for every range σ ∈ Σ,∣∣∣∣ |A ∩ σ|

|A| − |P ∩ σ|
|P |

∣∣∣∣ < ε.

That is, the fraction of A that lies in any range and the fraction of the entire set
that lies in the same range differ by at most ε. We will make use of the following
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result on the construction of ε-approximations for generalized simplices. It involves
a straightforward generalization of a construction due to Matoušek.17 The proof is
presented in Section 5.
Lemma 1 Given an n-point set P in Euclidean d-space and a parameter δ > 0, for
t ≥ 1, an (unweighted) (1/t)-approximation of size O(td+1+δ) for P with respect to
generalized simplices can be computed in O(n log min(t, n)) time.

Now we present our general algorithm for computing a quantile approximation
for a generic k-enclosing problem. We assume that the ranges are described in
the form of a set system (P,Σ), where the points P lie in d-dimensional Euclidean
space, and the ranges Σ are generalized simplices in this space or can be mapped to
generalized simplices in a higher-dimensional space through standard linearization,
e.g., by lifting to a paraboloid. We also assume that we have access to an exact
version of some exact k-enclosing problem. In particular, we assume that there exists
an algorithm which, given any set of m points and an integer h ≤ m, computes the
smallest subset in the set system that contains at least h points. Moreover, we
assume that this algorithm runs in O(mc) time for some constant c. Our analysis
is based on the assumption that q, εq and dimension d are constants, independent
of n.

The approximation algorithm is rather simple. Given the point set P , the quan-
tile q, and the quantile error bound εq, it returns a minimum sized shape that
contains at least a fraction q(1 − εq) of the points.

(1) Set t = max(n1/(c(d+1+δ)), 2
qεq

), where δ is the constant from Lemma 1.

(2) Compute a (1/t)-approximation A ⊆ P of size m = O(min(n, td+1+δ)).

(3) Invoke the exact version of the algorithm on the above (1/t)-approximation
to compute the smallest shape σ enclosing at least a fraction q

(
1 − εq

2

)
of A.

This shape is the final quantile approximation.

Lemma 2 The shape computed by the above algorithm is an εq quantile approxi-
mation.

Proof. Let σ∗ denote the minimum sized shape that contains a fraction q of the
points of P . Let σ denote the shape returned by the approximation algorithm. Let
size(σ) denote the associated geometric size measure of the shape, e.g., its width or
volume. To establish that σ is a quantile approximation we need to establish the
following two things.

(a) The size of σ is not greater than the optimum, that is, size(σ) ≤ size(σ∗).
Suppose to the contrary that size(σ) > size(σ∗). Since the exact algorithm
did not select σ∗ when run on the (1/t)-approximation, it follows that σ∗

encloses less than a fraction
q
(
1 − εq

2

)
of the set A. Since σ∗ encloses at least a fraction q of the points in P , we have∣∣∣∣ |A ∩ σ∗|

|A| − |P ∩ σ∗|
|P |

∣∣∣∣ >
∣∣∣q − q

(
1 − εq

2

)∣∣∣ =
qεq

2
≥ 1

t
,
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contradicting the fact that A is a (1/t)-approximation.

(b) The shape σ encloses at least a fraction q(1−εq) of P . Suppose to the contrary
that it enclosed a smaller fraction. Then we would have∣∣∣∣ |A ∩ σ|

|A| − |P ∩ σ|
|P |

∣∣∣∣ >
∣∣∣q (1 − εq

2

)
− q (1 − εq)

∣∣∣ =
qεq

2
≥ 1

t
.

Again, this is a contradiction.

2

Lemma 3 Given fixed q and d and access to an exact polynomial time k-enclosing
algorithm, for any 0 < εq < 1 the generic quantile approximation algorithm runs in
time

O

(
n log n +

(
1
εq

)O(d)
)

.

Under our assumption that εq is a constant, the running time is O(n log n).
Proof. By Lemma 1, Step (2) of the algorithm can be performed in time

O(n log min(t, n)) ≤ O(n log n) time. The size of the approximation is

m = O(td+1+δ) = O

(
max

(
n1/c,

(
2

qεq

)d+1+δ
))

= O

(
n1/c +

(
1
εq

)O(d)
)

,

given that q is fixed. Step (3) can be accomplished in O(mc) = O(n + (1/εq)O(d))
time. The overall running time is dominated by the sum of times for Steps (2)
and (3). If εq is fixed, then this is O(n log n). 2

Remark: Note from the proof of Lemma 2, the choice t = 2/(qεq) in the algorithm
would have been sufficient to guarantee the approximation bounds. The actual
choice made in the algorithm allows the algorithm to produce even more accurate
results, subject to the restriction that the running time of the exact k-enclosing
algorithm on the (1/t)-approximation is linear in n. This feature is often useful in
practice. The price we pay is the additional O(log n) factor in the running time,
which would be replaced by O(log t) = O(log 1/(qεq)) otherwise.

4. Applications

Based on the definitions and discussion in the introduction, and in view of the
generic algorithmic framework provided in the previous section, we now demonstrate
how quantile approximations can be computed in O(n log n) time for the estimators
in question.

4.1. LMS.

The shape in this case is simply a hyperstrip (in d-space), which is a generalized
simplex, and its size is its vertical width. Once an ε-approximation A is found, we set
c = d+2+δ′ (for any δ′ > 0) and invoke an exact LMS algorithm (as in Ref. [35] or
Ref. [3]) with respect to A. Let LMSA(q(1− εq/2)) denote the resulting hyperstrip.

9



According to Lemma 2, the computed hyperstrip is a quantile approximation of
LMSP (q). The overall time complexity is determined by the computation time of
the ε-approximation. According to Lemma 1, this requires O(n log n) time.

4.2. MVE.

This is perhaps the most interesting case considered. Note that the shape is
an ellipsoid, i.e., it is not a generalized simplex. However, we may still draw on
Lemma 1 by mapping the given set of points, through linearization, to a higher-
dimensional space as follows. A point p = (x1, . . . , xd) in Rd is transformed to a
point p′ in RD, where D = d(d + 3)/2. The first d coordinates of p′ are x1, . . . , xd,
and the remaining coordinates are the products xixj for 1 ≤ i ≤ j ≤ d. That is

p′ = (x1, . . . , xd, x1
2, x1x2, . . . x1xd, x2

2, x2x3, . . . , xd
2).

In doing so, every ellipsoid in Rd corresponds to a hyperplane in D-dimensional
space and vice versa. It is easy to verify that the corresponding range is thus a half-
space in D-dimensional space, which is a generalized simplex. An ε-approximation A

of the transformed points in RD is computed with respect to this halfspace. Once A

is found, we map its m points to the original d space. This yields an ε-approximation
with respect to ellipsoids (in the original space) due to the correspondence between
ellipsoids and halfspaces.

We now invoke an exact algorithm on the m points in Rd to obtain the desired
MVE. To comply with the algorithmic framework of Section 3, we need to show that
there exists an exact polynomial time algorithm to compute an MVE that contains
h ≤ m of the points. Let E denote the desired MVE, and let H denote the set of
h points contained in the MVE. Also, let EH denote the smallest ellipse containing
(all of the points in) H. By an easy contradiction argument it follows that E = EH .

It is well known that the number of points on the surface of the smallest ellipse
that contains a set of h points in d-space is between d + 1 and d(d + 3)/2 (see
Ref. [36]). Let h

′
denote this number, and let S denote the set of h

′
points lying

on the surface of this ellipse. S is called the support set of the ellipse.
Claim 1 EH = ES, i.e., the smallest ellipse containing H is identical to the small-
est ellipse containing the support set of H.

Proof. This follows from well-known uniqueness properties of the John-Löwner
ellipsoid.7 See also Ref. [14] Proposition 2.1(iii) and Ref. [28] for a more formal
proof. 2

The above discussion suggests that to compute the desired MVE that contains h

points, we may consider all h
′
-tuples, where h

′
= d+1, . . . , D, and where each tuple

is a support-set candidate. For each h
′
-tuple we then compute the smallest ellipsoid

containing this tuple and report that ellipsoid for which a minimum is attained.
Claim 2 In any fixed-dimensional space, the above algorithm runs in polynomial
time in h.

Proof. Based on Chazelle and Matoušek6 and Matoušek, Sharir, and Welzl,19

computing the smallest ellipsoid containing h
′

points in Rd can be done in O(h
′
)
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time. Specifically, it was shown that such an ellipsoid can be computed determinis-
tically in DO(D)h

′
time6. Hence computing the smallest ellipsoid for each h′-tuple

will require
D∑

h′=d+1

DO(D)h
′
(

h

h′

)
,

or O(DO(D)hD) = O(mc) time, where c = D. 2

Setting c = D and applying the general framework results in an O(n log n)-time
quantile approximation algorithm for the MVE.

4.3. MWA/MVA.

As with the minimum volume ellipsoid, since an annulus is not a generalized
simplex, we need to map the data points to a higher dimensional space and compute
an ε-approximation on the transformed data set with respect to a corresponding
generalized simplex. This can be done through linearization, where each point
(x1, . . . , xd) in d-space is mapped to (x1, . . . , xd,

∑d
i=1 xi

2) in Rd+1. It is easy
to see that this transformation establishes a one-to-one correspondence between
a d-dimensional annulus and a hyperstrip in Rd+1, the latter being a generalized
simplex. Thus an ε-approximation A is computed in d + 1-space with respect to
hyperstrips. The points of A can then be transformed back to Rd.

We now need to show that there exists an exact, polynomial time algorithm
that computes the MWA/MVA containing h of the m points of A. We first consider
finding the desired minimum-width annulus. Analogously to the MVE derivation,
let W denote the desired width annulus, and let H denote the set of h points
contained in W . Also, let WH denote the minimum width annulus containing H.
One can easily show that W = WH . Furthermore, the number of points on the
boundaries of WH is at least d + 2. (This is implied by the discussion in Garćıa, et
al.13 following their Theorem 1.) Note that d + 2 points uniquely determine a d-
dimensional annulus. (To see this observe that lifting to a paraboloid yields a linear
system of d+2 equations with d+2 unknowns from which the center’s d coordinates
and the two radii of the annulus can be found.) Thus, we need only consider all
d + 2-tuples (or support-set candidates) and record that support set for which the
corresponding annulus attains minimum width. Since the number of candidates is
2d+2

(
h

d+2

)
(as there are 2d+2 ways of distributing d+2 points between the inner and

outer disks of an annulus), and since for each candidate the corresponding annulus
can be computed in O(d3) time, finding the desired minimum-width annulus requires
O(2dd3hd+2) = O(mc) time, where c = d + 2 and d is fixed. Setting c = d + 2 leads
to an O(n log n)-time quantile approximation algorithm for the MWA.

We now consider finding the minimum-volume annulus containing a certain frac-
tion of the points. While an ε-approximation in Rd+1 can be found as before, we
know of no analogous result (to that of Garćıa and Ramos) that implies that the
optimal MVA can also be determined by an elemental subset. We show how to solve
the problem for d = 2. By projecting the points to a paraboloid, it can be shown
that an annulus A(r1, r2) (in any d-space) maps to a hyperstrip (in Rd+1) whose
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vertical width is r2
2 − r1

2. Since the area of annulus in the plane is proportional
to the difference of its squared radii, the MVA problem for d = 2 is reduced to
finding an LMS estimator in 3-space. Setting c = 5 + δ for some small δ, leads to
an O(n log n)-time quantile approximation algorithm in the plane.

4.4. Generalizations.

As previously noted, the algorithmic framework presented in Section 3 applies to
any k-enclosing problem, provided that the associated range is either a generalized
simplex (or it can be mapped to one) and that there exists an exact polynomial
time algorithm to compute a desired k-enclosing range.

As an example, reconsider the problem of finding the smallest axis-parallel
hyper-rectangle that encloses k points. Obviously the range here is a generalized
simplex, where the number of halfspaces is 2d. In addition, based on the result by
Segal and Kedem,29 the smallest k-enclosing hyper-rectangle can be computed in
O(n2d−1) time (for k ≈ n/2). Thus, according to the algorithmic framework, set-
ting c = 2d−1 in this case would lead to an O(n log n)-time quantile approximation
algorithm.

5. Proof of Lemma 1

In this section we present a proof of Lemma 1 on the existence and construction
of ε-approximations. Our approach is to generalize a result of Matoušek on the ex-
istence of weighted ε-approximations for simplices to unweighted ε-approximations
for generalized simplices. Given a set system (P,Σ) and ε > 0, a weighted ε-
approximation is a subset A ⊆ P and associated positive integer weights w(a) for
each a ∈ A, such that for all ranges σ ∈ Σ,∣∣∣∣w(A ∩ σ)

w(A)
− |P ∩ σ|

|P |
∣∣∣∣ < ε,

where w(X) denotes the total weight of set X.
For our purposes, define a simplex in d-space to be the intersection of d + 1

halfspaces. Note that this definition allows for unbounded simplices. Define a
generalized simplex to be the intersection of at most g halfspaces, for some constant
g. Matoušek has shown that given an n-point set P in d-space, and a set system
consisting of P and ranges consisting of (standard) simplices, a weighted (1/t)-
approximation for P of size O(td+δ) can be computed in O(n log t) time.17 In order
to present our generalization, we first review the concept of simplicial partitions.
Given an n-point set P , define a simplicial partition to be a collection

Π = {(P1,∆1), . . . , (P`,∆`)},

where the Pi’s form a partition of P and each ∆i is a relatively open simplex
containing Pi. A simplicial partition Π has crossing number κ if no hyperplane
intersects more than κ simplices of Π. We use the following result, which was
proved by Matoušek.17
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Lemma 4 (Construction of Simplicial Partitions) Given δ > 0, an n-point set
P ⊆ Rd, and an integer parameter s, 2 ≤ s < n, a simplicial partition for P

satisfying s ≤ |Pi| < 2s for every class Pi and crossing number O((n/s)1−(1/d)+δ)
can be constructed in time O(n log(n/s)).

From the class size restriction, the partition is of size O(n/s). Our result differs
from the one presented in Ref. [17] in that it avoids the need to attach weights to
the members of the approximation, but we pay a price in having a slightly larger
size.

Consider an n-point set P ⊆ Rd. Let Π = {(P1,∆1), . . . , (P`,∆`)} be a simplicial
partition for P as given in Lemma 4, and let κ denote its crossing number. If n =
O(td+δ), we may just take P to be the approximation. Otherwise, let s = βn/td+δ,
for a constant β < 1 to be determined later. Observe that s grows with n but is
smaller than n, and hence satisfies the conditions of Lemma 4. We may assume
that s ≥ 4t, for otherwise, n = O(td+1+δ) and again, we may simply take P to be
the approximation.

Let α = 4t/s. Since s ≥ 4t, it follows that α ≤ 1. For each class Pi, let
Ai denote any subset of Pi of size dα|Pi| e, and let A denote the union of these
(disjoint) subsets. We assert that A is the desired (1/t)-approximation. Clearly
|A| ≥ α|P | = αn. Also, since the partition has at most n/s classes, we have

|A| =
∑

i

dα|Pi| e ≤ α
∑

i

|Pi| + n

s
≤ αn +

αn

4t
=
(

1 +
1
4t

)
αn.

It follows that |A| = O(αn) = O(td+1+δ), and by Lemma 4, A can be computed in
O(n log(n/s)) = O(n log min(t, n)) time.

All that remains to be shown is that A is a (1/t)-approximation for generalized
simplices. Let σ be a generalized simplex with g sides. First, consider any class
Pi whose corresponding simplex ∆i is crossed by one of the g hyperplanes of σ.
Because |A| ≥ αn and |Ai| ≤ α|Pi| + 1 we have

|Ai ∩ σ|
|A| ≤ |Ai|

αn
≤ |Pi| + (1/α)

n
.

Since t ≥ 1 we have 1/α = s/(4t) ≤ s. Combining this with the fact that |Pi| < 2s

we have ∣∣∣∣ |Ai ∩ σ|
|A| − |Pi ∩ σ|

|P |
∣∣∣∣ ≤ |Pi| + (1/α)

n
≤ 3s

n
.

Since none of the g sides of σ can cross more than κ hyperplanes of the simplicial
partition, if we sum this quantity over all crossed simplices, the total is at most
3sgκ/n.

Let δ′ = (1/d) − 1/(d + δ), implying that (d + δ)((1/d) − δ′) = 1. By applying
Lemma 4 (using δ′ in place of δ) and using the above definition of s, we have

3sgκ

n
= 3g(s/n)O

(
(s/n)−1+(1/d)−δ′)

= 3gO
(
(s/n)(1/d)−δ′)

= 3gβ1/(d+δ)O
(
(1/t)(d+δ)((1/d)−δ′)

)
= 3gβ1/(d+δ)O(1/t) ≤ 1

2t
,
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for a suitable choice of β < 1.
Next, we consider simplices that are not crossed by any of the sides of σ. Any

such simplex lies entirely inside or entirely outside of σ. It contributes to the
approximation error only if it lies inside of σ, that is if |Ai∩σ| = |Ai| and |Pi∩σ| =
|Pi|. Thus for these simplices, it suffices to bound the absolute value of

x =
|Ai|
|A| − |Pi|

|P | .

Based on our previous bounds on |A| we have

x ≤ |Ai|
αn

− |Pi|
n

≤ 1
αn

(dα|Pi|e − α|Pi|) ≤ 1
αn

.

Similarly,

−x ≤ |Pi|
n

− |Ai|
(1 + 1/4t)αn

≤ 1
n

(
|Pi| − |Pi|

(1 + 1/4t)

)

=
|Pi|

n(4t + 1)
≤ 2s

4nt
=

2
nα

.

So |x| ≤ 2/(nα). Since there are at most n/s simplices in the simplicial partition,
by summing |x| over all of the simplices that are not crossed by σ, the total is at
most 2/(sα) = 1/(2t).

Combining the bounds from the two cases of simplices (crossed and not crossed),
it follows that the total absolute difference is no larger than 1/(2t) + 1/(2t) = 1/t,
which completes the proof.

6. Discussion

In this paper we have presented an algorithmic methodology based on the frame-
work of ε-approximations to compute quantile approximations efficiently for a num-
ber of robust estimators and other k-enclosing problems. Specifically, we showed
that a quantile approximation for the problems considered can be computed in
O(n log n) time for fixed q, εq, and d. The following questions arise in the context
of future research:

1. Can the result for the minimum volume annulus be extended to d > 2?

2. Given that the algorithms described rely on the efficient computation of ε-
approximations whose practical implementation has yet to be demonstrated, it
remains to be seen whether (quantile) approximations can be further pursued
to yield practical algorithms in higher dimensions for the problems considered.
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