
An Empirical Study of a New Approach to
Nearest Neighbor Searching?

Songrit Maneewongvatana and David M. Mount

Department of Computer Science,
University of Maryland, College Park, Maryland

{songrit,mount}@cs.umd.edu

Abstract. In nearest neighbor searching we are given a set of n data
points in real d-dimensional space, <d, and the problem is to preprocess
these points into a data structure, so that given a query point, the nearest
data point to the query point can be reported efficiently. Because data
sets can be quite large, we are interested in data structures that use
optimal O(dn) storage.

In this paper we consider a novel approach to nearest neighbor search-
ing, in which the search returns the correct nearest neighbor with a given
probability assuming that the queries are drawn from some known dis-
tribution. The query distribution is represented by providing a set of
training query points at preprocessing time.

The data structure, called the overlapped split tree, is an augmented
BSP-tree in which each node is associated with a cover region, which
is used to determine whether the search should visit this node. We use
principal component analysis and support vector machines to analyze
the structure of the data and training points in order to better adapt
the tree structure to the data sets. We show empirically that this new
approach provides improved predictability over the kd-tree in average
query performance.

1 Introduction

Nearest neighbor searching is a fundamental problem the design of geometric
data structures. Given a set S of n data points in some metric space, we wish to
preprocess S into a data structure so that given any query point q, the nearest
point to q in S can be reported quickly. Nearest neighbor searching has ap-
plications in many areas, including knowledge discovery and data mining [20],
pattern recognition and classification [13, 17], machine learning [12], data com-
pression [24], multimedia databases [21], document retrieval [15], and statistics
[16]. Many data structures have been proposed for nearest neighbor searching.
Because many applications involve large data sets, we are interested in data
structures that use only linear or nearly linear storage. Throughout we will

? The support of the National Science Foundation under grant CCR–9712379 is grate-
fully acknowledged.



assume that the space is real d-dimensional space <d, and the metric is any
Minkowski metric. For concreteness we consider Euclidean distance.

Naively, nearest neighbor queries can be answered in O(dn) time. The search
for more efficient data structures began with the seminal work by Friedman,
Bentley, and Finkel [22], who showed that such queries could be answered effi-
ciently in fixed dimensions through the use of kd-trees. Since then many different
data structures have been proposed from the fields of computational geometry
and databases. These include the R-tree and its variants [4, 33], the X-tree [5], the
SR-tree [26], the TV-tree [29], and the BAR tree [18], not to mention numerous
approaches based on Voronoi diagrams and point location [14].

Although nearest neighbor searching can be performed efficiently in low-
dimension spaces, for all known linear-space data structures, search times grow
exponentially as a function of dimension. Even in moderately large dimensional
spaces, in the worst case, a large fraction of points in S are visited in the search.
One explanation for this phenomenon is that in high dimensional space, the
distribution of the inter-point distances tends to concentrate around the mean
value. As a consequence, it is difficult for the search algorithm to eliminate points
as being candidates for the nearest neighbor. Fortunately, in many of the data
sets that arise in real applications, correlations between dimensions are common,
and as a consequence the points tend to cluster in lower dimensional subspaces
[19]. Good search algorithms take advantage of this low-dimensional clustering
to reduce search times.

A popular approach to reducing the search time is through approximate near-
est neighbor search. Given ε > 0 the search may return any point p in S whose
distance to query q is within a factor of (1 + ε) of the true nearest distance. Ap-
proximate nearest neighbor search provides a trade-off between speed and accu-
racy. Algorithms and data structures for approximate nearest neighbor searching
have been given by Bern [6], Arya and Mount [1], Arya, et al. [2], Clarkson [11],
Chan [8], Kleinberg [27], Indyk and Motwani [25], and Kushilevitz, Ostrovsky
and Rabani [28].

Our experience with the ANN library for approximate nearest neighbor
searching, we have observed two important phenomena. The first is that sig-
nificant improvements in search times often require uncomfortably large values
of ε. The second is that the actual average error committed in the search is
typically much smaller (by factors of 10 to 30) than ε. The combination of these
two effects result in an undesirable lack of predictability in the performance of
the data structure. In order to achieve greater efficiency, users often run the
algorithm with a high ε, and sacrifice assurances of accuracy on each query for
better speed and the hope of good average case performance [32]. One of our mo-
tivations in this research is to find data structures that provide good efficiency
but with a higher degree of predictability.

In this paper we consider an alternative approach for dealing with this short-
coming. We propose a new data structure for nearest neighbor searching, which
applies a different kind of approximation. In many applications of nearest neigh-
bor searching, the performance of any one query is not as important as the



aggregate results. One example is image compression based on vector quan-
tization [24]. An error committed on a single pixel may not seriously impact
the overall image quality. Our approach may be described as a probably-correct
nearest neighbor search. Assuming that the queries are drawn from some known
distribution the search returns the true nearest neighbor with a probability that
user can adjust. The query distribution is described by providing a set of train-
ing queries as part of the preprocessing stage. By analyzing the training data we
can better adapt the data structure to the distributional structure of the queries.
The idea of allowing occasional failures was considered earlier by Ciaccia and
Patella [10] in a more limited setting.

We introduce a new data structure for this problem called an overlapped
split tree or os-tree for short. The tree is a generalization of the well known
BSP-tree, which uses the concept of a covering region to control which nodes are
searched. We will introduce this data structure in the next section, and discuss
how it can be applied for both exact and probably-correct nearest neighbor
searching. In the subsequent section we provide experimental evidence for the
efficacy and efficiency of this data structure. We show empirically that it provides
an enhanced level of predictability in average query performance over the kd-tree
data structure.

2 Overlapped Split Tree

The os-tree is a generalization of the well-known binary space partition (BSP)
tree (see, e.g., [14]). Consider a set S of points in d-dimensional space. A BSP-tree
for this set of points is based on a hierarchical subdivision of space into convex
polyhedral cells. Each node in the BSP-tree is associated with such a cell and the
subset of points lying within this cell. The root node is associated with the entire
space and the entire set. A cell is split into two disjoint cells by a hyperplane,
and these two cells are then associated with the children of the current node.
Points are distributed among the children according the cell in which they are
contained. The process is repeated until the number of points associated with a
node falls below a given threshold. Leaf nodes store these associated points.

Many of the data structures used in nearest neighbor searching are special
cases or generalizations of the BSP-tree, but we will augment this data structure
with an additional element. In addition to its BSP-tree structure, each node of
the os-tree is associated with an additional convex polyhedral cell called a cover.
Intuitively, the cover associated with each node contains every point in space
whose the nearest neighbor is a data point in the associated cell. That is, the
cover contains the union of the Voronoi cells [14] of the points associated with the
cell. (Later we will need to relax this condition, for purposes of computational
efficiency.) The covers of the children of a node will generally overlap each other.

Fig. 1 shows an example of a parent and its two children in the plane. In each
case the cell is shaded and the cover is the surrounding polygon. In typical BSP
fashion, the parent cell is split by a line, which partitions the point set and cell.
The Voronoi bisector between the two subsets of points is shown as a broken



Left childParent Right child

Fig. 1. Overlapping covers

line. Observe that the covers for the left and right children are large enough to
enclose the Voronoi bisector, and hence all the points of the space whose nearest
neighbor lies within the corresponding side of the partition.

Let us describe the os-tree more formally. The data point set is denoted by
S. Each node of the tree is denoted by a string of l’s and r’s. The root node
is labeled with the empty string, φ. Given a node δ its left child is δl, and its
right child is δr. (The terms left and right are used for convenience, and do not
connote any particular orientation in space.) Give a node δ, we use cδ to denote
its cell, Cδ to denote its cover, and Sδ to denote its subset of points.

The entities cδ and Sδ together form a BSP-tree for the point set. The cover
of a node δ is a convex polyhedron that has the following properties:

– The cover of the root node φ is the entire space.
– Let V (p) denote the Voronoi cell of point p in Sδ, and let Vδ =

⋃
p∈Sδ

V (p).
Then

Cδ ⊇ Vδ.

– Let Hδ be a set of (d − 1)-dimensional hyperplanes that bound Cδ. There
are two parallel hyperplanes L and R such that

Hδl ⊆ Hδ ∪ {L} Hδr ⊆ Hδ ∪ {R}.

(Note that these hyperplanes need not be parallel to the BSP splitting hy-
perplane.)

Each internal node of the tree stores the coefficients of hyperplanes L and R.
The selection of these hyperplanes will be discussed later.

To answer the nearest neighbor query q, the search starts at the root. At
any internal node δ, it determines if the query lies within either cover Cδl or
Cδr (it may be in both) . For each cover containing q, the associated child is
visited recursively. From the definition of the cover, if the query point does not
lie within the cover then the subtree rooted at this node cannot possibly contain
the nearest neighbor. When the search reaches a leaf node, distances from the
query to all associated points in the leaf are computed. When all necessary nodes
have been visited, the search terminates and returns the smallest distance seen



and the associated nearest neighbor. It is easy to see that this search returns
the correct result. Observe that the efficiency of the search is related to how
“tightly” the cover surrounds the union of the Voronoi cells for the points, since
looser covers require that more nodes be visited.

2.1 Probably Correct os-tree

One of the difficulties in constructing the os-tree as outlined in the previous
section, is that it would seem to require knowledge of the Voronoi diagram. The
combinatorial complexity of the diagram grows exponentially with dimension,
and so explicitly computing the diagram for high dimensional nearest neigh-
bor searching is impractical. In order to produce a more practical construction,
we first introduce a variant of the os-tree in which queries are only answered
correctly with some probability.

Let us assume for now that the probability density function of query points
is known. (This is rather bold assumption, but later we will see that through
the use of training data we can approximate what we need to know about the
distribution reasonably accurately.) In particular given a region X ⊆ <d, let
Q(X) to be the probability that a query lies within X. Given real f , 0 ≤ f ≤ 1,
let C(f,Q)δ denote any convex polyhedron such that

Vδ \ Q(C(f,Q)δ)
Q(Vδ)

≤ f.

In other word, the region C(f,Q)δ contains all but at most a fraction f of the
probability mass of Vδ.

The os-tree has the property that the cover of each node contains the covers of
its children. Given the probability density Q and a search algorithm, the failure
probability of the algorithm is the probability (relative to Q) that this algorithm
fails to return the correct nearest neighbor. The following is easy to prove.

Lemma 1. Given queries drawn from Q, if the cover for each leaf δ of an os-tree
satisfies the condition C(f,Q)δ above, then the failure probability for the os-tree
search is at most f .

The lemma provides sufficient conditions on the covers of the os-tree to guar-
antee a particular failure probability. In the next section, we discuss the efficient
construction of the os-tree in greater detail.

2.2 Building the os-tree

We do not know of a practical way to construct the ideal os-tree that we have out-
lined earlier. This is because complex query distributions are not generally easily
representable, and the shape of Voronoi cells of a high dimensional point set can
be highly complex. Finding a convex polyhedron that covers a desired fraction
of the density of a set of Voronoi cells seems to require intensive computation.
We incorporate the following changes to the os-tree in our implementation:



– Instead of using an abstract query distribution Q, we use a set T of training
query points, which are assumed to be randomly sampled from Q. Each
training point will be labeled according to its nearest neighbor in S, that is,
the Voronoi cell containing it.

– In the search process, we add the distance comparison (described below) as
another criterion for pruning nodes from being visited.

Although the assumption of the existence of the training set is a limitation
to the applicability of our approach, it is not an unreasonable one. In most
applications of nearest neighbor searching there will be many queries. One mode
in which to apply this algorithm is to sample many queries over time, and update
the data structure periodically based on the recent history of queries.

Given the data points S and training points T , the construction process starts
by computing the nearest neighbor in S for each point in T . The construction
then starts with the root node, whose cell and cover are the entire space. In
general, for node δ, there will be associated subsets Sδ and Tδ. If the number of
points in Sδ is smaller than a predefined threshold, then these points are stored
in a leaf cell. Otherwise cδ is split into two new cells by a separating hyperplane,
Hδ, which partitions Sδ into subsets of roughly equal sizes. (The computation
of Hδ is described below.) This hyperplane may have an arbitrary orientation.
We partition the points among the two resulting child nodes.

We then use the training set Tδ to compute the cover of the node. Partition
this into Tδl and Tδr depending whether its nearest neighbor is in Sδl or Sδr,
respectively. We then compute two (signed) hyperplanes, Bδl and Bδr, called the
boundary hyperplanes. (By a method described below.) These two hyperplanes
are parallel to each other but have oppositely directed normal vectors. Define
Bδl so that it bounds the smallest halfspace enclosing Tδl. This can be done by
computing the dot product between each point in Tδl and Bδl’s normal, and
taking the minimum value. Do the same for Bδr. These two hyperplanes are
then stored with the resulting node. Define Cδl to be Cδ ∩B′

δl, where B′
δl is the

halfspace bounded by Bδl, and do similarly for Cδr. The process is then applied
recursively to the children.

To answer the query, the search starts at the root node. At any internal node,
we find the location of the query point relative to the separating hyperplane Hδ

and the two boundary hyperplanes Bδl and Bδr. (This can be done in O(d)
time.) For concreteness, suppose that we are on the left side of the separating
hyperplane. (The other case is symmetrical.) We visit the left child first. If the
query point does not lie within right bounding halfspace, B′

δr (that is, it is not
in the overlap region) then the right child will not be visited. Even if the query
is in the overlap region, but if the current nearest neighbor distance is less than
the distance from the query point to the separating hyperplane, then the right
child is not visited. (Since no point on the other side of Hδ, and hence no point
in Sδr can be closer.) Otherwise the right child is visited. When we reach a leaf
node, distances to the data points are computed and the smallest distance is
updated if needed.



2.3 The os-tree Splitting Rule

The only issues that are left to be explained are the choices of the splitting hyper-
plane and the boundary hyperplanes. We impose the requirement that roughly
half of the points in the cell lie on one each side of the splitting hyperplane.
This condition guarantees a balanced tree. An obvious criterion for selecting the
orientation of the hyperplane is to subdivide the points orthogonal to the direc-
tion of greatest variation. To do this we use the well known principal component
analysis (PCA) method [23]. We compute the covariance matrix for the data
points Sδ, and sort the points according to their projection onto the eigenvector
corresponding to the largest eigenvalue. Half of the resulting sequence half of the
points are placed in Sδl and the larger half in Sδr. The use of PCA’s in choosing
splitting planes has been considered before (see, e.g., [35]).

It is clear that if the maximum of the projections of l labeled point is lower
than the minimum of the projections of r labeled points, then there are infinitely
many hyperplanes that can be choosen as the separating hyperplane. The opti-
mal hyperplane (with respect to the search time) is the one that minimizes the
number of training points in the final overlap region. The more training points
in the overlap region, the more likely that both children of the current node will
be visited. We use the support vector machine (SVM) method [34] to choose
separating hyperplane. Even the SVM method does not give us the optimal hy-
perplane, but it finds a hyperplane that is good enough in the sense that it is
the one that is the furthest from closest data points.

The SVM method was developed in the area of learning theory [34] to find
the hyperplane that best separates two classes of points in multidimensional
space. A more detailed description of SVM can be found in [7]. In this paper, we
will review the basic linear SVM method using the hyperplane as the separator
in the original space.

By construction the two data point sets are linearly separable. In this case
SVM finds a separating hyperplane with the highest margin, where margin is
defined as the sum of the distance from the hyperplane to the points in Sδl

and the distance to the points in Sδr. SVM formulates this problem a non-
linear optimization problem. Solving the optimization problem returns a set of
points called support vectors as well as other coefficients. These values are used
to determine the separating hyperplane. The result of SVM is the separating
hyperplane Hδ of the node. Now, the training points associated with the node
are used to determine the final placement of the boundary hyperplanes Hδl and
Hδr, as described earlier.

2.4 Implementation

We modified the ANN library [30] to accommodate the os-tree. This is a library
for approximate nearest neighbor search using the kd-tree and bbd-tree [3] as the
underlying data structures. We use a PCA program from [31] and the LIBSVM
library [9] as the SVM module. LIBSVM is a simple and fast implement of SVM.
It uses a very simple optimization subroutine to find the optimal separating



hyperplane. Like most other SVM packages, the result of LIBSVM may not be
the optimal hyperplane. This is due to numerical errors and the penalty cost.
Based on our experiments, if we use a higher value of penalty cost, it usually
produces a better separating hyperplane, but it requires more CPU time. In all
of our experiments, we set the penalty cost to 1000.

Even though LIBSVM is relatively fast, it was the main bottleneck in the
construction time of the data structure. Its running time is superlinear in the
number of input points. In the implementation, instead of providing SVM with
the entire set of data points in the cell, we divided the points into smaller batches.
We call this version the batched SVM. Each batch has a relatively small number
of points, 200. We then invoke the SVM routine for each batch, and collect the
resulting support vectors. We ignore other points that are not support vectors
because they are unlikely to have a significant influence on the final result of
SVM. The support vectors of each batch are then combined and used as the input
to SVM. This process is repeated until the size of the input is small enough to run
a single SVM. We use the result from this final run as the separating hyperplane
of the cell.

Obviously, the batched version of SVM would be expected to perform more
poorly than the standard (unbatched) method. But we found that over a number
of experiments it usually produced a hyperplane that is close to the result of the
standard algorithm. The CPU time required to find the hyperplane using the
batched SVM is significantly less than one using the standard SVM.

3 Experimental Results

3.1 Synthetic Data Sets

We begin by discussing our results on synthetically generated data sets. Because
the os-tree requires a relatively large number of training points, one advantage
of synthetic data sets is that it is easy to generate sufficiently large training sets.
To emulate real data sets, we chose data distributions that are clustered into
subsets having low intrinsic dimensionality. (Our subsequent experiments with
real data sets bears out this choice.) The two distributions that we considered
are outlined below.

Clustered-rotated-flats: Points are distributed in a set of clusters. The points
in each cluster are first generated along an axis-aligned flat, and then this flat
is rotated randomly. The axes parallel to the flat are called fat dimensions,
and the others are called thin dimensions. The distribution is characterized
by the following parameters:
– the number of clusters (fixed at 5 clusters in all of our experiments),
– the number of fat dimensions,
– the standard deviation for thin dimensions, σthin.
– the number of rotations applied.



The center of each cluster is sampled uniformly from the hypercube [−1, 1]d.
Then we randomly select the fat dimensions from among axes of the full
space. Points are distributed randomly and evenly among the clusters. In fat
dimensions, coordinates are drawn from a uniform distribution in the interval
[−1, 1]. In thin dimensions, they are sampled from a Gaussian distribution
with standard deviation σthin. We compute a random rotation matrix for
each cluster. This is done by repeatedly multiplying a rotation matrix (ini-
tially a d×d identity matrix) with a matrix A. A matrix is an identity matrix
except for four elements Aii = Ajj = cos(θ), Aij = −Aji = sin(θ), where i
and j are randomly chosen axes and θ is randomly chosen from −π/2 to π/2.
We apply the rotation matrix to all points in the cluster and then translate
them by a vector from the origin to the center of the cluster.

Clustered-rotated-ellipsoids: This distribution is similar to the clustered-
rotated-flats distribution, except that the coordinates are sampled from a
Gaussian distribution on fat dimensions instead of a uniform distribution.
It has the additional parameters σlo and σhi, which are the minimum and
maximum standard deviations of the Gaussian distribution of the fat dimen-
sions. The actual standard deviation is randomly chosen in [σlo, σhi]. In our
experiments, we used σlo = 0.25 and σhi = 0.5.

We compared the query performance of the os-tree against that of the kd-
tree. The query performance was measured by the total number of nodes visited,
the number of leaf nodes visited, and the CPU time used. We show CPU time in
most of our graphs. We compiled both programs using the g++-2.95.2 compiler
with the same options, and we conducted all experiments in the same class of
machines (UltraSparc-5 running Solaris 2.6 for the synthetic data sets and a PC
Celeron 450 running Linux for the real data sets). In the first set of experiments
we also compared the total number of nodes visited as well.

There is some difficulty in a direct comparison between the os-tree and the
kd-tree because the search models are different: probably-correct model in os-
tree and approximately correct model in the kd-tree. To reconcile this difference,
in each experiment, we adjusted the ε value (approximation parameter) of the
kd-tree so that the resulting failure probability of the kd-tree is similar to that
of the os-tree. Once the epsilon value is found, we ran the experiments with the
same query set because changing it may alter the failure probability. This gives
the kd-tree a slight advantage, because the query set is the same as the training
set.

The results of the first set of experiments are shown in Fig. 2. The point
set, training set and query set (for os-trees) are all sampled from the clustered
rotated ellipsoids distribution. The number of clusters is fixed at 5 and σthin is
fixed at 0.05 and 0.25. We show the results for dimensions d = 10, 20, 30. The
number of fat dimensions is fixed, relative to d, at 3d

10 . The number of rotations
applied is equal to the dimension of the space. The size of the point set varies
from 2K (K = 1024) to 32K points. For all experiments, the number of training
points (in os-trees) is fixed at 200 times the size of the point set and the results
are average over 5 different trees, each with 10K different queries.



2 4 8 16 32
size of point set (k)

0

0.001

0.002

0.003

0.004

0.005

0.006

qu
er

y 
tim

e 
(s

ec
)

kd-tree d=10
kd-tree d=20
kd-tree d=30
os-tree d=10
os-tree d=20
os-tree d=30

stdev-thin = 0.05

2 4 8 16 32
size of point set (k)

0

0.005

0.01

0.015

0.02

qu
er

y 
tim

e 
(s

ec
)

stdev-thin = 0.25

2 4 8 16 32
size of point set (k)

0

500

1000

1500

2000

2500

3000

to
ta

l n
od

es
 v

is
ite

d

2 4 8 16 32
size of point set (k)

0

1000

2000

3000

4000

5000

6000

7000

to
ta

l n
od

es
 v

is
ite

d

Fig. 2. Query time and number of nodes visited comparison for the kd-tree and os-tree.
All distributions are clustered-rotated-ellipsoids

2 4 8 16 32
size of point set (k)

0

0.001

0.002

0.003

0.004

qu
er

y 
tim

e 
(s

ec
)

kd-tree d=10
kd-tree d=20
kd-tree d=30
os-tree d=10
os-tree d=20
os-tree d=30

stdev-thin = 0.05

2 4 8 16 32
size of point set (k)

0

0.002

0.004

0.006

0.008

0.01

0.012

qu
er

y 
tim

e 
(s

ec
)

stdev-thin = 0.25

Fig. 3. Query time comparison for the kd-tree and os-tree. All distributions are
clustered-rotated-flats



The top graphs of Fig. 2 shows comparisons of the average CPU time each
query uses. The bottom graphs compare the total number of nodes visited. We
can see that these two running times are remarkably similar. The kd-tree’s query
time is somewhat better than that of os-tree when the point set is large and σthin

is high. The search in os-tree is slightly faster in low dimension (d = 10) and for
smaller data set sizes. Overall, the differences in the query time of both trees are
quite small.

The second set of experiments is quite similar to the first one except that
we change the distribution from clustered rotated ellipsoids to clustered rotated
flats. The query time comparison of both trees is presented in Fig. 3. The results
of Fig. 3 are very similar to those of Fig. 2. The query times of both trees are
comparable. Note that the search is somewhat faster for clustered rotated flat
distributions for both trees.

In the next set of experiments we varied the density of the clusters. By varying
σthin from 0.01 to 0.5, the clusters are less dense and the distribution is more
uniform. The point set size is fixed at 4K and 16K with d rotations applied.
Fig. 4 shows the results. Again, the performances of both trees are quite similar.

0.01 0.02 0.05 0.1 0.2 0.5
stdev-thin

0

0.001

0.002

0.003

0.004

0.005

0.006

qu
er

y 
tim

e 
(s

ec
)

kd-tree d=10
kd-tree d=20
kd-tree d=30
os-tree d=10
os-tree d=20
os-tree d=30

point set size = 4k

0.01 0.02 0.05 0.1 0.2 0.5
stdev-thin

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

qu
er

y 
tim

e 
(s

ec
)

point set size = 16k

Fig. 4. Effect of σthin (stdev-thin, standard deviation on thin dimensions of the flats).
All distributions are clustered rotated flats

3.2 Enhanced Predictability

We have shown that the os-tree and kd-tree are similar with respect to running
time (subject to the normalizations mentioned earlier). The principal difference
between them is in the degree to which it is possible to predict performance. In
all the experiments above, we set the size of training set to be 200 times the size
of the point set. Based on the ratio between the size of training set and the size of
data set, the predicted failure probability of the os-tree is around 0.5%. We also
computed the failure rate of similar experiment runs of the kd-tree with ε = 0.52
(average value of matching values of ε) and ε = 0.8. Fig. 5 shows the failure rate



sorted in increasing order of some 258 experimental runs. We can see that the
variation of the failure rate of kd-tree is much higher (which is not unexpected,
since the kd-tree is not designed for probably-correct nearest neighbor search.)
This justifies our claim that the os-tree provides comparable efficiency as the
kd-tree, but with significantly enhanced predictability.

0 50 100 150 200 250 300

experiments

0

2

4

6

8

10

fa
ilu

re
 (

%
)

kd-tree (epsilon=0.52)
kd-tree (epsilon=0.8)
os-tree

Fig. 5. Failure rate, sorted in increasing order from 258 runs. All distributions are
clustered rotated ellipsoids

References

[1] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed di-
mensions. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 271–280,
1993.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. In Proc. 5th ACM-SIAM
Sympos. Discrete Algorithms, pages 573–582, 1994.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An opti-
mal algorithm for approximate nearest neighbor searching. Journal of the ACM,
45:891–923, 1998.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient
and robust access method for points and rectangles. In Proc. ACM SIGMOD Conf.
on Management of Data, pages 322–331, 1990.

[5] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure for
high-dimensional data. In Proc. 22nd VLDB Conference, pages 28–39, 1996.

[6] M. Bern. Approximate closest-point queries in high dimensions. Inform. Process.
Lett., 45:95–99, 1993.

[7] C. J.C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998.



0 50 100
1e-06

1e-05

0.0001

0.001

0.01

0.1

0 50 100
1e-06

1e-05

0.0001

0.001

0.01

0.1

Fig. 6. Average error. Showing the average (connecting line), standard deviation (box),
and maximum (bar line) of both kd-tree (top graph) and os-tree (bottom graph). All
distributions are clustered rotated flats

[8] T. Chan. Approximate nearest neighbor queries revisited. In Proc. 13th Annu.
ACM Sympos. Comput. Geom., pages 352–358, 1997.

[9] C. Chang and C. Lin. LIBSVM: Introduction and benchmarks. LIBSVM can be
obtained from URL: http://www.csie.ntu.edu.tw/~cjlin/libsvm, 1999.

[10] P. Ciaccia and M. Patella. Using the distance distribution for approximate simi-
larity queries in high-dimensional metric spaces. In Proc. 10th Workshop Database
and Expert Systems Applications, pages 200–205, 1999.

[11] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc. 10th
Annu. ACM Sympos. Comput. Geom., pages 160–164, 1994.

[12] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10:57–78, 1993.

[13] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Trans.
Inform. Theory, 13:57–67, 1967.

[14] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 1997.

[15] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. J. Amer. Soc. Inform. Sci., 41(6):391–407,
1990.

[16] L. Devroye and T. J. Wagner. Nearest neighbor methods in discrimination. In
P. R. Krishnaiah and L. N. Kanal, editors, Handbook of Statistics, volume 2.
North-Holland, 1982.

[17] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John
Wiley & Sons, NY, 1973.

[18] C. Duncan, M. Goodrich, and S. Kobourov. Balanced aspect ratio trees: Combin-
ing the advantages of k-d trees and octrees. In Proc. 10th ACM-SIAM Sympos.
Discrete Algorithms, pages 300–309, 1999.



[19] Christos Faloutsos and Ibrahim Kamel. Beyond uniformity and independence:
Analysis of r-trees using the concept of fractal dimension. In Proc. Annu. ACM
Sympos. Principles Database Syst., pages 4–13, 1994.

[20] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in
Knowledge Discovery and Data Mining. AAAI Press/MIT Press, 1996.

[21] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and
video content: The QBIC system. IEEE Computer, 28:23–32, 1995.

[22] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Software, 3(3):209–226,
1977.

[23] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
2nd edition, 1990.

[24] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic, Boston, 1992.

[25] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput.,
pages 604–613, 1998.

[26] N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional
nearest neighbor queries. In Proc. ACM SIGMOD Conf. on Management of Data,
pages 369–380, 1997.

[27] J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimension.
In Proc. 29th Annu. ACM Sympos. Theory Comput., pages 599–608, 1997.

[28] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimemsional spaces. In Proc. 30th Annu. ACM Sympos.
Theory Comput., pages 614–623, 1998.

[29] K. I. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree: An index structure for
high-dimensional data. VLDB Journal, 3(4):517–542, 1994.

[30] D. M. Mount and S. Arya. ANN: A library for approximate nearest neighbor
searching. Center for Geometric Computing 2nd Annual Fall Workshop on Com-
putational Geometry, URL: http://www.cs.umd.edu/~mount/ANN, 1997.

[31] F. Murtagh. PCA (principal components analysis): C program. PCA program can
be obtained from URL: http://astro.u-strasbg.fr/~fmurtagh/mda-sw/pca.c
, 1989.

[32] D. Saupe, 1994. Private communication.
[33] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for

multi-dimensional objects. In Proc. 13th VLDB Conference, pages 507–517, 1987.
[34] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, NY, 1998.
[35] K. Zatloukal, M. H. Johnson, and R. Ladner. Nearest neighbor search for data

compression. (Presented at the 6th DIMACS Implementation Challenge Work-
shop), URL: http://www.cs.washington.edu/homes/ladner/nns.ps, 1999.


