
Binary Space Parititions in Plücker Space?

David M. Mount1 and Fan-Tao Pu2

1 Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, Maryland. mount@cs.umd.edu.

2 Department of Computer Science, University of Maryland, College Park, Maryland.
ftpu@cs.umd.edu.

1 Introduction

One of the important potential applications of computational geometry is in the
field of computer graphics. One challenging computational problem in computer
graphics is that of rendering scenes with nearly photographic realism. A major
distinction in lighting and shading models in computer graphics is between local
illumination models and global illumination models. Local illumination models
are available with most commercial graphics software. In such a model the color
of a point on an object is modeled as a function of the local surface properties of
the object and its relation to a typically small number of point light sources. The
other objects of scene have no effect. In contrast, in global illumination models,
the color of a point is determined by considering illumination both from direct
light sources as well as indirect lighting from other surfaces in the environment.
In some sense, there is no longer a distinction between objects and light sources,
since every surface is a potential emitter of (indirect) light. Two physical-based
methods dominate the field of global illumination. They are ray tracing [8] and
radiosity [3].

In both of these methods, and important problem that arises is that of de-
termining visibility relationships for a collection of polygonal objects in 3-space.
In this paper we propose a data structure to aid in solving this problem. We call
this data structure a visibility map. Intuitively, a visibility map can be thought of
as a sort of computer-generated hologram. Think of this abstract hologram as a
piece of transparent plastic. When a viewer looks through the hologram, he sees
what appears to be a three-dimensional scene. In particular, this is achieved by
associating each ray shot from the eye of the viewer through the hologram with
the illumination information associated with this ray. We can remove the viewer
and just think of the visibility map as a function that maps rays emanating from
the hologram to illumination information.

We show that a visibility map can be represented as a binary space partition
tree in projective 5-dimensional space, through the use of a transformation that
maps lines in 3-space to points in projective 5-space, called Plücker coordinates.
An important practical question is how to build such trees and how large they
? The support of the National Science Foundation under grant CCR–9712379 is grate-

fully acknowledged.

are. We present an implementation of an algorithm for constructing these trees,
and we analyze their size empirically as a function of the number of polygons
in the 3-dimensional scene. We also consider methods for pruning the tree and
study the effectiveness of these techniques.

1.1 Visibility Maps

Let P be a set of points and D be a set of directional vectors. Let I denote an
(application-dependent) domain called the visibility information. For example,
in rendering applications, the visibility information might be the color of an
object, in radiosity applications it might be the radiance of a point. A visibility
map M is a function

M : DM 7→ I ∪ {Λ},
where DM , the domain of M is a subset of P×D. Given a point p in space and
a direction d, M(p,d) returns the visibility information arriving at the point p
along the direction −d. Intuitively, Λ is a special value, called the null visibility
information, which is returned for rays that hit no objects.

In our application, a visibility map will not necessarily record visibility in-
formation coming from every possible object in the scene. A visibility map may
have some region of three-dimensional space, called a scope, implicitly associated
with it. The map records visibility information within the scope. For example,
referring to Fig. 1, let M be the visibility map whose domain is the set of rays

r1

r2

r3 r4 r5

s11

s2

s3

Visibility Map M

s12

Fig. 1. Visibility map.

emanating upwards from the shaded disc and whose scope is the region enclosed
in the hemisphere. The intersection of each ray with the hemisphere is indicated
by a point on the ray. For rays r1 and r2, M(r1) and M(r2) will return visibility
information of objects s12 and s2, respectively. On the other hand, M(r4) and
M(r5) both return Λ. Although ray r3 intersects the object s3, M(r3) returns
Λ because the intersection with object s3 is outside of M ’s scope.

1.2 Line Geometry and Plücker Coordinates

Lines in three-dimensional space play an important role in computer graphics.
When rendering a patch, we need to know the radiance of every point on the

patch. Radiance arrives from every possible direction. To describe radiance in a
faithful manner we can define a function that maps each point and each direc-
tional vector at the point to a radiance value arriving from this direction. If the
patch is planar, it is clear that the domain of this function is isomorphic to the
set of lines passing through this patch. A concise and elegant representation of
lines in three-dimensional space is important for dealing with such infinite sets
of lines. Plücker introduced a method of referencing lines as sets of coordinates,
called Plücker coordinates [17], which maps a line in projective three-dimensional
space to a point in projective five-dimensional space. This creates a new geom-
etry where lines in three-dimensional space are the points of the new geometry.

To define Plücker coordinates, we first define the meet and join operations of
two linear subspaces. The meet of two subspaces is defined to be their maximum
common intersection and the join of two subspaces is defined to be the minimum
space enclosing both subspaces. For example, in general position, a line meets a
plane at a point and a line joins a point into a plane.

Let us consider projective three-dimensional space with homogeneous coor-
dinates. We will present a derivation for line coordinates based on [20] and [10].
Let ` be a line and let x and y be two distinct points on ` and let ξ and ψ be two
distinct planes that contain `. Thus ` is the join of x and y and the meet of ξ
and ψ. Assume the coordinates for points x, y and planes ξ, ψ are [x0, x1, x2, x3],
[y0, y1, y2, y3], [ξ0, ξ1, ξ2, ξ3] and [ψ0, ψ1, ψ2, ψ3], respectively. Since points x and
y both lie on planes ξ and ψ, we have following equations:




ξ0x0 + ξ1x1 + ξ2x2 + ξ3x3 = 0
ξ0y0 + ξ1y1 + ξ2y2 + ξ3y3 = 0
ψ0x0 + ψ1x1 + ψ2x2 + ψ3x3 = 0
ψ0y0 + ψ1y1 + ψ2y2 + ψ3y3 = 0

. (1)

Let πij denote xiyj−xjyi. Eliminating the ξ0, ξ1, ξ2, ξ3, one at a time, from the
first two equations above, we have equations




0ξ0 + π10ξ1 + π20ξ2 + π30ξ3 = 0
π01ξ0 + 0ξ1 + π21ξ2 + π31ξ3 = 0
π02ξ0 + π12ξ1 + 0ξ2 + π32ξ3 = 0
π03ξ0 + π13ξ1 + π23ξ2 + 0ξ3 = 0

. (2)

There are 16 πij ’s. From the definition of πij , we know that πij = −πji and
πii = 0. Therefore, only six different values of πij determine the remainder. Let
these six numbers be π01, π02, π03, π23, π31, and π12. These are called the Plücker
coordinates of the line `. The six Plücker coordinates derived from different pairs
of points of a lines only differ by a non-zero constant factor. Thus the Plücker
coordinates of a line are homogeneous coordinates of projective five-dimensional
space, which is also called Plücker space. We will use the notation

π(`) = [π01, π02, π03, π23, π31, π12]

to denote the Plücker coordinates of line `. Since the system of homogeneous
(linear) equations (2) has a nontrivial solution, the determinant

∣∣∣∣∣∣∣∣

0 π10 π20 π30

π01 0 π21 π31

π02 π12 0 π32

π03 π13 π23 0

∣∣∣∣∣∣∣∣

vanishes. This gives the following constraint on the πij ’s,

π01π23 + π02π31 + π03π12 = 0. (3)

The set of points satisfying this equation are said to lie on the Grassmann
manifold.

Define a binary operator, cross product [9] (×), on two Plücker points π(`1)
and π(`2) as

π(`1) × π(`2) = π1
01π

2
23 + π1

02π
2
31 + π1

03π
2
12 + π1

23π
2
01 + π1

31π
2
02 + π1

12π
2
03. (4)

The concept of directed line, line with one direction, is used to resolve the ambi-
guity of two opposite directions a line represents. The homogeneity condition for
Plücker coordinates is modified to allow multiplication by any strictly positive
constant. This operator returns 0 if `1 and `2 are incident, and otherwise its sign
can be used to determine the relative orientation of the (directed) lines.

1.3 Binary Space Partitions

The binary space partition (BSP) tree [6] is an example of a data structure based
on a recursive hierarchical space partitioning. A BSP tree is a binary tree, which
encodes a hierarchical subdivision of d-dimensional space. The cell associated
with each node v of a BSP tree is a convex polytope Rv. Each internal node v
in a BSP tree is associated with a (d − 1)-dimensional cutting hyperplane Hv.
Let H+

v and H−
v denote the two halfspaces introduced by hyperplane Hv. Then

cutting hyperplaneHv cuts polytope Rv into two polytopes Rv∩H+
v and Rv∩H−

v

which are associated with the left and right subtrees of node v, respectively.
The splitting procedure is performed recursively at each node until either

all objects are separated or some application-dependent termination conditions
are satisfied. Such termination conditions may be designed to avoid an excessive
fragmentation of object or to bound the maximum tree depth. A node v in a
BSP tree stores the objects that intersect the interior of the polytope Rv. If the
cutting hyperplane Hv intersects an object, the object is split by Hv and each
portion will be stored in the corresponding subtree.

There is no special rule for selecting the cutting hyperplanes for a BSP tree.
However, the choice of cutting hyperplanes affects the size and maximum depth
of the BSP tree and the number of object fragments that arise. Several works [1,
2, 4, 14, 15] have been devoted to the problem of selecting the cutting hyper-
planes so as to minimize the complexity of the resulting BSP tree. For example,

if there is a facet of an object lying on a hyperplane which does not intersect
the interior of any other objects of this node, then this is a good candidate for
the cutting hyperplane.

2 Data Structures for Visibility Maps

Before discussing the representation of visibility maps, we begin by discussing
how to represent complex functions of line-space by simpler piecewise functions.
Henceforth, we assume that lines in three-dimensional space are represented as
directed lines using signed Plücker coordinates.

Let π(`) = [`01, `02, `03, `23, `31, `12] denote the Plücker coordinates of a di-
rected line associated with some ray in the domain of the visibility map. Let
π(e) = [e01, e02, e03, e23, e31, e12] denote the Plücker coordinates of the line sup-
porting an edge of some convex patch in the scene. For a discontinuity to occur
when ` intersects e, it must be that these two directed lines are incident, implying
that

(π(`) × π(e)) = `01e23 + `02e31 + `03e12 + `23e01 + `31e02 + `12e03 = 0.

This is a linear equation in π(`). We can use the sign of the orientation to de-
termine whether ` passes to the left or right of e. Given a convex polygonal
patch, P , let `e1 , `e2 , . . . , `em

denote the directed lines supporting the counter-
clockwise oriented edges of the patch. Then ` intersects, or stabs, P if all of these
orientations are of the same sign, that is, if

π(`) × π(`ei
) ≥ 0 for 1 ≤ i ≤ m

or
π(`) × π(`ei

) ≤ 0 for 1 ≤ i ≤ m.

Thus the set of lines in three-dimensional space that stab a convex polygonal
patch from one side or the other is a closed polyhedron in the projective five-
dimensional space or Plücker space. See Fig. 2.

e1

e2

en

π(l)×π(lei)>0

π(l)×π(lei)<0

Fig. 2. The orientation between a patch and its stabbing line.

2.1 Plücker Space Partition Trees

Suppose that we want to represent the visibility map associated with some con-
vex polygonal patch P . Let us assume that we are interested in visibility in-
formation arriving from only one side of P , indicated by an outward pointing
normal vector. Take the set of directional vectors for the map to be the set of
vectors whose angle with respect to P ’s normal vector is at most π/2. Each point
on P and each directional vector corresponds to a directed line passing through
the point and having this direction. As the point and/or direction vary contin-
uously, the visibility information varies continuously as well, until the visibility
ray strikes a different object of the scene. Thus discontinuities arise only when
the line supporting the visibility ray intersects an object edge. Hence the visi-
bility map is a piecewise continuous function where discontinuities occur along
hyperplanes in Plücker space. We can think of this function as a subdivision of
five-dimensional Plücker space, where each cell of the subdivision is associated
with one visibility information function. We will concentrate on showing how
to represent this subdivision through the use of a hierarchical space partition,
which we call a Plücker space partition tree or PSP tree for short.

Recall the definition of a binary space partition from the Section 1. The
space to be partitioned is Plücker space. Each node is implicitly associated with a
convex polyhedral region of space. The root of the PSP tree implicitly represents
all of Plücker space. (However we will modify this below.) Each internal node
of the PSP tree is associated with a directed splitting line in three-dimensional
space, or equivalently, a four-dimensional splitting hyperplane in the Plücker
space. Each internal node has two children, one for lines positively oriented with
respect to the splitting line and the other negatively oriented.

We will be storing visibility maps for axis-aligned rectangles in three-dimen-
sional space. Each PSP tree will be implicitly associated with the set of directed
lines passing through an axis-aligned rectangular “window” in three-dimensional
space. Let `1, `2, `3, and `4 denote the directed lines supporting the edges of this
rectangle, oriented counterclockwise around the rectangle so that the directed
lines passing through the rectangle are positively oriented with respect to these
lines. These four lines correspond to four halfspaces in Plücker space. Since we
will only be interested in directed lines that lie in this region of Plücker space,
rather than storing these four lines in the PSP tree (e.g. as the top four nodes),
we store them separately as a header for the PSP tree.

The algorithm for constructing the rest of the Plücker space partition tree
is as follows. Starting with the root, we insert each of the lines that bounds
each of the three-dimensional patches of the scene as splitting lines into the PSP
tree. For example, if we assume that all of the polygonal patches from the scene
are convex, then we could insert the directed lines supporting the edges of each
polygonal patch into the PSP tree one by one. The insertion of each splitting
line corresponds to the insertion of a four-dimensional hyperplane into the tree.
This is done done by an appropriate generalization of the standard insertion
scheme for standard BSP trees (see, for example, Patterson and Yao [14]) but in
dimension five. Each leaf of the final tree corresponds to a set of directed lines

that are equally oriented with respect to all the edges of the patches and thus
stab the same set of polygonal patches. Hence, all the lines in this cell share the
same visibility information function.

General Structure Each node in a PSP tree, called a PSPNode, denotes a
region in Plücker space. This region may be further subdivided by a Plücker
hyperplane into two subregions. The subregion resides on the positive side of the
cutting hyperplane is represented by its positive child and the one on the negative
side is represented by its negative child. A node without a cutting hyperplane is
a leaf node. Every internal node in this data structure has two children. Since for
rendering we are only interested in the Plücker regions represented by leaf nodes
of the tree, we adapted the idea of a threaded tree [11] by chaining all leaf nodes
into a doubly linked list. This list provides a direct way to enumerate these leaf
nodes.

PSPTree Internal PSPNode

Leaf PSPNode

Fig. 3. Structure of Plücker space partition tree.

Insertion A Plücker space partition tree is constructed by inserting the poly-
gons of the scene one-by-one. Each polygon is inserted into a Plücker space
partition tree by inserting all of the supporting lines for its edges. The basic
update of the Plücker space partition tree is the insertion of a line (as a Plücker
hyperplane) into the tree. Recall that each node of the Plücker space partition
tree represents a convex polyhedral region of Plücker space. A line is inserted
recursively into a node’s two children provided that the line’s corresponding
Plücker hyperplane cuts the region represented by the node. The recursion stops
when the node is a leaf. This line (the Plücker hyperplane) becomes the leaf
node’s cutting plane and two new leaf nodes are created as its children. This
algorithm is given in Fig. 4.

Insert(history,iplane)

if (is_leaf)

make iplane as its cutting_plane

create two leaf nodes as its children

else

PosPolytope = Polytope(history, halfspace(cutting_plane,+1))

NegPolytope = Polytope(history, halfspace(cutting_plane,-1))

if (intersect(PosPolytope, iplane))

new_history = union(history, halfspace(cutting_plane,+1))

Insert(new_history, iplane)

endif

if (intersect(NegPolytope, iplane))

new_history = union(history, halfspace(cutting_plane,-1))

Insert(new_history, iplane)

endif

endif

end Insert

Fig. 4. Insertion.

3 Trimming the Plücker Space Partition Tree

The size of a Plücker space partition tree grows rapidly as a function of the
number of triangles. See Section 4.3. In fact, it is too large to deal practically
with any non-trivial scene. We investigate methods for eliminating redundant
nodes from the tree. We consider two simple ways in which redundant nodes
may arise: (1) Two siblings encode the same visibility information. (2) Leaf
nodes do not encode any line. The former suggests merging sibling leaf nodes
having the same visibility information. The latter suggests deleting leaf nodes
which do not interest Grassmann manifold. They are described next.

3.1 Merging by Constant Visibility Information

When two sibling leaf nodes carry the same constant visibility information, they
can be merged by deleting them and making their parent a new leaf node. Un-
der the assumption we have made earlier, constant visibility information means
either transparency (no polygon is stabbed by the lines of the node) or the same
single polygon is stabbed from the same direction. If sibling leaf nodes stab the
same set of polygons and the size of the set is more than two, then they cannot
be merged because the visible polygon in the set is view-dependent and may
differ.

The merging process is performed by a recursive postorder traversal of the
Plücker space partition tree. The recursion stops at a leaf and returns the number
of stabbing polygons. Each internal node compares the values returned from its
two children. If both children are leaves and either they stab no polygon, or they

both stab the same single polygon then the internal node merges information of
its children and deletes them. See Fig. 5.

ConstVisInfoMerge(node)

if (is_leaf(node))

return number of stabbed polygon

else

num_pos_stab = ConstVisInfoMerge(positive_child)

num_neg_stab = ConstVisInfoMerge(negative_child)

if ((num_pos_stab==0)&&(num_neg_stab==0))

merge children

else if ((num_pos_stab==1)&&(num_neg_stab==1))

if the two stabbing polygons are the same then

merge children

endif

endif

endif

End

Fig. 5. Constant visibility information merging algorithm.

3.2 Merging by Empty Grassmann Intersection

Recall that a Plücker polyhedron does not represent any line in three-dimensional
space if it does not intersect the Grassmann manifold. Any leaf node whose
associated region does not intersect the Grassmann manifold may be deleted as
redundant.

To test whether a given node in the Plücker space partition tree intersects the
Grassmann manifold we consider the polyhedron it represents. In [18] we showed
that such a polyhedron does not intersect the Grassmann manifold if and only
if its one-dimensional boundary (1-skeleton) does not intersect the manifold.
Therefore, the emptiness test involves the following steps:

1. Enumerate the vertices of the Plücker region in projective five-dimensional
space as well as their adjacency relation,

2. Interpolate every pair of adjacent vertices to construct the 1-skeleton, and
3. Test whether each edge of the 1-skeleton intersects the Grassmann manifold,

and return empty-intersection if no intersection is found.

The basic structure of the merging algorithm is similar to the one for the constant
visibility information merge, see Fig. 6. We discuss enumeration below.

EmptyGManifoldMerge(node)

if (is_leaf(node))

return EmptinessTest(node)

else

pos_emptiness = EmptyGManifoldMerge(positive_child)

neg_emptiness = EmptyGManifoldMerge(negative_child)

if ((pos_emptiness==EMPTY) && (neg_emptiness==EMPTY))

merge children

return EMPTY

else if ((pos_emptiness==EMPTY) || (neg_emptiness==EMPTY))

merge children

return NON_EMPTY

else

return NON_EMPTY

endif

endif

End

Fig. 6. Trimming empty Grassmann intersection algorithm.

3.3 Auxiliary Routines

Two nontrivial tasks have been ignored in the above description. One is used
when inserting a hyperplane into a Plücker space partition tree and another
is used when testing whether a node in Plücker space partition tree does not
intersect the Grassmann manifold. They are stated more formally below. Let
C be a given Plücker polyhedron defined as the intersection of a set of Plücker
halfspaces. Note that the polyhedron C is a cone in Euclidean six-dimensional
space.

1. For a Plücker hyperplane h, determine whether h intersects C. (See Sec-
tion 2.1.)

2. What are the extremal rays of cone C? (See Section 3.2)

The first is a linear-programming problem and the second is a polytope enumer-
ation problem.

A convex polyhedron can be defined in two ways. It can be described either
as an intersection of a set of halfspaces, or as a convex combination of its ver-
tices and/or extremal rays. Note that extremal rays arise if the polyhedron is
not closed, i.e., unbounded. The former is called the H-representation and the
latter is called the V-representation [7] of the polyhedron. An application pro-
gram called cdd/cdd+ by Fukuda [7] utilizes linear programming techniques to
implement an algorithm called the double description method [13], which con-
verts one representation to another for a given polyhedron. We have adapted
and modified the routines in the cdd/cdd+ program for solving the following
tasks:

1. Find the existence of a feasible region (except the origin) of a given set of
homogeneous six-dimensional inequalities, and

2. Find the extremal rays of a cone defined by a set of homogeneous six-
dimensional inequalities.

Note that we perform computation for projective five-dimensional space in Eu-
clidean six-dimensional space.

4 Experiments

To explore various properties of the Plücker space partition tree we ran a number
of experiments which generates Plücker space partition trees from randomly
generated inputs and than measure these properties. Each experiments involves
generating 100 different random inputs, each consisting of a set of nonintersecting
triangles in three-dimensional space. The generating program is described in
Section 4.1. In Section 4.2, we discuss the result of these experiments.

4.1 Random Triangle Generator

A small program which generates triangles in a bounding box randomly is used as
data generator for the experiment. This program is given the number of triangles
n, and outputs n nonintersecting triangles of various sizes distributed through
out a given bounding box.

To generate nonintersecting triangles we first decompose space hierarchically
using a k-d tree [19]. The k-d tree splitting rule guides this distributing. A
recursive algorithm directs the process. Let n be the number of triangles to be
generated in a bounding box b. If n > 1 then an axis is chosen at random.
A plane h perpendicular to this axis is then randomly generated to split the
bounding box b into boxes b′ and b′′. The number n is partitioned according
to the ratio between b′ and b′′ into n′ and n′′ (n = n′ + n′′), respectively. The
process is recursively applied separately to box b′ with number of triangle n′,
and to box b′′ with number of triangles n′′. If n = 1 then a triangle is generated
by randomly picking three points on the walls of box b.

4.2 Results

Plücker Space Partition Trees without Pruning To explore the properties
of the Plücker space partition tree, we build Plücker space partition trees for
scenes consisting of a number of triangles ranging from 1 to 14. Each input size
is tested over 100 randomly generated scenes. We presents the plots for the size
of tree (Fig. 7), the height of tree (Fig. 8) and the time (measure in seconds)
for building the tree (Fig. 9). We use the average number of leaf nodes for
showing the size of Plücker space partition tree. Leaf nodes are further classified
as being either transparent (stabbing no triangles) or not transparent as denoted
by “Trans.” and “Non-Trans.” in the legend of Fig. 7.

Plücker Space Partition Trees with Pruning The effect of trimming
Plücker space partition tree is presented in Fig. 10 in regular scale and Fig. 11
in logarithm scale for comparing the average number of nodes in a tree when
without trimming, with merging by constant visibility information only, with
merging by empty Grassmann intersection only, or with both merging heuris-
tics. They are denoted as “No TRIM”, “C TRIM”, “G TRIM” and “CG TRIM”
in the legend box, respectively.

4.3 Analysis

The Plücker space partition tree is a variation of binary space partition tree in
higher (five) dimensions. We know of no nontrivial complexity analysis of binary
space partition trees in these dimensions. The Plücker space partition tree de-
fines a subdivision of space which is a coarsening of the arrangement of the set
of hyperplanes of the five-dimensional space generated by all the lines that were
inserted into the tree. It follows from standard results in combinatorial geome-
try that, the worst case complexity of Plücker space partition tree is O(n5) [5]
where n is the number of lines. McKenna and O’Rourke [12] established that the
number of distinct isotopy classes for n given lines is O(n4α(n)). The number of
leaves in the Plücker space partition tree can generally exceed this amount, since
some leaves of the tree might not intersect the Grassmann manifold, and hence
may not correspond to any isotopy class. However, after pruning away leaf cells
that do not intersect the Grassmann manifold, this bound should apply in our
case. Pellegrini and Shor [16] showed that for a given set of convex polyhedra,
the complexity of lines that stabs these polyhedra, a subset of isotopy classes
induced by these lines, is O(n32c

√
log n), where n is the number of facets of the

given set of polyhedra and c is a constant. However, this bound does not apply
immediately, because the Plücker space partition tree computes leaf cells that
might not intersect any of the objects.

It follows that the size of a Plücker space partition tree is at most O(n5),
where n is the number of input triangles. Let s(n) be the size of a Plücker space
partition tree of input size n. We conjecture that the size of the Plücker space
partition tree is of the following form

s(n) ≈ anc or equivalently log s ≈ c log n+ log a,

for some constants a and c. Based on this conjecture, the values of constants
a and c can be estimated from our experimental results by fitting a line to a
log-log scale plot of tree-size versus n.

We consider the un-trimmed Plücker space partition tree first. Figure 12 (a)
shows the curve obtained by connecting the 14 points whose x-coordinate is
the logarithm of the number of triangles and y-coordinate is the logarithm of
the average tree size. We deleted the leftmost two points (since low values are
less likely to provide good estimation of asymptotic values) and applied a least
squares line fit. See Fig. 12 (b). We found that the line of fit is (ln s) = 5.17(lnn)−
1.16, i.e.,

s(n) ≈ 0.315n5.17. (5)

The exponent is quite close to 5, which suggests that the O(n5) upper bound may
be tight. The fact that the exponent exceeds 5 is likely due to the fact that the
input sizes are not large enough to accurately gauge asymptotic growth rate. Of
course, the input sizes are quite small, and so our extrapolations should be taken
with a grain of salt. Next is the trimmed (by both heuristic methods) Plücker
space partition tree. Figure 13 (a) presents the curve by connecting points of
the average trimmed size of Plücker space partition tree versus the number of
triangles in log-log scale. Again, after deleting the leftmost two points in this
figure, least square fit returns the line, see Fig. 13 (b), (ln s) = 4.31(lnn)−0.129,
i.e.,

s(n) = 0.879n4.31. (6)

Again, extrapolations to asymptotic bounds is risky with such small input sizes,
but it does bear a similarity to the O(n4α(n)) bound of McKenna and O’Rourke.

In summary, (5) and (6) suggest the complexities for the un-trimmed and
trimmed Plücker space partition tree are roughly O(n5.17) and O(n4.31), respec-
tively. These are similar the upper bounds on the complexity of an arrangement
in five-dimensional space and the complexity of isotopy classes, respectively.

References

1. Pankaj K. Agarwal, Leonidas J. Guibas, T. M. Murali, and Jeffrey Scott Vitter.
Cylindrical static and kinetic binary space partitions. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., pages 39–48, 1997.

2. Pankaj K. Agarwal, T. Murali, and J. Vitter. Practical techniques for construct-
ing binary space partitions for orthogonal rectangles. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., pages 382–384, 1997.

3. Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis.
Academic Press Professional, Cambridge, Mass., 1993.

4. M. de Berg, M. de Groot, and M. Overmars. New results on binary space partitions
in the plane. Comput. Geom. Theory Appl., 8:317–333, 1997.

5. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West
Germany, 1987.

6. H. Fuchs, M. Kedem, and B. F. Naylor. On visible surface generation by a priori
tree structures. Computer Graphics, 14(3):124–133, July 1980. Proc. SIGGRAPH
’80.

7. Komei Fukuda and Alain Prodon. Double description method revisited. Lec-
ture Notes in Computer Science, 1120, 1996. The URL for cdd+ package is:
http://www.ifor.math.ethz.ch/ifor/staff/fukuda/cdd home/cdd.html.

8. Andrew S. Glassner, editor. An Introduction to Ray Tracing. Academic Press, San
Diego, CA, 1989.

9. Václav Hlavatý. Differential Line Geometry. P. Noordhoff Ltd., Groningen, Hol-
land, 1953. Translated by Harry Levy.

10. C. M. Jessop. A Treatise of Line Complex. Combridge, Combridge, England, 1903.

11. D. E. Knuth. The Art of Computer Programming. Addison Wesley, second edition,
1978.

12. M. McKenna and J. O’Rourke. Arrangements of lines in 3-space: a data structure
with applications. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 371–
380, 1988.

13. T. S. Motzkin, H. Raiffa, G. L. Tompson, and R. M. Thrall. The double description
method. In H. W. Kuhn and A. W. Tuker, editors, Contributions to theory of
games, volume 2. Princeton University Press, Princeton, RI, 1953.

14. M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-surface
removal and solid modeling. Discrete Comput. Geom., 5:485–503, 1990.

15. M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal
objects. J. Algorithms, 13:99–113, 1992.

16. M. Pellegrini and P. Shor. Finding stabbing lines in 3-space. Discrete Comput.
Geom., 8:191–208, 1992.

17. J. Plücker. Neue Geometrie des Raumes. Leipzig, 1868.
18. F.-T. Pu. Data structures for global illumination computation and visibility queries

in 3-space. PhD thesis, Department of Computer Science, University of Maryland,
College Park, Maryland, March 1998.

19. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

20. D. M. Y. Sommerville. Analytic Geometry of Three Dimensions. Cambridge Uni-
versity Press, Cambridge, England, 1934.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20000

40000

60000

80000

100000

120000

140000

160000

A
ve

ra
ge

 N
um

be
r

of
 L

ea
f

N
od

es

Number of Triangles

Total

Trans.

Non-Trans.

Fig. 7. Leaf nodes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

T
re

e
H

ei
gh

t

Number of Triangles

Fig. 8. The height of Plücker space partition tree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

200

400

600

800

1000

1200

B
ui

ld
in

g
T

im
e

(s
ec

.)

Number of Triangles

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.0001

0.001

0.01

0.1

1

10

100

1000

10000

B
ui

ld
in

g
T

im
e

(s
ec

.)

Number of Triangles

Fig. 9. Building time of Plücker space partition tree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

320000

A
ve

ra
ge

 T
re

e
Si

ze

Number of Triangles

No TRIM

C TRIM

G TRIM

CG TRIM

Fig. 10. The average tree size for different trimming.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

10

100

1000

10000

100000

1000000

A
ve

ra
ge

 T
re

e
Si

ze

Number of Triangles

No TRIM

C TRIM

G TRIM

CG TRIM

Fig. 11. The average tree size for different trimming (log scale).

1 1.25 1.5 1.75 2 2.25 2.5
4

6

8

10

12

Number of Triangles

A
ve

ra
ge

 S
iz

e
of

 th
e

T
re

e

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

Number of Triangles

A
ve

ra
ge

 S
iz

e
of

 th
e

T
re

e

(a)

(b)

Fig. 12. Average size of un-trimmed tree in log-log scale.

0 0.5 1 1.5 2 2.5
2

4

6

8

10

Number of Triangles

A
ve

ra
ge

 S
iz

e
of

 th
e

T
re

e
(T

ri
m

m
ed

)

1 1.25 1.5 1.75 2 2.25 2.5

5

6

7

8

9

10

11

Number of Triangles

A
ve

ra
ge

 S
iz

e
of

 th
e

T
re

e
(T

ri
m

m
ed

)

(a)

(b)

Fig. 13. Average size of trimmed tree in log-log scale.

