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Abstract The linear least trimmed squares (LTS) estimator is a statistical technique
for fitting a linear model to a set of points. Given a set of n points in R

d and given an
integer trimming parameter h ≤ n, LTS involves computing the (d − 1)-dimensional
hyperplane that minimizes the sum of the smallest h squared residuals. LTS is a robust
estimator with a 50 %-breakdown point, which means that the estimator is insensitive
to corruption due to outliers, provided that the outliers constitute less than 50 % of the
set. LTS is closely related to the well known LMS estimator, in which the objective is
to minimize the median squared residual, and LTA, in which the objective is to mini-
mize the sum of the smallest 50 % absolute residuals. LTS has the advantage of being
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statistically more efficient than LMS. Unfortunately, the computational complexity
of LTS is less understood than LMS. In this paper we present new algorithms, both
exact and approximate, for computing the LTS estimator. We also present hardness
results for exact and approximate LTS. A number of our results apply to the LTA
estimator as well.

Keywords Robust estimation · Linear estimation · Least trimmed squares
estimator · Approximation algorithms · Lower bounds

1 Introduction

In standard linear regression (with intercept), an n-element point set P = {p1, . . . , pn}
is given, where each point consists of some number of independent variables and one
dependent variable. Letting d denote the total number of variables, we wish to ex-
press the dependent variable as a linear function of d − 1 independent variables.
More formally, for 1 ≤ i ≤ n, let pi = (xi,1, . . . , xi,d−1, yi) ∈ R

d . The objective is
to compute a (d − 1)-dimensional hyperplane, represented as a coefficient vector
β = (β1, . . . , βd) ∈ R

d so that

yi =
d−1∑

j=1

βjxi,j + βd + ei, for i = 1,2, . . . , n,

where the ei ’s are the errors. Given such a vector β , the ith residual, denoted by
ri(β,P ), is defined to be yi −(

∑d−1
j=1 βjxi,j +βd). Let r[i](β,P ) denote the ith small-

est residual in terms of absolute value. Throughout, we consider the y-coordinate axis
to be the vertical direction, and so the ith residual is just the signed vertical distance
from the hyperplane to pi .

The standard least squares linear estimator is the hyperplane that minimizes the
sum of the squared residuals. It is well known that the least squares estimator is very
sensitive to outliers, that is, points that fail to follow the linear pattern of the majority
of the points. This has motivated interest in the study of robust estimators. The basic
measure of the robustness of an estimator is its breakdown point, that is, the fraction
(up to 50 %) of outlying data points that can corrupt the estimator arbitrarily.

The study of efficient algorithms for robust statistical estimators has been an active
area of research in computational geometry. The most widely studied robust linear
estimator is Rousseeuw’s least median of squares estimator (LMS) [28], which is
defined to be the hyperplane that minimizes the median squared residual. (In general,
an integer trimming parameter h is given, and the objective is to find the hyperplane
that minimizes the hth smallest squared residual.) A number of papers, both practical
and theoretical, have been devoted to solving this problem in the plane and in higher
dimensions [3, 11, 13, 24, 26, 27, 32]. Another example of a well-studied robust
estimator in computational geometry is the Tukey median and the related topic of
regression depth [4, 5, 21, 23].

Although the vast majority of work on robust linear estimation in the field of com-
putational geometry has been devoted to the study of the LMS estimator, it has been
observed by Rousseuw and Leroy [29] that LMS is not the estimator of choice from
the perspective of statistical properties. They argue that a better choice is the least
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trimmed squares (or LTS) linear estimator [28]. Given an n-element point set P and
a positive integer trimming parameter h ≤ n, this estimator is defined to be the non-
vertical hyperplane that minimizes the sum (as opposed to the maximum) of the h

smallest squared residuals. More formally, given a trimming parameter h, the LTS
cost of a hyperplane β is defined to be

�
(LTS)
β (P,h) =

h∑

i=1

r2[i](β,P ).

The LTS estimator is a (d − 1)-dimensional hyperplane β of minimum LTS cost,
which we denote by β(LTS)(P ,h). We let �(LTS)(P ,h) denote the associated LTS cost
of this hyperplane. The LTS problem is that of computing this hyperplane. The points
having the h smallest squared residuals are called inliers, and the remaining points
are outliers. Note that, when h = n, this is equivalent to the standard least squares
estimator. Typically, h is set to some constant fraction of n based on the expected
number of outliers. To guarantee a unique solution it is often assumed that h is at
least n/2.

The LTS estimator has the same breakdown point as LMS. Like LMS, the LTS
estimator is regression-, scale-, and affine-equivariant, which means that the estimator
transforms “properly” under these types of transformations [29]. However, LTS has
a number of advantages over LMS. The LTS objective function is smoother than that
of LMS. LTS has better statistical efficiency because it is asymptotically normal [28].
Intuitively, LTS converges faster because the LMS estimator is influenced by just
the d + 1 inliers that have the largest squared residuals—the remaining inliers play
essentially no role in the estimator’s value. In contrast, the LTS objective function is
influenced by all the inliers. Rouseeuw and van Driessen [30] remark that, for these
reasons, LTS is more suitable as a starting point for two-step robust estimators, such
as the MM-estimator [33] and generalized M-estimators [6, 31].

To date, the computational complexity of LTS is less well understood than that of
LMS. Hössjer [20] presented an exact O(n2 logn) algorithm for LTS in the plane
based on plane sweep. The most practical approach is the Fast-LTS heuristic of
Rousseeuw and Van Driessen [30], which is based on a combination of random sam-
pling and local improvement. In practice this approach works well, but it provides
no assurance of the quality of the resulting fit. Another example of a local search
heuristic is Hawkins’ feasible point algorithm [18], but it does not offer any formal
performance guarantees either.

As we shall see, the best known algorithms for computing the LTS estimator have
relatively high computational complexity, and so it is natural to consider whether this
problem can be solved approximately. There are a few possible ways to formulate
LTS as an approximation problem, either by approximating the residual, by approx-
imating the quantile, or both. We introduce the approximation parameters εr and εq

to denote the allowed residual and quantile errors, respectively.

Residual Approximation: The requirement of minimizing the sum of squared resid-
uals is relaxed. Given εr > 0, an εr -residual approximation is any hyperplane β
such that

�
(LTS)
β (P,h) ≤ (1 + εr)�

(LTS)(P ,h).
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Quantile Approximation: As we shall see, much of the complexity of LTS arises
because of the requirement that exactly h points be considered. We can relax
this requirement by introducing a parameter 0 < εq < h/n and requiring that the
fraction of inliers used is smaller by εq . Let h− = h − �nεq�. An εq -quantile
approximation is any hyperplane β such that

1

h− �
(LTS)
β

(
P,h−) ≤ 1

h
�(LTS)(P ,h).

(The normalizing factors 1/h− and 1/h are provided since the costs involve sums
over a different number of terms.)

Hybrid Approximation: The above approximations can be merged into a single ap-
proximation. Given εr and εq as in the previous two approximations, let h− be as
defined above. An (εr , εq)-hybrid approximation is any hyperplane β such that

1

h− �
(LTS)
β

(
P,h−) ≤ (1 + εr)

1

h
�(LTS)(P ,h).

LTS and LMS are robust versions of the well known least squares (L2) and Cheby-
shev (L∞) estimators, respectively. A third example is the least trimmed sum of ab-
solute residuals, or LTA. This is a trimmed version of the L1 estimator, in which
the objective is to minimize the sum of squares of the h smallest absolute values
of the residuals. From the perspective of optimization problems, the associated cost
functions are:

�
(LTS)
β =

h∑

i=1

r2[i](β), �
(LMS)
β = max

1≤i≤h
r2[i](β), and �

(LTA)
β =

h∑

i=1

∣∣r[i](β)
∣∣.

By analogy, approximations can be defined for the other trimmed estimators, LMS
and LTA. Har-Peled [17] gave an efficient approximation algorithm for the nonrobust
point L1 estimator. Fonseca [15] presented a constant-factor approximation general-
ization of LMS, where the objective is to fit a flat of a given dimension k.

In this paper, we present a number of results, both exact and approximate, for the
LTS and LTA estimators. (See Table 1 for a summary.) In Sect. 2 we give two exact
algorithms. The first is an O(n2) time exact algorithm for both estimators in the plane
(see Theorem 1), which provides a modest improvement over the O(n2 logn) algo-
rithm due to Hössjer [20]. The second is an O(nd+1) time exact algorithm for both
estimators in dimension d ≥ 3. Recalling that h is typically a constant fraction of n,
this is a significant improvement over brute-force search, which runs in O(hnd+1)

time (see Theorem 2). Both algorithms use O(n) space. In Sect. 3 we present a ran-
domized ε-residual approximation algorithm, which works for both LTS and LTA.
Throughout, we make the relatively weak assumption that 1/ε is bounded above by
some polynomial function of n. Under this assumption, we show that the running
time1 of this algorithm is Õ((nd/h)(1/ε)d) (see Theorem 3). When h = Θ(n) and ε

1We use the asymptotic forms Õ and Ω̃ as a shorthand for O and Ω , respectively, where factors of the

form logO(1) n have been ignored.
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Table 1 Summary of results for LTS and LTA given n points in R
d and h inliers. With the exception of

the Ω(min(h,n − h)d ) lower bound, which applies only to LTA, all results apply to both LTS and LTA

Upper bound time/space Lower bound Theorems

Exact

d = 2 : O(n2)/O(n)

d ≥ 3 : O(nd+1)/O(n)

{
Ω(min(h,n − h)d ) [LTA]

Ω((n/h)d )

}
1, 2, 4, 5

Approx.

εr -Residual Õ((nd/h)(1/εr
d ))/Õ((n/εr )

d−1) Ω((n − h)d−1) 3, 6

εq -Quantile – Ω((n − h)d−1) 7

(εr , εq )-Hybrid Õ
(
n + 1/ε

2(d+1)
m

)
/O(n)

where εm = min(εq , εrh/n)

– 8

is a constant, this is Õ(nd−1). Thus, it is asymptotically superior to our exact algo-
rithm by almost a quadratic factor when d ≥ 3.

In Sect. 4 we give a number of hardness results for both LTS and LTA under the
assumption of the hardness of solving the affine degeneracy problem. (Affine degen-
eracy is the problem of determining whether any d + 1 points of a given n-element
point set in R

d lie on a common hyperplane [14]). In the case where h = Θ(n), we
provide a lower bound of Ω(nd) for computing the exact LTA estimator (see The-
orem 4). This lower bound exploits the linear nature of the LTA objective function,
and does not seem to generalize to LTS. Remarkably, as h becomes very small, the
problem is not easier to solve. (Perhaps because when there are very few inliers, it
is harder to identify them.) In particular, for the case where h = O(1), we provide a
lower bound of Ω(nd) for both LTS and LTA (see Theorem 5).

We also provide lower bounds for approximate versions of both problems. We
present an Ω(nd−1) lower bound for computing residual and quantile approximations
to both LTS and LTA (see Theorems 6 and 7). Our lower bound for the quantile
approximation holds under the assumption that εq < h/(dn). Under the hypothesis
of the hardness of affine degeneracy, these results imply that, if h = Θ(n) and ε is
a constant, our exact algorithm is suboptimal by a factor of at most O(n), and our
approximation algorithm is suboptimal by only a polylogarithmic factor in n.

These results suggest that computing LTS and LTA, even approximately, is com-
putationally intensive except in very low dimensions. On the positive side, we show
that hybrid approximations can be computed efficiently in any fixed dimension. In
Sect. 5, we show that, for fixed εr and εq , it is possible to compute an (εr , εq)-hybrid
approximation in O(n) time with high probability. (The general bound for arbitrary
εr and εq is given in Theorem 8.) The approach is based on computing an exact
solution for a sufficiently large random sample of the points.

Ours are the first nontrivial results on the asymptotic computational complexity of
the LTS and LTA problems, which are both of practical importance in computational
statistics. The most closely related work to ours from the perspective of techniques
is the paper by Erickson, Har-Peled, and Mount [13] on the LMS estimator. They
presented both exact and approximation algorithms for LMS in R

d and proved hard-
ness results. Many of the results of this paper arise by an adaptation of the methods
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presented there, but, as we shall see, many new ideas are introduced to deal with the
additional complexities of the LTS and LTA problems.

In all of our algorithms, we assume that the inputs are in general position. (We
mean this is the strong sense, forbidding degenerate configurations not only in the
input itself, but also in the intermediate structures arising in the course of our algo-
rithms, whenever such configurations can be avoided by an infinitesimal perturbation
of the original coordinates.) Throughout, we assume that the dimension d is a con-
stant, but we treat the parameters h, εr and εq as asymptotic quantities.

2 Exact Algorithms

In this section we present two exact algorithms for LTS. Our first algorithm solves
the problem in O(n2) time for point sets in the plane. This algorithm is a modifica-
tion of the topological plane-sweep algorithm for LMS given by Edelsbrunner and
Souvaine [11], which was based on the earlier plane sweep algorithm by Souvaine
and Steiger [32]. Our second algorithm runs in any fixed dimension d ≥ 3 and takes
O(nd+1) time. Both algorithms use O(n) space.

Recall that we are given an n-element point set P in R
d and a positive integer

trimming parameter h ≤ n. Define a slab to be the closed region bounded between
two parallel (nonvertical) hyperplanes. Define the height of a slab to be the vertical
distance (along the y-axis) between its bounding hyperplanes. We define a slab set
to be any subset of P formed by taking all the points interior to some slab and any
subset of the points of P that lie on the slab’s boundary.

Given any hyperplane β , there exists a slab centered at β such that the associated
slab set consist of the points having the h smallest squared residuals with respect to β

(see Fig. 1(a)). A slab is critical if d + 1 points of P lie on its boundary, with at least
one point on each side of the slab. It is easy to prove by a perturbation argument that
every slab set is the slab set for some critical slab (see Fig. 1(b)). Assuming general
position, any set of d + 1 points determines up to 2d+1 critical slabs, depending on
how the points are assigned to the top and bottom of the slab. (The exact number is
smaller, since, for example, all the points cannot be on the same side of the slab.)
Thus, there are at most 2d+1

(
n

d+1

) = O(nd+1) distinct slab sets.
A simple brute-force solution to the LTS problem would involve enumerating all

critical slab sets, eliminating all those that do not contain h points, computing the
LTS cost of each of the remaining slab sets, and returning the minimum. The result-
ing algorithm would run in Θ(hnd+1) time. In a typical setting, where h = Θ(n),
this is Θ(nd+2). Our exact algorithms improve upon this approach by reducing

Fig. 1 The exact LTS
algorithm: (a) the slab set
consisting of the h = 11 points
having the smallest squared
residual with respect to β ,
(b) an equivalent slab set
generated by a critical slab
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the enumeration of slab sets to the traversal of a dual hyperplane arrangement to-
gether with an efficient procedure for updating the LTS cost. In particular, given
a point p = (p1, . . . , pd), let the dual hyperplane in R

d be given by the equation
y = ∑d−1

i=1 pixi − pd . It is easily verified that a slab of vertical height x is mapped
through the dual transformation to a vertical segment of length x (see, e.g., [11]).
The points lying within the slab correspond to dual hyperplanes that intersect this
segment. The dual of a critical slab is a vertical line segment whose endpoints are
incident to a total of d + 1 dual hyperplanes of P . We call this a critical segment.

Our planar LTS algorithm is based on an adaptation of the topological plane sweep
algorithm of Edelsbrunner and Souvaine. The principal new element is the need to
efficiently maintain the LTS cost. The key observation is that the LTS cost can be
expressed in terms of equations involving simple polynomials of the point set. These
polynomials can be updated in O(1) time as we move from event to event.

Theorem 1 Given an n-element planar point set P and a trimming parameter h, the
linear LTS and LTA estimators can be computed in O(n2) time and O(n) space.

Proof We begin by describing the LTS solution. The algorithm is based on topolog-
ical plane sweep of the dual line arrangement [10, 11]. For each i, where 1 ≤ i ≤
n − h + 1, consider any vertical line segment joining levels i and i + h − 1 of the
arrangement. (See [9] for terminology.) Let Li and Li+h−1 denote these levels. Such
a segment intersects at least h dual hyperplanes and so corresponds to a slab that
contains at least h points of P . It is easy to show that there are O(n2) such critical
segments [11]. These critical segments can be generated by topological plane sweep
in O(n2) time and O(n) space.

Consider a fixed pair of levels Li and Li+h−1 and consider the left-to-right se-
quence of critical segments joining these two levels (shown as broken vertical seg-
ments of Fig. 2(a)). The LMS algorithm of [11] generates these sequences implicitly
for all such pairs of levels simultaneously. The principal modification needed to gen-
eralize the LMS algorithm to LTS is computing the minimum LTS cost between each
pair of consecutive critical segments. To do this, observe that between two critical
segments (shown as the shaded parallelogram of Fig. 2(a)) all the vertical segments
connecting Li and Li+h−1 intersect the same lines of the dual arrangement of P .
It follows that the associated slabs in the primal plane contain the same points of P .

Fig. 2 Proof of Theorem 1: (a) updating a critical segment for LTS between levels Li and Li+h−1, (b) the
critical segments for LTA
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Solving the LTS problem reduces therefore to solving the standard least squares prob-
lem for each of these slab sets.

It is well known that the solution to least squares for a set of points pi = (xi, yi) in
the plane involves computing formulas whose terms are

∑
i xi ,

∑
i yi ,

∑
i x

2
i ,

∑
i y

2
i ,

and
∑

i xiyi (see, e.g., [7]). The algorithm maintains these sums for the current set
of h inliers. As the plane sweep proceeds from one event to the next, only a constant
number of points are inserted or deleted from the slab set. Therefore it is possible
to incrementally update each of the above sums by adding or subtracting a constant
number of quantities, and reevaluate the least squares solution in constant time. When
the algorithm terminates, we have computed the cost of the standard least squares
estimator for all O(n2) of the slab sets in O(1) amortized time per set. The overall
minimum is returned as the final answer. The space needed is O(n).

The LTA algorithm has the same general structure. We will describe the case where
h is odd, since the solution is more symmetric. It is well known (and easily proved by
a variation argument) that, given a set of h numbers, the median of the set minimizes
the sum of absolute distances to the other elements. As the topological plane sweep
proceeds from left to right, for 1 ≤ i ≤ n − h + 1, we maintain at each vertex a
structure that consists of a vertical line segment joining levels i, i + h − 1, and i +
(h − 1)/2. (See the dotted segments of Fig. 2(b).) As above, the first and second
levels define the extremes of the critical segment and the third level is the median.
Because each vertex of the arrangement participates in a constant number of such
critical segments (playing the role of either the top, bottom, or center level), the total
number of critical segments is O(n2). Between two critical segments, the same set of
(h − 1)/2 segments pass above the median level and the same set of (h − 1)/2 below
it. The LTA cost defined by these two sets can be expressed as the sum of linear
functions. As we move from one critical segment to the next, a constant number
of terms enter and leave this linear function. Therefore, in O(1) time per critical
segment, we can update the LTA cost. As above, after processing all O(n2) events,
we return the overall minimum. The total space is O(n). �

The planar algorithm makes use of the fact that, in the plane, there is an efficient
way to enumerate the slab sets containing h points. Unfortunately, we know of no
comparably efficient way to do this in higher dimensions. The following result shows
that LTS can be solved in higher dimensions, but it is relatively less efficient for
this reason. The general approach is to enumerate all (d − 1)-element subsets of P ,
and for each subset, to consider the restricted set of slabs that have the property
that the points of this subset all lie on the slab’s boundary. Since d + 1 points are
needed to uniquely determine a slab, this restriction reduces the number of degrees
of freedom to (d + 1)− (d − 1) = 2. The resulting restricted problem is thus reduced
to a 2-dimensional problem, which we show can be solved by plane sweep.

Theorem 2 Given an n-element point set P in R
d , for any fixed d ≥ 3 and a trimming

parameter h, the linear LTS and LTA estimators can be computed in O(nd+1) time
and O(n) space.

Proof We present only the LTS solution, and note that the LTA solution is a direct
modification. We follow the general approach outlined in the algorithm described
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in the proof of Theorem 1, except that we generate all the slab sets, not just those
containing h points, and prune away those that contain an improper number of points.
The algorithm enumerates all (d −1)-element subsets of points of P . For each subset
R we define the R-restricted slab set to be those slabs such that the points of R all lie
on the slab’s boundary. There are at most 2d−1 ways of assigning the points of R to
the upper and lower bounding hyperplanes of each slab (and, as mentioned earlier, we
need only consider those with at least one point on each side). The resulting number
of subsets along with upper-lower assignments is O(2d−1nd−1), which is O(nd−1)

given our assumption that d is fixed.
For each such subset R and each upper-lower assignment, we define the

R-restricted LTS problem to be that of computing the least squares cost of the points
lying within some R-restricted slab, subject to the constraint that the slab contains
exactly h points of P . Our algorithm generates and solves all the restricted prob-
lems and returns the minimum among all of them. To complete the proof, it suffices
to show how each restricted problem can be solved in O(n2) time and O(n) space,
which will yield the desired total time of O(n2 ·nd−1) = O(nd+1) and space of O(n).

Let us begin by defining a dual space of slabs. Consider a slab S, where
(β1, . . . , βd−1, β

−
d ) are the coefficients of the hyperplane bounding S’s lower side,

and (β1, . . . , βd−1, β
+
d ) are the coefficients bounding the upper side. The condition

that p = (p1, . . . , pd) lies on the boundary of S is a linear equality involving the co-
ordinates of p, and thus the condition that p lies within the slab can be expressed as
two linear inequalities involving the coordinates of p:

β−
d ≤ pd −

d−1∑

i=1

βipi ≤ β+
d .

We can therefore interpret a slab S as a point βS = (β1, . . . , βd−1, β
−
d , β+

d ) in a
(d + 1)-dimensional slab space. Given a point p, the set of slabs S that contain p

“dualizes” to the set of points βS in slab space such that

β−
d +

d−1∑

i=1

βipi ≤ pd ≤ β+
d +

d−1∑

i=1

βipi.

For a given point p, the set of points β satisfying these two linear inequalities is
clearly the intersection of two (nonparallel) halfspaces in the (d + 1)-dimensional
slab space.

Consider any (d − 1)-element subset of P and an assignment of these points to
the upper and lower sides of a slab. Let R denote the associated restricted problem.
It follows directly from the above remarks that any R-restricted slab S dualizes to
a point βS ∈ R

d+1 satisfying a system of d − 1 linear equations, one for each point
of R. By our general-position assumption, the set of points satisfying such a system
is a 2-dimensional affine subspace (that is, a plane) in slab space, which we denote
by FR . Through Gaussian elimination, we may project this subspace to any coordi-
nate plane spanned by two coordinate axes. This restricted problem is thus reduced
to a search problem in R

2, where each point of the plane corresponds uniquely to an
R-restricted slab.
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Consider any point p ∈ P . By our earlier remarks, a slab S contains p if and
only if its dual slab βS lies within a generalized wedge formed by the intersection of
two halfspaces in R

d+1. By intersecting this generalized wedge with FR , the resulting
2-dimensional wedge contains the duals of the R-restricted slabs containing p. By the
aforementioned projection, we can identify each point p ∈ P with a pair of halfspaces
in R

2, such that the restricted slabs containing p correspond exactly to the points
lying in the intersection of these two halfspaces.

If we apply this observation to every point of P , the result is an arrangement of
2n lines in R

2, such that each face of this arrangement corresponds to the set of
R-restricted slabs that contain the same subset of P . Such a face is admissible if this
number of points is h. (Points lying on the boundary of a slab may be interpreted as
lying inside or outside. We admit the face if it is possible to classify the boundary
points so that the final count is h.) The vertices of this arrangement correspond to
critical slabs. By our general-position assumption, each cell differs from its neigh-
bor by the addition or removal of a single point of P . Therefore, as in the proof of
Theorem 1, we can traverse the arrangement by topological plane sweep in O(n2)

time and O(n) space. As we move from one face of the arrangement to the next, we
incrementally update the solution of the associated least squares problem in O(1)

amortized time (see the proof of Theorem 1). Only those faces corresponding to ad-
missible slabs are retained for final consideration. Thus, each restricted problem can
be solved in O(n2) time and O(n) space, which completes the proof. �

3 Residual Approximation

The results of the previous section do not provide a very efficient solution to LTS,
unless the dimension is low. This raises the question of whether we can do better
through approximation. In this section we present a residual approximation algorithm
for LTS. The algorithm is randomized and runs in Õ((nd/h)(1/ε)d) time with high
probability. The algorithm is based on the general framework for the LMS approxi-
mation presented by Erickson et al. [13]. In that paper, the LMS problem is reduced to
the decision problem of finding a slab of a given vertical height that contains at least
h points. The solution to this decision problem is then incorporated into a parametric
search algorithm in order to determine the approximately optimal height.

The principal difficulty in adapting the algorithm of [13] to solving the decision
problem for LTS is that, even with knowledge of the optimum LTS cost, we cannot
localize the inliers as lying within a single slab of fixed height, as we could with the
simpler LMS problem. This is because the cost depends on the residuals of all of the
inliers. Our approach is to replace the single-slab method of [13] with a sequence
of O((1/ε) log(n/ε)) parallel slabs radiating outwards from the central hyperplane,
which we call a slab system. The slab heights are chosen so that all the points within
any given slab are at roughly the same distance from the central hyperplane. By count-
ing the number of points within each of the slabs, we can aggregate and approximate
their combined contributions to the LTS cost. The remainder of this section will be
devoted to deriving this algorithm, whose performance is summarized in the follow-
ing theorem.
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Theorem 3 Given an n-element set of points P in R
d , a trimming parame-

ter h, and an approximation parameter 0 < ε < 1, it is possible to compute an
ε-residual approximation to the linear LTS estimator, with high probability, in time
O((nd/h)(1/εd) logd+2 n) and space O((n/ε)d−1 logd−1 n).

The presentation of the algorithm consists of three building blocks, which are
given in the next few subsections. In Sect. 3.1 we introduce slab systems and present
their basic properties. In Sect. 3.2 we present a restricted form of the problem and
show that combinatorially distinct slab systems for the restricted problem can be
represented as a hyperplane arrangement in R

d . Finally, in Sect. 3.3 we present the
complete algorithm.

3.1 Slab Systems

Consider an instance of the LTS problem consisting of a point set P , a trimming pa-
rameter h, and approximation parameter ε < 1. (It will be straightforward to modify
our results to handle any fixed approximation parameter.) As stated earlier, we as-
sume that 1/ε is bounded above by a polynomial in n, so log(1/ε) can be absorbed
in the polylogarithmic term when stating complexity bounds. Suppose that we are
given a real positive parameter �, called the cost estimate. Given such an instance
and a hyperplane β , we define a (�, ε)-slab system for β as follows. For an integer f

(to be specified below), and for −f ≤ j ≤ f , define a sequence 〈aj 〉 of nonnegative
reals whose squared values satisfy

a2
j =

(
1 + ε

2

)j

ε
�

h
.

(Because LTS is defined in terms of squared residuals, it will simplify matter to deal
with squared distances.) We define f (h, ε) to be the smallest integer such that (1 +
ε/2)f (h,ε) ≥ 2h/ε, or equivalently f (h, ε) = 
ln(2h/ε)/ ln(1 + ε/2)�. When h and ε

are clear, we refer to this quantity as f . It is easy to verify that, for 0 < ε < 1, ln(1 +
ε/2) ≥ ε/4. Thus, it follows that f (h, ε) = O((1/ε) log(h/ε)). By our assumption
that 1/ε is bounded by a polynomial function in n, this is O((1/ε) logn). Clearly,

a2
f ≥ 2� and a2−f ≤ ε2

2h2
�.

Next, we define a set of regions Sj for −f ≤ j ≤ f , each of which is the union of
two slabs that are parallel to β . First, define S−f to be the set of points of R

d whose

squared residuals with respect to β are at most a2−f . Next, for −f +1 ≤ j ≤ f , define

Sj to be the set of points of R
d whose squared residuals with respect to β lie in the

half-open interval (a2
j−1, a

2
j ] (see Fig. 3). For j > −f , Sj is the disjoint union of two

slabs, one on each side of β . Observe that, for fixed values of ε and h, the squared
distances of the slabs to the central hyperplane vary linearly as a function of �.

Given the point set P , for −f ≤ j ≤ f , define the weight, denoted wj , of Sj to
be |P ∩ Sj |. Define the accumulated weight to be Wj = ∑

i≤j wi . Because we are
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Fig. 3 A slab system and
region S2 with associated
weight w2 = 5 + 3 = 8 (not
drawn to scale)

interested only in the h closest points to β , we define the j th trimmed weight to be
region weights to the first h points, that is,

ŵj =
{

wj if Wj ≤ h,

max(0,wj − (Wj − h)) otherwise.

Clearly,
∑f

j=−f ŵj = h, and the sum includes the regions containing the h closest
points to β . We define the approximate LTS cost to be the trimmed weighted sum of
squared distances over all the groups, that is,

�̂β(P,h) =
f∑

j=−f

ŵj a
2
j . (1)

We refer to the collection of regions and weights defined above as a (�, ε)-slab sys-
tem for β . The next lemma shows that, for suitably chosen �, this quantity provides
an approximation to the LTS cost.

Lemma 1 Consider an n-element point set P in R
d , a trimming parameter

1 ≤ h ≤ n, and positive real parameters � and ε < 1. Given a hyperplane β and
a (�, ε)-slab system for β , we have

(i) W0 ≥ h ⇒ �
(LTS)
β (P,h) < �

(ii) Wf < h ⇒ �
(LTS)
β (P,h) > �

(iii) W0 < h ≤ Wf ⇒ �
(LTS)
β (P,h) ≤ �̂β(P,h) < (1 + ε)�

(LTS)
β (P,h).

Proof To establish (i), observe that, if W0 ≥ h, there are at least h points of P each of
whose squared residual with respect to β is at most a2

0 . This implies that the LTS cost
with respect to β is at most ha2

0 = ε�, which is less than � under our assumption
that ε < 1. To establish (ii), observe that if Wf < h, then at least one point among the
h closest is at squared distance greater than a2

f ≥ 2� ≥ �, and hence the total cost is
at least this large.

Henceforth, let us assume that W0 < h ≤ Wf . Because h ≤ Wf , the trimmed

weighted sum of the squared distance values, a2
j , for j ranging over all f groups
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is an upper bound on the sum of the h smallest squared residuals, that is,

�̂β(P,h) =
∑

−f ≤j≤f

ŵj a
2
j ≥

∑

1≤i≤h

r2[i](β) = �
(LTS)
β (P,h).

Because W0 < h, at least one inlier lies within a squared distance of at least a2
0 =

ε�/h, and therefore �
(LTS)
β (P,h) ≥ ε�/h. Each point of S−f has a squared residual

of at most a2−f ≤ ε2�/(2h2), and therefore

ŵ−f a2−f ≤ h
ε2�

2h2
= ε

2
· ε�

h
≤ ε

2
�

(LTS)
β (P,h).

Thus, we have

�̂β(P,h) =
∑

−f ≤j≤f

ŵj a
2
j ≤ ε

2
�

(LTS)
β (P,h) +

∑

−f <j≤f

ŵj a
2
j .

Observe that a2
j /a

2
j−1 = (1 + ε/2), for −f < j ≤ f . Observe that if the point with

the ith smallest residual lies within slab j , then r2[i](β) > a2
j−1. Therefore, we have

�̂β(P,h) ≤ ε

2
�

(LTS)
β (P,h) +

∑

−f <j≤f

ŵj a
2
j−1

a2
j

a2
j−1

= ε

2
�

(LTS)
β (P,h) +

(
1 + ε

2

) ∑

−f <j≤f

ŵj a
2
j−1

<
ε

2
�

(LTS)
β (P,h) +

(
1 + ε

2

) ∑

1≤i≤h

r2[i](β)

= ε

2
�

(LTS)
β (P,h) +

(
1 + ε

2

)
�

(LTS)
β (P,h)

= (1 + ε)�
(LTS)
β (P,h),

which completes the proof of (iii). �

3.2 The q-Restricted Problem

In this section we present an approximate solution for a restricted form of the LTS
problem. Given a point q (which need not be in P ) the q-restricted LTS problem
involves computing the hyperplane passing through q that minimizes the LTS cost.
Our approach involves first presenting an approximation algorithm to the restricted
problem, and then showing that, through an appropriate sampling process, it is pos-
sible to determine a small set of restriction points, such that at least one of them will
be sufficiently close to the optimum hyperplane. By approximating the solution of
the restricted problem for this point, we obtain the desired approximation. (Note that
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the notion of “restriction” presented here is not related to the notion of R-restriction
presented in Sect. 2.)

Throughout the remainder of this section, let us assume that a restriction point
q ∈ R

d is given. We begin by defining a dual space in which each point is associ-
ated with a slab system, whose the central hyperplane passes through the restriction
point q . (This representation is unrelated to the dual representation given in Sect. 2.)
Recall that a slab system in R

d is determined by two quantities, a central hyperplane
β = (β1, . . . , βd) and an LTS cost estimate � > 0.

The constraint that the central hyperplane y = ∑d−1
i=1 βixi + βd passes through q

implies that qd = ∑d−1
i=1 βiqi + βd , or equivalently βd = qd − ∑d−1

i=1 βiqi . By per-
forming a single stage of Gaussian elimination, we may eliminate the coordinate βd

and represent each central hyperplane of a q-restricted system as a (d − 1)-element
vector (β1, . . . , βd−1). Based on this observation, we define the dual representation
of any (�, ε)-slab system to be the d-vector (β1, . . . , βd−1, δ) ∈ R

d , where we define
δ = √

�. We refer to this dual representation as slab space. (This is different from
the notion of slab space that was introduced in Sect. 2.) We say that two slab systems
are combinatorially equivalent if corresponding slabs contain the same subset of P .
The following lemma shows how to identify the combinatorially distinct slab systems
with the cells of a hyperplane arrangement.

Lemma 2 Given an n-element point set P in R
d , trimming parameter h, ε > 0,

and a restriction point q ∈ R
d , there exists a hyperplane arrangement, Ah,ε(P, q),

in the associated d-dimensional slab space consisting O((n/ε) logn) hyperplanes,
such that the points lying within any given cell of this arrangement correspond to
combinatorially equivalent q-restricted slab systems.

Proof Recall that the slab boundaries of a slab system are defined by a collection of
2f +1 values aj , for −f ≤ j ≤ f and f = O((1/ε) logn). Given P and ε, we define
a collection of 2n(2f + 1) = O((n/ε) logn) triples

Ψ = {
(p, j, b) : p ∈ P,−f ≤ j ≤ f,b ∈ {0,1}}.

Intuitively, the triple (p, j, b) ∈ Ψ corresponds to the set of q-restricted slab systems
such that point p lies on the j th hyperplane (that is, at vertical distance aj ) above the
central hyperplane if b = 0 and below the central hyperplane if b = 1 (see Fig. 4).

Fig. 4 An event corresponding
to the triple (p, j,0), where q is
the restriction point
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Let p = (x1, . . . , xd, y). Recall that aj = √
(1 + ε/2)j ε�/h. The point p lies on

the desired hyperplane if and only if

y =
d−1∑

i=1

βixi + βd + (−1)baj =
d−1∑

i=1

βixi +
(

qd −
d−1∑

i=1

βiqi

)
+ (−1)baj

= qd +
d−1∑

i=1

βi(xi − qi) + (−1)baj .

(Note that, if b = 0, the point lies on the j th hyperplane above the central hyperplane,
if b = 1, it is on the j th hyperplane below.) By defining cj,ε,h = √

(1 + ε/2)j ε/h,
it follows that p lies on the desired hyperplane of the slab system if and only if the
associated point in slab space for this slab system is in the set β(p, j, b), which is
defined to be

β(p, j, b) =
{

(β1, . . . , βd−1, δ) : y = qd +
d−1∑

i=1

βi(xi − qi) + (−1)bcj,ε,hδ

}
.

Observe that this is a linear function of (β1, . . . , βd−1, δ), and so β(p, j, b) is a hy-
perplane in slab space.

Let Ah,ε(P, q) denote the arrangement of O((n/ε) logn) hyperplanes in our
d-dimensional q-restricted slab space defined by the set of hyperplanes β(p, j, b),
for all (p, j, b) ∈ Ψ . To complete the proof, we assert that the points within any sin-
gle cell of this arrangement correspond to combinatorially equivalent slab systems.
Suppose to the contrary that the points in slab space of two slab systems Σ and Σ ′
are combinatorially distinct but lie within the same cell. Because they are combina-
torially distinct, there exists j such that the corresponding slabs Sj and S′

j of these
two systems contain different subsets of P . That is, there is a point p ∈ P that lies in
one of these slabs but not the other. Therefore, a straight-line path between the points
in slab space dual to Σ and Σ ′ must pass through an intermediate slab system in
which p lies on the boundary of the corresponding slab. This implies that the points
of Σ and Σ ′ lie on opposite sides of a hyperplane of Ah,ε(P, q) corresponding to
this incidence, which contradicts the hypothesis that the points in slab space for Σ

and Σ ′ are in the same cell of the arrangement (See Fig. 5(a).) �

By standard results on hyperplane arrangements [8], the total combinatorial com-
plexity of the arrangement Ah,ε(P, q) described in the above lemma is
O((n/ε)d logd n). Observe that fixing the value of � ≥ 0 (and thus fixing the value
of δ) defines a (d−1)-dimensional “slice” of this arrangement, denoted Ah,ε,�(P,q),
whose total combinatorial complexity is O((n/ε)d−1 logd−1 n). When P , q , h, and ε

are clear from context, we refer to this arrangement simply as A�. (An example is
shown in Fig. 5(b).)

The principal advantage of expressing matters in term of the arrangement in slab
space is that, since one of the coordinates of the configuration space varies monoton-
ically with �, we can solve the problem by performing a parametric binary search
based on this coordinate. Each probe of the parametric search is given a value �, and
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Fig. 5 Slab-space
transformation: (a) the proof
that points of the same cell
correspond to combinatorially
equivalent slab systems,
(b) examples of slices the
arrangement of slap space for a
case involving three points
(three dual lines) and a slab
system consisting of a single
slab

it searches the arrangement A� to determine whether there exists a feasible solution
of cost approximately � or less. (The LMS algorithm given by Erickson et al. [13]
can be viewed as a special case of this approach where there is only one slab, that is,
f (h, ε) = 1.)

In order to implement this approach in our case, we first demonstrate that the re-
stricted decision problem can be solved approximately. Given a point set P , trimming
parameter h, a target cost � and an approximation parameter ε, we say that an algo-
rithm solves the ε-approximate LTS decision problem if it satisfies the following con-
ditions. If the algorithm accepts �, then � ≥ �(LTS)(P ,h). If the algorithm rejects �,
then � < (1 + ε)�(LTS)(P ,h). Note that, if �(LTS)(P ,h) ≤ � < (1 + ε)�(LTS)(P ,h),
the algorithm may either accept or reject �. The q-restricted decision problem is
defined analogously, subject to the constraint that the hyperplane passes through q .

Lemma 3 Consider an instance of the restricted LTS decision problem consisting
of an n-element set of points P in R

d , a trimming parameter h, an approximation
parameter 0 < ε ≤ 1, and a restriction point q ∈ R

d (not necessarily in P ). Given a
target cost � > 0, it is possible to solve the q-restricted ε-approximate LTS decision
problem in time O((n/ε)d−1 logd n) and space O((n/ε)d−1 logd−1 n).

Proof Given P , q , h, ε, and �, we begin by constructing the (d − 1)-dimensional
arrangement Ah,ε,�(P,q) = A�, defined earlier. Recall that each cell of this arrange-
ment corresponds to a set of combinatorially equivalent partitions of the point set P

into O(f (h, ε)) slab sets of the form Sj ∩ P . For each cell, we maintain a (2f + 1)-
element vector of weights (w−f , . . . ,wf ), where wj denotes the number of points of
P in the j th slab set. We also maintain the smallest index k, −f ≤ k ≤ f , such that
the accumulated sum of weights satisfies Wk ≥ h, and the values of the accumulated
weights W0 and Wk . If no such k exists, we set k = f + 1.

By our assumption that the point set P is in general position, the weight vectors
associated with adjacent cells differ by the addition or subtraction of a single point
from at most two weight components (as a point transitions out of one slab and into
another). Thus, by traversing this arrangement, it is a simple exercise to update the
above values in constant time as we enter each new cell of the arrangement.

Given the above quantities, we claim that in O(1) time we can also update the
value of �̂β(P,h), as defined in Eq. (1), for each new cell visited. First observe that it
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is possible to compute each trimmed weight ŵj in O(1) time by noting that, if j < k,
then ŵj = wj , if j > k, then ŵj = 0, and if j = k, then ŵj = wj − (Wk − h). Thus,
as we move from one cell to another, at most a constant number of trimmed weight
values change, and so, the LTS cost estimate �̂β(P,h) (recall Eq. (1) of Sect. 3.1)
can be updated in constant time.

Assuming that we know the value of �̂β(P,h) for each cell visited, we proceed
as follows. If, for any cell of A�, we find that either (1) W0 ≥ h or (2) W0 < h ≤ Wf

and �̂β(P,h) ≤ �, then we accept �. If, after traversing all the cells, we have not
encountered either of these two conditions, we reject �.

To establish the correctness of this procedure, it suffices to show that, if the al-
gorithm accepts, then �(LTS)(P ,h) ≤ �, and, if the algorithm rejects, then � <

(1 + ε)�(LTS)(P ,h). Observe that if the algorithm accepts, then there are two pos-
sibilities. The first is that there exists a cell such that W0 ≥ h, and therefore, by
Lemma 1(i), for every β in this cell, we have �

(LTS)
β (P,h) < �. Since the optimum

is at least this small, we have �(LTS)(P ,h) < �. The other reason for accepting is
that there is a cell such that W0 < h ≤ Wf and �̂β(P,h) ≤ �. If so, by Lemma 1(iii)

we have �
(LTS)
β (P,h) ≤ �̂β(P,h), which implies that �(LTS)(P ,h) ≤ �.

On the other hand, if the algorithm rejects, there are two possibilities for every
cell visited. In the first case, Wf < h, which by Lemma 1(ii) implies that for ev-

ery β in this cell � < �
(LTS)
β (P,h). In the second case, we have W0 < h ≤ Wf

and �̂β(P,h) > �. By Lemma 1(iii), it follows that, for all β in the cell, we

have �̂β(P,h) ≤ (1 + ε)�
(LTS)
β (P,h). Therefore, for all β in the cell, we have

� < (1 + ε)�
(LTS)
β (P,h). Since these inequalities hold for every cell of the arrange-

ment, we have � < (1 + ε)�(LTS)(P ,h), as desired.
To derive the running time, observe that each cell is processed in constant time

(after initializations taking O(n) time). If d ≥ 3, the algorithm’s running time is
dominated by the total size of the arrangement A�. By the comments made ear-
lier, the combinatorial complexity of A� is O((n/ε)d−1 logd−1 n). If d = 2, then the
arrangement degenerates to a set of O(f (h, ε)) points, and so sorting is required. The
running time in this case is O(f (h, ε) logf (h, ε)), which under our assumption that
1/ε is bounded by a polynomial in n, is O((n/ε) log2 n). In either case, the space
is dominated by the arrangement size, which is O((n/ε)d−1 logd−1 n). Clearly, these
satisfy the bounds in the lemma’s statement. �

Next, we show how to convert this approximate decision algorithm into an approx-
imation algorithm for the restricted problem. We apply straightforward adaptation of
the randomized sample-and-sweep approach given in [13].

Lemma 4 Given the same setup as Lemma 3, it is possible to solve the q-restricted
ε-approximate LTS problem with high probability in time O((n/ε)d−1 logd+1 n) and
space O((n/ε)d−1 logd−1 n).

Proof Recall the d-dimensional slab-space hyperplane arrangement Ah,ε(P, q) = A
described in Lemma 2. For a parameter r to be determined below, we first compute a
random sample of r arrangement vertices. Each is computed by sampling d-element
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subsets of P at random and constructing the associated vertex in the hyperplane ar-
rangement of slab space. We then sort these vertices according to their � values and
apply Lemma 3 in concert with a binary search to find a pair of consecutive cost
values, �− ≤ �+, such that the decision algorithm rejects �− and accepts �+.

By the conditions of the decision problem, �− < (1 + ε)�(LTS)(P ,h) and �+ ≥
�(LTS)(P ,h). Clearly, there exists � ∈ [�−,�+] such that

�(LTS)(P ,h) ≤ � < (1 + ε)�(LTS)(P ,h),

and therefore, an approximate solution to the restricted problem lies somewhere be-
tween these values, that is, somewhere between the two arrangement slices A�− and
A�+ . By standard results on ε-nets [1], assuming that r is Ω(logn), with high prob-
ability the number of arrangement vertices of A lying between these two slices is
O(N/r), where N is the number of arrangement vertices.

To determine the final solution we first construct the arrangement A�− and then
perform a sweep, updating the arrangement A� as � varies from �− to �+. As
observed earlier, it is possible to update the approximate LTS cost associated with
each cell of the arrangement in O(1) time, and the other data structures required by
the sweep can be updated in time O(logn) per arrangement vertex. We determine the
cell of lowest approximate LTS cost and return any hyperplane associated with this
cell.

The running time of the algorithm involves the following components. First, com-
puting and sorting the sample of arrangement vertices can be done in O(r log r) time.
Second, the time to perform the binary search is O(log r) times the running time of
the decision procedure, which by Lemma 3 is O((n/ε)d−1 logd n). The time to com-
pute A�− is dominated by this latter quantity (since both involve computing a single
slice of A). Finally, the time to sweep the arrangement is O((N/r) logn). Given that
N = O((n/ε)d logd n), we obtain the best running time by setting r = cn/ε, for an
appropriate constant c. By our assumption that 1/ε is bounded by a polynomial in n,
we have a total running time of

T (n) = O(r log r) + O

(
(log r)

(
n

ε

)d−1

logd n

)
+ O

(
N

r
logn

)

= O

(
n

ε
logn + (logn)

(
n

ε

)d−1

logd n + (n/ε)d logd n

n/ε
logn

)

= O

((
n

ε

)d−1

logd+1 n

)
.

The total space is bounded by the complexity of a single slice of the arrangement,
which is O((n/ε)d−1 logd−1 n). �

3.3 The Approximation Algorithm

We are now in a position to present the algorithm that establishes Theorem 3. Be-
fore this, we provide one more technical lemma, which relates the LTS costs of two
parallel hyperplanes as a function of the vertical distance between them.
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Lemma 5 Consider a set of points P in R
d and a trimming parameter h. Let β and

β ′ be two parallel hyperplanes, and let � and �′ denote their respective LTS costs.
Suppose that these hyperplanes are separated by a vertical distance of α

√
�/h, for

some α ≥ 0. Then �′ ≤ (1 + α)2�.

Proof Let r[i]2 denote the ith smallest squared residual of the points of P to β . We
have � = ∑h

i=1 r2[i]. Let y = α
√

�/h denote the vertical distance between β and β ′.
It follows that the LTS cost of β ′ satisfies

�′ ≤
h∑

i=1

(|r[i]| + y
)2

.

For any sequence of reals 〈a1, . . . , ah〉, it is a direct consequence of the Cauchy-
Schwarz inequality that

∑h
i=1 |ai | ≤ (h

∑h
i=1 a2

i )
1/2. By combining this with the

above inequality we have

�′ ≤
h∑

i=1

(
r2[i] + 2|r[i]|y + y2) =

h∑

i=1

r2[i] + 2y

h∑

i=1

|r[i]| + hy2

≤ � + 2y

(
h

h∑

i=1

r2[i]

)1/2

+ hy2 = � + 2y
√

h� + hy2

= (
√

� + √
hy)2 =

(
1 +

√
h

�
y

)2

�.

Substituting the value y = α
√

�/h above yields the desired conclusion. �

Here now is the final approximation algorithm. Let � = �(LTS)(P ,h) denote the
optimum LTS cost of P , and let β denote the optimum LTS hyperplane. We start
by computing a coarse estimate �. For an appropriately chosen constant c (defined
below), let P ′ be a random sample of c((n/h) logn) points of P (see Fig. 6(a)).
Apply the restricted approximate LTS algorithm of Lemma 4 for every restriction
point q ∈ P ′ and with ε set to 1. Let �′ be the minimum LTS cost resulting from all
of these runs. Clearly �′ ≥ �.

We claim that, with high probability, �′ ≤ 6�. To see this, consider a slab S con-
sisting of the points whose squared distance from β is at most 2�/h (see Fig. 6(a)).
Observe that at least h/2 points of P must lie within S, for otherwise the LTS cost
of β would be strictly greater than (h/2)(2�/h) = �, contradicting β’s optimality.
The range space of d-dimensional slabs (for fixed d) has constant VC-dimension,
and therefore, by standard results on ε-nets [1], there exists a constant c so that with
high probability at least one of the points of P ′ lies within S. Let us assume that c

has been so chosen. Suppose that q is a point of P ′ ∩ S, and let β ′ be a hyperplane
parallel to β passing through q . By applying Lemma 5 with α = √

2, it follows that
�′ ≤ (1 + √

2)2� ≤ 6�, as desired.
To compute the final ε-approximation we compute a refined set of restriction

points, one of which is guaranteed to provide the desired approximation. Let δ =
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Fig. 6 The final approximation algorithm: (a) showing that a sample point q lies within squared distance
2�/h of the LTS optimal hyperplane, (b) the refined set of restriction points

(ε/3)
√

�′/(6h), and consider a collection of values {c−k, . . . , ck}, where ci = iδ and
k = 
√2�′/h/δ�. Clearly, k = O(1/ε). For each point q ∈ P ′, create 2k + 1 copies
of this point by translating it vertically by a distance ci , for −k ≤ i ≤ k. Let P ′′ be the
resulting set of (2k + 1)|P ′| = O((1/ε)(n/h) logn) points. (The copies are shown as
×’s in Fig. 6(b).) We then invoke the algorithm of Lemma 4 using each point q ∈ P ′′
as a restriction point and with the approximation parameter set to ε′ = ε/3. Finally,
we return the result of all these runs that produces the minimum LTS cost.

To see that this achieves the desired approximation bound, recall that (with high
probability) there exists a point q ∈ P ′ within distance

√
2�/h of β . Since

kδ ≥
√

2�′
h

≥
√

2�

h
,

it follows that β passes between two of the copies of q in P ′′. Since the copies are
separated by a vertical distance δ, there is a point of P ′′ whose vertical distance from
β is at most δ/2. Let p′′ denote this point. By definition of δ, the distance from p′′ to
β is at most

δ

2
≤ ε

6

√
�′
6h

≤ ε

6

√
�

h
.

Let β ′′ denote the hyperplane parallel to β passing through p′′ (see Fig. 6(b)).
By applying Lemma 5 with α = ε/6, it follows that the optimum LTS cost of
the restricted problem at p′′, which we denote by �′′, is at most (1 + α)2� =
(1 + ε/6)2�. Thus, when the restricted problem is solved approximately at p′′ using
the approximation parameter ε′, the result has LTS cost at most

(
1 + ε′)�′′ =

(
1 + ε

3

)
�′′ ≤

(
1 + ε

3

)(
1 + ε

6

)2

�.

Under our assumption that ε ≤ 1, it is easy to verify that this is at most (1 + ε)�, as
desired.

The running time is dominated by the O((n/(hε)) logn) invocations of the algo-
rithm of Lemma 4. Thus, by Lemma 4, the running time is

O

(
n

hε
logn

)
O

((
n

ε

)d−1

logd+1 n

)
= O

(
nd

h

(
1

ε

)d

logd+2 n

)
.

and the space is O((n/ε)d−1 logd−1 n). This completes the proof of Theorem 3.
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Note that for the typical case in which h = Θ(n) and ε is a fixed constant, the
running time is Õ(nd−1) with high probability. In closing, we add that the methods
applied in this section, computing a (�, ε)-slab system, the hyperplane arrangement
in slab space, the sample-and-sweep algorithm, and the final sampling step can all,
through straightforward modifications, be generalized from squared distances (that
is, the L2 cost) to any Lp cost function for any fixed p ≥ 1. In particular, it follows
that this approach can be applied to the LTA problem with the same computational
cost.

4 Hardness Results

In this section we present hardness results for both exact and approximate versions
of the LTS and LTA problems. These results are based on the following well known
conjecture. A set of d +1 points in R

d is affinely dependent if any one point of the set
can be expressed as an affine combination of the others. This is equivalent to saying
that the points lie on a common (d − 1)-dimensional hyperplane. A set of n points is
said to be affinely degenerate if any (d + 1)-element subset is affinely dependent.

Conjecture (Hardness of Affine Degeneracy) The problem of determining whether
an n-element subset of the d-dimensional integer grid is affinely degenerate requires
Ω(nd) time to solve in the worst case.

Erickson and Seidel [12, 14] proved an Ω(nd) lower bound on the number of sid-
edness queries required to solve the affine degeneracy problem. (Note, however, that
the model of computation in which their lower bound holds is not strong enough
to solve our problems.) Affine degeneracy in the plane is related to the 3SUM
problem [16]. Even though subquadratic algorithms are known for special cases of
3SUM [2], no such algorithm is known for the planar version of affine degeneracy.

The following technical lemma will be useful in a number of our proofs. It bounds
various quantities related to points and hyperplanes on the grid.

Lemma 6 Let d be a fixed constant. For some integer M ≥ 1, define Z
d(M) to be

the integer grid [−M,M]d . Then there exists a positive constant α (depending on d

but not on M) such that the following hold. Let P ⊆ Z
d(M) be a set of at least d + 1

affinely nondegenerate points from the grid.

(i) The vertical height of any slab containing P is at least α/Md .
(ii) Let h = |P |, let β by any nonvertical hyperplane, and let �(LTA) and �(LTS)

denote, respectively, the sum of the absolute and squared residuals of P with
respect to β . Then

�
(LTA)
β (P,h) ≥ (h − d)α

Md
and �

(LTS)
β (P,h) ≥ (h − d)α2

M2d
.

(iii) Let β be the (d − 1)-dimensional hyperplane that passes through any d points
of P . Then the vertical distance from any remaining point of P to β is at most
αMd+1.



Algorithmica (2014) 69:148–183 169

Proof Recall that a slab is critical if at least d + 1 points of P lie on its boundary.
A simple perturbation argument implies that, for any set P of at least d + 1 points,
the slab of minimum vertical height containing P is critical. Lemma 5.1(c) from
reference [13] states that if P is affinely independent then any critical slab has vertical
height at least α/Md , for some α depending only on dimension. Therefore, any slab
containing P must have at least this height.

To prove (ii), consider the slab of minimum vertical height centered about β that
contains at least d + 1 points of P . Let v denote this slab’s vertical height. By as-
sertion (i), v ≥ α′/Md , for some α′. By minimality at least one of these points is at
distance at least v/2 from β as are the remaining h − (d + 1) points of P . Therefore
each of these h− d points contributes at least (α′/2)/Md to the LTA cost and at least
(α′/2)2/M2d to the LTS cost. Setting α = α′/2 satisfies all the requirements of the
lemma.

To prove (iii), let β be given by the equation y = β1x1 + · · · + βd−1xd−1 + βd .
Let {p1, . . . , pd} be the points that define β . The coefficients of β are the solution
of a d × d linear equation whose coefficients are the coordinates of these points.
By Cramer’s rule [19], each of the coefficients of β can be expressed as the ratio of
two d × d determinants, each of whose elements are of absolute value at most M .
Therefore, each coefficient of β is of absolute value at most d! · Md . Given any
point p ∈ P , the vertical distance between its y-coordinate and β is of the form
y − ∑d

i=1 βixi , which is of magnitude O(d! · Md · M) = O(Md+1). �

4.1 Hardness of Exact LTA

The main result of this section is the following theorem regarding the LTA estimator.

Theorem 4 Under the assumption of the hardness of affine degeneracy, computing
the linear LTA estimator for a given set of n points in Z

d and for h ≥ d + 1 inliers
requires Ω(min(h,n − h)d) time in the worst case.

Our proof holds under the assumption that h − d is odd, but since h is an asymp-
totic quantity in our results, our lower bound holds infinitely often in h. This is com-
monly allowed in algorithmic lower bounds.

Before giving the proof of this theorem, we present two straightforward technical
lemmas. The first presents three simple inequalities involving the sums of absolute
values.

Lemma 7 Let p ∈ R
d , let β be a nonvertical (d − 1)-dimensional hyperplane in R

d ,
and let t be a nonnegative real. Let vt denote the vertical vector (0, . . . ,0, t), and
let p − β denote the signed vertical distance from β to p (positive if p is above β).
Then

(i) |p − β| + |(p + vt ) − β| ≥ t , and equality holds if p and p + vt lie on opposite
sides of β .

(ii) |p − β| + |(p − vt ) − β| ≥ t , and equality holds if p and p − vt lie on opposite
sides of β .
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(iii) |p − β| + |(p + vt ) − β| + |(p − vt ) − β| ≥ 2t + |p − β|, and equality holds if
p − vt and p + vt lie on opposite sides of β .

Proof Clearly, for any a, b ∈ R, |a|+ |b| ≥ |a + b|, and equality is achieved if both a

and b are of the same sign. Since p, p +vt , and p −vt are vertically aligned, we may
treat their vertical distances to any fixed hyperplane β as numbers on the real line.

To prove (i), observe that |−(p − β)| + |(p + vt ) − β| ≥ |−(p − β) + (p +
vt − β)| = t . If p and p + vt lie on opposite sides of β , then both −(p − β) and
(p + vt ) − β are nonnegative, and so equality holds. Assertion (ii) follows from (i)
by setting p to p − vt .

To prove (iii) we consider two cases. If p lies on or below β , then by (i) we have

(|p − β| + ∣∣(p + vt ) − β
∣∣) + ∣∣(p − vt ) − β

∣∣ ≥ t + ∣∣(p − vt ) − β
∣∣.

Since p is below β , this is equal to t + (|p − β| + t) = 2t + |p − β|. Equality holds
if p + vt lies above β . A symmetrical argument applies when p lies above β . �

Our second technical lemma is a simple counting utility.

Lemma 8 Let d , n, n0, n1, n2, and n3 be nonnegative integers such that n0 + n1 +
n2 + n3 = n and n1 + 2n2 + 3n3 = 2n + (d + 1). Then n2 + 2n3 ≥ n + (d + 1) and
n3 − n1 ≥ d + 1.

Proof If we subtract the first equation from the second equation, we have −n0 +n2 +
2n3 = n+ (d +1), which implies that n2 +2n3 ≥ n+ (d +1). If we multiply the first
equation by 2 and subtract it from the second equation we have −2n0 − n1 + n3 =
d + 1, implying that n3 − n1 ≥ d + 1. �

Before giving the proof of Theorem 4, we present a special case, where h =
2n/3 + (d + 1). The proof is similar in spirit to Theorem 5.3 of [13] for LMS, but
there are a number of novel elements. The construction of [13] involved creating two
copies of the point set, one stacked above the other at some distance t . The presence
of an affine degeneracy in the original point set implies the existence of an LMS slab
of vertical height exactly t . The significant added complication here is that the LTA
estimator is determined by the residuals of all the h inliers, and not just the d + 1
points that bound the minimal slab. Thus the distribution of the points lying within
the slab needs to be taken into consideration. At a glance this would seem to com-
plicate matters excessively. There is a remarkably simple fix, however. Rather than
making two copies, we make three copies. We show that by symmetry, all but d + 1
of the residuals can be grouped into pairs, such that sum of residuals of each pair is
exactly t .

Lemma 9 Let n and h be positive integers, where n is divisible by 3 and h =
(2n/3) + (d + 1). Under the assumption of the hardness of affine degeneracy, com-
puting the LTA hyperplane for a given set of n points in Z

d and for h inliers requires
Ω(nd) time in the worst case.
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Fig. 7 Proof of Lemma 9 (not
drawn to scale). The circled
points are in Q′

Proof Consider a point set P consisting of n′ points for which we wish to solve
the affine degeneracy problem. Let n = 3n′, and let the trimming parameter be h =
2n′ + (d + 1). Clearly, h = (2n/3) + (d + 1), as desired. Given a real t , recall that
vt = (0, . . . ,0, t) denotes a vertical vector of length t , and let P + vt denote the
vertical translation of P by distance t . We fix the value t to be a positive real value
that is sufficiently large so that, if β is any nonvertical hyperplane passing through
d or more points of P , then every point of P lies strictly within vertical distance
t/5 of β . If the points of P lie on an integer grid [−M,+M]d for some M , then by
Lemma 6(iii), t = O(Md+1). (The value of t is larger than what is needed for this
proof, but it will be reused in the proof of Theorem 4.)

We create a point set Q of size n by taking the union of three translated copies
of P , called clones, P , P − vt , and P + vt . (See Fig. 7.) We will establish the
claim that P contains d + 1 points lying on a common hyperplane β if and only
if �

(LTA)
β (Q,h) ≤ �, where � = (n′ + (d + 1))t . Assuming the hardness of affine

degeneracy, we will therefore have the desired lower bound of Ω((n′)d) = Ω(nd) on
the hardness of this special case of LTA.

To prove the “only if” part of the claim, let us assume that there exists a hyperplane
β containing at least d + 1 points of P . Let P 0 denote any d + 1 points of P lying
on β , and among the remaining points of P , let P + be the points of P that lie on
or above β and let P − be the points that lie strictly below β . Thus, |P −| + |P +| +
|P 0| = n′. By definition of t , all the points of P + vt lie above β . Similarly, all the
points of P − vt lie below β .

Define a subset Q′ ⊆ Q of size h as follows. For each p ∈ P +, add p and p − vt

to Q′. For each p ∈ P −, add p and p + vt to Q′. Finally, for each p ∈ P 0, add p,
p − vt , and p + vt to Q′. Clearly,

∣∣Q′∣∣ = 2
(∣∣P +∣∣+∣∣P −∣∣)+3

∣∣P 0
∣∣ = 2

(∣∣P +∣∣+∣∣P −∣∣+∣∣P 0
∣∣)+∣∣P 0

∣∣ = 2n′+(d+1) = h.

Recall that p −β denotes the signed vertical distance from β to p. If p ∈ P + then
the combined contribution of p and p − vt to �LTA

β (Q,h) is |p − β| + |(p − vt )− β|
which by Lemma 7(ii) is t . Symmetrically, if p ∈ P −, the combined contribution of
its two points is t . Finally, if p ∈ P 0, its three points contribute a total of 0 + t + t =
2t . Thus, the total LTA cost is t |P +| + t |P −| + 2t |P 0| = t |P | + t (d + 1) = (n′ +
(d + 1))t = �, as desired.
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To establish the “if” part of the claim we show that if no d + 1 points of P lie
on a nonvertical hyperplane, then the LTA cost must strictly exceed �. Let β be
any nonvertical hyperplane. Let �β denote the sum of the d + 1 smallest absolute
residuals of P with respect to β . By hypothesis, no d + 1 points of P lie on any
hyperplane, and therefore �β > 0. To complete the proof, it suffices to show that
�LTA

β (Q,h) ≥ � + �β , since it will then follow that �LTA
β (Q,h) > �.

Let Q′ ⊆ Q denote the h points having the smallest absolute residuals with respect
to β . We classify each point of P according to the number of points its three clones
provide to Q′. More precisely, for 1 ≤ i ≤ 3, define Pi to be the subset of points
p ∈ P such that |{p − vt ,p,p + vt } ∩ Q′| = i. Let ni = |Pi |. Clearly n0 + n1 +
n2 + n3 = |P | = n′, and by summing their contribution to the size of Q′ we have
n1 + 2n2 + 3n3 = |Q′| = 2n′ + (d + 1). Therefore the conditions of Lemma 8 hold
(using n′ in the role of n).

Let us consider the contribution of each of these subsets to the LTA cost for β .

• If p ∈ P0 or p ∈ P1, we ignore its contribution to the LTA cost.
• If p ∈ P2, we consider two cases. If p lies below β , both p and p+vt will be closer

to β than is p − vt , and so the contribution of this group will be |p − β| + |(p +
vt ) − β|. By Lemma 7(i) this is at least t . On the other hand, if p lies above β ,
p and p − vt will be the closer of the triple, and they will contribute a total of
|p − β| + |(p − vt ) − β|. By Lemma 7(ii) this is also at least t .

• If p ∈ P3, then p and both of its copies contribute, and so the total is

|p − β| + ∣∣(p + vt ) − β
∣∣ + ∣∣(p − vt ) − β

∣∣,

which by Lemma 7(iii) is at least 2t + |p − β|.
Summing the contributions for all four cases and applying Lemma 8(i), it follows

that the LTA cost of β satisfies

�LTA
β (Q,h) ≥

∑

p∈P2

t +
∑

p∈P3

(
2t + |p − β|) ≥ n2t + 2n3t +

∑

p∈P3

|p − β|

≥ (
n′ + (d + 1)

)
t +

∑

p∈P3

|p − β| = � +
∑

p∈P3

|p − β|. (2)

From Lemma 8(ii) and the fact that n1 ≥ 0, we have n3 ≥ d + 1. Therefore at least
d + 1 points of P3 contribute to the final summation term, and this final term is at
least �β . �

We can now provide the proof of the main theorem.

Proof of Theorem 4 We assume that h − d is odd, and therefore our lower bound
holds infinitely often in the asymptotic parameters n and h. Our proof is based on
two cases, depending on the relationship between h and n. For the first case, let us
assume that h ≤ (2n/3)+(d +1). We show that solving LTA for n points and h inliers
requires Ω(hd) time under the assumption of the hardness of affine degeneracy. Let
n′ = (h − (d + 1))/2. Since h − d is odd and h ≥ d + 1, n′ is a nonnegative integer.
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Let P be a point set of size n′ for which we want to solve the affine degeneracy
problem. We construct an instance of LTA as follows. Let ĥ = 2n′ + (d +1), n̂ = 3n′,
and k = n − n̂. Observe that ĥ and n̂ satisfy the conditions on h and n, respectively,
in the statement of Lemma 9, and therefore we may apply the construction of that
lemma to P . The resulting number of inliers is

ĥ = 2n′ + (d + 1) = 2
((

h − (d + 1)
)
/2

) + (d + 1) = h,

as desired. The resulting number of points may be too small, since

n̂ = 3n′ = 3(h − (d + 1))

2
≤ 3(( 2n

3 + (d + 1)) − (d + 1))

2
= n.

Therefore, to complete the construction, we generate k = n − n̂ points that are suf-
ficiently far from all the others that they cannot affect the LTA solution. Thus, we
have generated an instance of LTA involving n points and h inliers, and by Lemma 9
the time needed to solve such an instance in the worst case is Ω(n̂d) = Ω((n′)d) =
Ω(hd). This completes the first case.

For the second case, let us assume that h > (2n/3)+ (d +1). We show that solving
LTA for n points and h inliers requires Ω((n − h)d) time under the assumption of
the hardness of affine degeneracy. Let P be a point set of size n′ = n − h + (d + 1)

for which we want to solve the affine degeneracy problem. Let ĥ = 2n′ + (d + 1),
n̂ = 3n′, and k = 3h − 2n − 3(d + 1). Note that by the lower bound on h and the fact
that h − d is odd, it follows that k ≥ 0, and k is even. As before, ĥ and n̂ satisfy the
conditions of Lemma 9 in the roles of h and n, respectively, and therefore we may
apply the construction of the lemma to P .

We apply an additional modification to the construction. Recall the translation
distance t used in the lemma. We generate an additional set of points R of size k/2
densely clustered near the origin. We add two copies of R to the construction, one
translated vertically up by distance t/2 above P ’s centroid and the other down by dis-
tance t/2 below P ’s centroid. (It is not important that the centroid be used. Any point
lying within P ’s convex hull suffices.) Recall that every point of P lies within dis-
tance t/5 of any hyperplane that passes through d or more points of P , and therefore
the points of R lie within vertical distance t/2 + t/5 < 3t/4 of such a hyperplane.
The points of P + vt and P − vt all lie at distance at least t − t/5 > 3t/4. Therefore,
the points of R have smaller residuals than any point of the translated sets P + t or
P − t , and hence all the points of R will be counted among the inliers.

The total number of points in the resulting construction is

n̂+k = 3n′ + (
3h−2n−3(d +1)

) = 3
(
n−h+ (d +1)

)+ (
3h−2n−3(d +1)

) = n.

Also, the total number of inliers is

ĥ + k = (
2n′ + (d + 1)

) + (
3h − 2n − 3(d + 1)

)

= (
2
(
n − h + (d + 1)

) + (d + 1)
) + (

3h − 2n − 3(d + 1)
) = h.

Thus, by Lemma 9 the time needed to solve such an instance in the worst case is
Ω(n̂d) = Ω((n′)d) = Ω((n − h)d). This completes the proof. �



174 Algorithmica (2014) 69:148–183

Fig. 8 Proof of Theorem 5 for d = 2, h = 15, and h′ = 5: (a) the original point set (black circles) and
copies (×’s), (b) the slabs S and S+ , and (c) lower bounding the LTS cost

It is natural to wonder whether an analogous result to Theorem 4 holds for LTS.
Unfortunately, the proof of Theorem 4 makes critical use of the linearity of absolute
residuals in the definition of the LTA cost, which does not generalize to squared
distances. We conjecture that such a lower bound holds, however.

The above theorem does not provide an interesting lower bound if h is very small.
The following result shows that both the exact LTS and LTA problems are hard even
for small values of h. The proof is a relatively straightforward adaptation of the anal-
ogous result in [13].

Theorem 5 Under the assumption of the hardness of affine degeneracy, both the
linear LTA and LTS estimators for a set of n points in Z

d with h inliers require
Ω((n/h)d) time to compute in the worst case.

Proof We prove the result for LTS only, and note that the LTA version comes about
by a direct modification. Suppose we are given a set P of n′ = n(d + 1)/h points
in Z

d for which we want to solve the affine degeneracy problem. In linear time,
we compute an upper bound M on the absolute value of every coordinate. Let δ =
δ′(d + 1)/(hMd) for some sufficiently small constant δ′ > 0 (whose value will be
given later). Let h′ = h/(d + 1). We construct a new point set Q consisting of h′
copies of P , where, for 1 ≤ i ≤ h′, the ith copy is shifted upward a distance of (i−1)δ

(see Fig. 8). The set consisting of the h′ copies of each point of P is called a group.
If P is affinely degenerate, then there exists a hyperplane β that contains at least

d + 1 points of P (see Fig. 8(a)). Let t = h′δ, and consider the slab bounded by β

and β + vt (the vertical translation of β by distance t). Observe that this slab is high
enough to contain the union of the groups associated with these d + 1 points, and
so it contains at least h′(d + 1) = h of the points of Q. The optimal LTS cost is not
greater than the LTS cost of β , which (by considering just the points within these
d + 1 groups) is at most

(d + 1)

h′∑

i=1

(
(i − 1)δ

)2
< h′(d + 1)

(
h′δ

)2 ≤ h′(d + 1)

(
δ′

Md

)2

.

Let �0 denote this bound.
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For the remainder of the proof, let us consider the converse, where P is affinely
nondegenerate. That is, every (d + 1)-element subset of P is affinely independent.
Let β be the optimal LTS hyperplane for Q, and let S be the narrowest slab centered
at β that contains h points of Q (see Fig. 8(b)). Each group that contributes at least
one point to S can contribute at most h′ points in all, and thus, the total number of
distinct groups that contribute a point to S is at least h/h′ = d + 1. Let S+ be the
expanded slab that results by lowering S’s lower bounding hyperplane by a distance
of h′δ. Since the vertical extent of each group does not exceed h′δ, it follows that S+
contains the lowest point of each of d + 1 groups, which implies that S+ contains at
least d + 1 points of P . (Three such points are highlighted in Fig. 8(b).)

Since P is affinely nondegenerate, by Lemma 6(i) any slab containing d +1 points
of P has height at least α/Md for some constant α. Thus, the height of S+ is at least
α/Md , which implies that the height of S, denoted ht(S), satisfies

ht(S) ≥ α

Md
− h′δ = α

Md
− δ′

Md
= α − δ′

Md
.

Next, consider a slab S′, centered about β whose height is half that of S (see
Fig. 8(c)). We assert that at least h′ points of Q lie within S \ S′. If this were not so,
then strictly more than h − h′ = dh′ points of P would lie within S ∩ S′. Since each
group has h′ points, strictly more d groups would contribute at least one point to S′.
As we did above, if we expand S′ by lowering its lower bounding hyperplane by h′δ,
it follows that the resulting slab contains at least d + 1 points of P . The height of
this expanded slab is ((α − δ′)/2Md) + h′δ. If we make δ′ smaller than α, it is easily
verified that this expanded slab is of height less than α/Md . However, the fact that
it contains at least d + 1 points of P contradicts Lemma 6(i). Therefore, at least h′
points of Q lie within S \ S′.

All the points of S \ S′ are at distance at least ht(S)/4 from β , and since there are
h′ of them, it follows that the LTS cost of β is at least

h′
(

ht(S)

4

)2

≥ h′
(

α − δ′

4Md

)2

.

Let �1 denote this quantity. If we set δ′ smaller than 4α/(5
√

d + 1), it is easily
verified that �0 < �1. (Note that this will also satisfy our previous constraint that
δ′ < α.)

In summary, if P is affinely degenerate, the optimum LTS cost of Q is at most
�0, and if P is affinely nondegenerate, the optimum LTS cost is at least �1. Since
�0 < �1, we have reduced affine degeneracy for a set of n′ = Ω(n/h) points to solv-
ing LTS on n points with h inliers. Therefore, under the assumption of the hardness
of affine degeneracy, this requires Ω((n/h)d) time in the worst case. �

4.2 Hardness of Residual and Quantile Approximations

In this section we provide hardness results for both residual and quantile approxi-
mations, under the assumption of the hardness of affine degeneracy. Our result for
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Fig. 9 Proof of Lemma 6: (a) the construction, (b) the affinely degenerate case

residual approximation holds for any approximation factor, and our result for quan-
tile approximation holds for approximation factors smaller than 1/(d − 1) in dimen-
sion d . Both results hold for both LTS and LTA (through a small adjustment in the
parameters), but we present proofs only for the LTS case. Both proofs are an adapta-
tion of the proofs given in Erickson et al. [13] for approximating LMS. Recall that εr

denotes the allowed error in the residual.

Theorem 6 Under the assumption of the hardness of affine degeneracy, for any
εr > 0 (depending possibly on n and h), computing an εr -residual approximation
to the linear LTS or LTA estimator for a set of n points and h inliers in Z

d requires
Ω((n − h)d−1) time in the worst case.

Proof As before, we prove the result for LTS only. Suppose we are given a set P of
n′ = n/2 − h/2 − d points on the integer lattice Z

d−1. Let M be an upper bound on
the maximum absolute value of any coordinate of P , and let δ > 0 be a sufficiently
small constant to be defined later. We can compute these values in O(n′) time.

In O(n) time, we construct a new set Q consisting of three subsets: (1) a copy of
P on the vertical hyperplane x1 = 1, (2) a copy of −P (the reflection of P through
the origin) on the hyperplane x1 = −1, and (3) a set of h − 2d points placed on a
vertical line passing through the origin, half above and half below, such that their
squared distances from the origin are all at most δ (see Fig. 9(a)).

If any d points of P lie on a common (d − 2)-flat, then by symmetry there is
a nonvertical (d − 1) hyperplane β that passes through this flat on the hyperplane
x1 = 1, its reflection on x1 = −1, and the origin (see Fig. 9(b)). The total contribution
to the LTS cost of the 2d points lying on the two vertical hyperplanes is zero, and the
contribution of the h − 2d points near the origin is roughly (h − 2d)δ. Let �0 denote
this quantity. Thus the total LTS cost in this case is at most �0.

If, on the other hand, the points of P are affinely nondegenerate, let β denote
the LTS optimal hyperplane. By applying Lemma 6(ii) in dimension d − 1 to the
smallest d squared residuals with respect to the intersection of β with x1 = 1, it
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follows that (even ignoring all the other points) the LTS cost of β is at least (d −
(d − 1))α2/M2(d−1) = α2/M2(d−1) for some positive α. Let �1 denote this value.
By selecting δ < α2/((1 + εr)M

2(d−1)(h − 2d)), it follows that

�1

�0
≥ α2/M2(d−1)

(h − 2d)δ
> 1 + εr .

Thus, the ratio of LTS costs in the cases where P is and is not affinely degenerate
exceeds 1 + εr . Therefore, if we could approximate �(LTS)(Q,h) to within a factor
of 1 + εr , it would be possible to determine whether the original set P contains a
degeneracy. Under the assumption of the hardness of affine degeneracy, this implies
a lower bound of Ω((n′)d−1) = Ω((n − h)d−1) on the worst-case running time of
LTS. �

We can establish a similar result for the quantile approximation. Recall that εq

denotes the allowed error in the quantile.

Theorem 7 Under the assumption of the hardness of affine degeneracy, for any
0 < εq < 1/(d − 1), computing an εq -quantile approximation to the linear LTS or
LTA estimator for a set of n points and h inliers in Z

d requires Ω((n − h)d−1) time
in the worst case.

Proof As before, we prove the result for LTS only. The construction of the set Q is
essentially the same as the construction of Theorem 6, except the value of δ (given
below) will differ and the number of points on the vertical line through the origin is h,
rather than h − 2d . Let h− = h − �nεq�, denote the number of inliers in the quantile
approximation.

Let (1/h)�(LTS)(Q,h) denote the minimum average squared residual for the
points of Q assuming h inliers. Consider first that some d points of P lie on a com-
mon (d −2)-flat, and let β denote the hyperplane passing through the origin and these
2d points on the vertical hyperplanes at x1 = 1 and x1 = −1. By the same argument
made in the proof of Theorem 6, the contribution to the sum of squared residuals by
the 2d points lying on the two vertical hyperplanes is zero, and the contribution of
the h − 2d points near the origin is roughly (h − 2d)δ. Thus we have

1

h
�(LTS)(Q,h) ≤ h − 2d

h
δ = δ

(
1 − 2d

h

)
.

On the other hand, if the points of P are affinely nondegenerate, let us consider
the minimum average LTS cost assuming h− inliers, (1/h−)�(LTS)(Q,h−). Let β
denote the hyperplane generating this minimum cost. As in Theorem 6, we may apply
Lemma 6(ii), and by making δ sufficiently small, we may assume that all but 2(d −1)

of the h− closest squared residuals to β arise from the cluster of points that are close
to the origin. The contribution of all of these points to the sum of squared residuals is
at least (h− − 2(d − 1))δ, and so we have

1

h− �(LTS)
(
Q,h−) ≥ h− − 2(d − 1)

h− δ = δ

(
1 − 2(d − 1)

h−

)
.
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Let us assume that n and h are sufficiently large so that the effect of the ceiling in
the definition of h− is negligible. By our hypothesis that εq < h/(dn), it follows that
h − nεq > h(d − 1)/d . Thus, for all sufficiently large n and h we have

1

h− �(LTS)
(
Q,h−) ≥ δ

(
1 − 2(d − 1)

h−

)
> δ

(
1 − 2(d − 1)

h − nεq

)

> δ

(
1 − 2(d − 1)

h(d − 1)/d

)
= δ

(
1 − 2d

h

)
≥ 1

h
�(LTS)(Q,h).

Thus, by computing a εq -quantile approximation to �(LTS)(Q,h), we can determine
whether the original set P contains an affine degeneracy. Under the assumption
of the hardness of affine degeneracy, this implies a lower bound of Ω((n′)d−1) =
Ω((n − h)d−1) on the worst-case running time. �

5 Hybrid Approximation

The hardness results for residual and quantile approximations suggest that in dimen-
sions three and higher it is unlikely that approximation schemes exist that run in linear
or near linear time in n. It is natural to consider therefore what sort of approximation
can be achieved in roughly linear time. In this section we show that it is possible to
compute a hybrid approximation for LTS, that is, an approximation in which we relax
both the requirements on the optimality of the sum of squared residuals and on the
exact number of inliers to be used.

Let P be a set of n points in R
d , and let h be the trimming parameter. Recall that

in a hybrid approximation we are given two approximation parameters: an allowed
residual error εr , and an allowed quantile error εq , where 0 < εr and 0 < εq < h/n.
Let h− = h−�nεq�. An (εr , εq)-hybrid approximation is any hyperplane β such that

1

h− �
(LTS)
β

(
P,h−) ≤ (1 + εr )

1

h
�(LTS)(P ,h).

It will simplify the presentation to describe the number of inliers in terms of quan-
tiles and eliminate the normalizing factor. Let ϕ = h/n and ϕ− = h−/n, and define
�β(P,ϕ) to be (1/h)�(LTS)(P ,h). Thus, our objective is to compute a hyperplane β
such that

�β

(
P,ϕ−) ≤ (1 + εr)�β(P,ϕ).

We begin by recalling the notion of an ε-approximation. Given a finite point set
X ⊆ R

d , a range space (X, Q) of finite VC-dimension, and a parameter ε > 0 (not to
be confused with εr ), a point set Y is an ε-approximation for X if for any S ∈ Q,

∣∣∣∣
|X ∩ S|

|X| − |Y ∩ S|
|Y |

∣∣∣∣ ≤ ε. (3)

By standard results on ε-approximation, if (X, Q) is of constant VC-dimension, then,
for a suitable constant c (depending on the VC-dimension), a random sample of size
(c/ε2) log |X| is an ε-approximation with high probability [1, 22].
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Let P be a set of points in R
d , let ϕ = h/n be the trimming quantile, and let

0 < ε < ϕ/2 be a given parameter. Consider the range space (P, Q) whose ranges are
hyperplane slabs, that is, the region bounded between two parallel hyperplanes. Under
the assumption that the dimension d is a constant, this range space has constant VC-
dimension. (This follows directly from the fact that the range space of halfspaces has
constant VC-dimension, and any range space consisting of the pairwise intersections
of ranges of a space of VC-dimension d has VC-dimension at most O(d logd) [22].)
In O(n) time we draw a random sample of P of size m = (c/ε2) logn, for a suitable
constant c. Let A denote this sample. With high probability, A is an ε-approximation
for P . Let h′ = 
(ϕ − ε)m�, and solve the resulting LTS problem by the algorithm
given in Theorem 2. Combining the sample and solving phases, the algorithm’s total
running time is O(n + |A|d+1) = O(n + ((1/ε2) logn)d+1) = Õ(n + 1/ε2(d+1)).

The main result of this section is that this algorithm yields a hybrid approximation
with high probability. Before showing this, we present the following utility lemma,
which relates the average LTS costs of any two sets that satisfy Eq. (3) above.

Lemma 10 Consider two parameters 0 < ε,ϕ ≤ 1, where ϕ > 2ε, and two suffi-
ciently large finite point sets X,Y ⊂ R

d that satisfy Eq. (3) for the range space of hy-
perplane slabs. Then for any hyperplane β , �β(Y,ϕ − ε) ≤ (1+ (2ε/ϕ)) ·�β(X,ϕ).

Proof Let m = |X| and n = |Y |. For 1 ≤ i ≤ m, let xi denote the ith smallest absolute
residual of X with respect to β , and for 1 ≤ j ≤ n, let yj denote the j th smallest
absolute residual of Y with respect to β . Let X′ be the multi-set formed by taking n

copies of each element of X, and define Y ′ analogously by taking m copies of each
element of Y . Letting k = mn, we have |X′| = |Y ′| = k. Define x′

i and y′
j analogously

for these two sets, respectively.
We are interested in quantiles of the above sets, and so for 0 < γ ≤ 1, define nγ =

γ · n, mγ = γ · m, and kγ = γ · k. It will simplify the presentation below to assume
that, for γ ∈ {ε,ϕ}, these quantities are all integers. (If ε is sufficiently small relative
to n and m, the slackness in our later inequalities will be sufficient to compensate for
this bit of sloppiness.)

We begin by asserting that,

x′
i+kε

≥ y′
i , for 1 ≤ i ≤ k − kε. (4)

To see this, suppose to the contrary that there existed i such that x′
i+kε

< y′
i . Consider

the slab S centered about β whose height is equal to 2x′
i+kε

. We have

∣∣X′ ∩ S
∣∣ ≥ i + kε and

∣∣Y ′ ∩ S
∣∣ < i.

Since the points of X′ come in multiplicities of size n and the points of Y ′ come in
multiplicities of m, we have |X ∩S| ≥ (i + kε)/n = (i + εmn)/n and |Y ∩S| < i/m.
Since k = mn, this implies that

|X ∩ S|
|X| ≥ (i + εnm)/n

m
= i

k
+ ε and

|Y ∩ S|
|Y | <

i

k
.



180 Algorithmica (2014) 69:148–183

Thus, we have
∣∣∣∣
|X ∩ S|

|X| − |Y ∩ S|
|Y |

∣∣∣∣ > ε,

which contradicts our hypothesis regarding X and Y , and so establishes Eq. (4).
Returning to the proof of the lemma, we can express �(X,ϕ) in terms of the

residuals of the n-fold replicated points as

�β(X,ϕ) = 1

mϕ

mϕ∑

i=1

x2
i = 1

ϕm

ϕm∑

i=1

x2
i = 1

ϕmn

ϕmn∑

i=1

(
x′
i

)2 = 1

kϕ

kϕ∑

i=1

(
x′
i

)2
.

If we ignore the first kε terms of the sum and apply Eq. (4), we have

�β(X,ϕ) ≥ 1

kϕ

kϕ∑

i=kε+1

(
x′
i

)2 = 1

kϕ

kϕ−kε∑

i=1

(
x′
i+kε

)2 ≥ 1

kϕ

kϕ−kε∑

i=1

(
y′
i

)2
.

In order to relate this to �(Y,ϕ−ε), we first observe that kϕ −kε = (ϕ−ε)k, yielding

�β(X,ϕ) ≥ 1

kϕ

kϕ−kε∑

i=1

(
y′
i

)2 =
(

kϕ − kε

kϕ

)
1

kϕ − kε

kϕ−kε∑

i=1

(
y′
i

)2

=
(

1 − ε

ϕ

)
1

(ϕ − ε)k

(ϕ−ε)k∑

i=1

(
y′
i

)2
.

Recalling that k = mn, we then combine the copies into groups of size m to obtain

�β(X,ϕ) ≥
(

1 − ε

ϕ

)
1

(ϕ − ε)k

(ϕ−ε)n∑

i=1

my2
i =

(
1 − ε

ϕ

)
1

(ϕ − ε)n

(ϕ−ε)n∑

i=1

y2
i

=
(

1 − ε

ϕ

)
1

nϕ−ε

nϕ−ε∑

i=1

y2
i =

(
1 − ε

ϕ

)
�β(Y,ϕ − ε).

In conclusion, we have �β(Y,ϕ − ε) ≤ �β(X,ϕ)/(1 − (ε/ϕ)). To complete the
proof, we observe that if 0 < γ < 1/2, then 1/(1 − γ ) < (1 + 2γ ). Since ε/ϕ < 1/2,
we obtain �β(Y,ϕ − ε) ≤ (1 + 2ε/ϕ)�β(X,ϕ), as desired. �

It is interesting to note that the above lemma holds whether Y is an ε-approximation
of X or vice versa. We will exploit this fact in our next result, which establishes that
the above algorithm is an (εr , εq)-hybrid approximation, for suitable choices of εr

and εq . We state the result for LTS, but the generalization to LTA is straightforward.

Theorem 8 Given an n-element point set in R
d and parameters 0 < εq < h/n and

0 < εr , let εm = min(εq, εrh/n). It is possible to compute an (εr , εq)-hybrid approx-
imation to LTS and LTA in time O(n + ((1/ε2

m) logn)d+1) with high probability.
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Proof As before, we present the proof for LTS only. Recall that ϕ = h/n, and define
ε = min(εrϕ/12, εq/3). Run the aforementioned algorithm with this value of ε. The
running time is O(n + ((1/ε2) logn)d+1) = O(n + ((1/ε2

m) logn)d+1). With high
probability, the random sample chosen by the algorithm is an ε-approximation (for
the value of ε given above) for the range space of hyperplane slabs. Under this as-
sumption, let β denote the hyperplane returned by the algorithm, and let β∗ denote
the optimal LTS hyperplane for the point set P and quantile ϕ.

Since ε ≤ εq/3 < ϕ/3, we have ϕ − ε > 2ε. We may therefore apply Lemma 10
with X ← A, Y ← P , and ϕ ← ϕ − ε, to obtain

�β(P,ϕ − 2ε) = �β

(
P, (ϕ − ε) − ε

) ≤
(

1 + 2ε

ϕ − ε

)
�β(A,ϕ − ε).

Since β is the optimal solution for A for quantile ϕ − ε, it follows that no other
hyperplane has a smaller LTS cost, and in particular, �β(A,ϕ − ε) ≤ �β∗(A,ϕ − ε).
Applying Lemma 10 again, but with X ← P , Y ← A, and ϕ ← ϕ, we obtain

�β∗(A,ϕ − ε) ≤
(

1 + 2ε

ϕ

)
�β∗(P,ϕ).

Thus, we have

�β(P,ϕ − 2ε) ≤
(

1 + 2ε

ϕ − ε

)(
1 + 2ε

ϕ

)
�β∗(P,ϕ).

Since ε < ϕ/3, we have ε/(ϕ − ε) < 1 and ϕ − ε > 2ϕ/3. Thus, the approximation
factor is at most

(
1 + 2ε

ϕ − ε

)(
1 + 2ε

ϕ

)
≤

(
1 + 2ε

ϕ − ε

)2

=
(

1 + 4ε

ϕ − ε
+ 4ε2

(ϕ − ε)2

)

<

(
1 + 4ε

ϕ − ε
+ 4ε

ϕ − ε

)
=

(
1 + 8ε

ϕ − ε

)
.

Since ϕ − ε > 2ϕ/3 and ε ≤ εrϕ/12, we have 8ε/(ϕ − ε) < 12ε/ϕ ≤ εr . Therefore,
the approximation factor is at most (1 + εr), which completes the proof. �

6 Conclusions

In this paper we have established the first nontrivial bounds on the computational
complexity of the LTS and LTA linear estimators, both exact and approximate, in
spaces of constant dimension. As mentioned in the introduction, these estimators (es-
pecially LTS) are of great interest in the area of robust statistics. Overall, our results
suggest that, except for hybrid approximations, these problems require significant
time to solve both exactly and approximately, except small dimensions.

In particular, our exact algorithm for LTS runs in O(nd+1) time, and, assuming
that h is Θ(n) and ε is fixed, our residual approximation has a running time of
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Õ(nd−1). Our hardness results suggest that significant improvements in these exe-
cution times may not be easy. Under the assumptions of the hardness of the affine
degeneracy problem and h = Θ(n), we presented a lower bound of Ω(nd) for the
exact LTA problem (and it is natural to conjecture a similar lower bound for LTS).
Under the same assumptions, we provided an Ω(nd−1) lower bound for residual and
quantile approximations of both LTS and LTA.

The hardness of LTS and LTA stems from the need to satisfy hard bounds on
both the cost and the allowed number of inliers. We have shown that, by relax-
ing both of these constraints, much more efficient solutions exist. In particular, we
presented a randomized hybrid approximation to LTS and LTA which runs in time
Õ(n + 1/ε2(d+1)) with high probability.

The obvious open problems that remain involve the computational complexity of
the exact LTS and LTA problems. Can we reduce the upper bound from O(nd+1) to
O(nd)? Failing this, can we establish a lower bound of Ω(nd+1) for the LTS and
LTA problems? Another interesting question is whether our lower bound for the LTA
problem can be adapted to hold for the LTS problem as well.

The results of this paper suggest that any algorithm, either exact or approximate,
for LTS or LTA will have a worst-case running time that grows exponentially as a
function of the dimension. Our lower bounds are based on rather pathological input
sets, however. There do exist practical heuristics, such as the Fast-LTS heuristic of
Rousseeuw and Van Driessen [30], which run efficiently and accurately on typical
input sets. Unfortunately, this heuristic does not provide guarantees on the accuracy
of the final result. This raises the question of whether there exists an algorithm that
can provide guarantees the quality of the final results and also runs efficiently on
“typical” input sets. In a companion paper [25], we consider this question and present
a practical approximation algorithm for the LTS problem.
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