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Efficient Randomized Algorithms for the Repeated
Median Line Estimator1

J. Matoušek,2 D. M. Mount,3 and N. S. Netanyahu4

Abstract. The problem of fitting a straight line to a finite collection of points in the plane is an important
problem in statistical estimation. Recently there has been a great deal of interest isrobust estimators, because
of their lack of sensitivity to outlying data points. The basic measure of the robustness of an estimator is
its breakdown point, that is, the fraction (up to 50%) of outlying data points that can corrupt the estimator.
One problem with robust estimators is that achieving high breakdown points (near 50%) has proved to be
computationally demanding. In this paper we present the best known theoretical algorithm and a practical
subquadratic algorithm for computing a 50% breakdown point line estimator, the Siegel or repeated median
line estimator. We first present anO(n logn) randomized expected-time algorithm, wheren is the number of
given points. This algorithm relies, however, on sophisticated data structures. We also present a very simple
O(n log2 n) randomized algorithm for this problem, which uses no complex data structures. We provide
empirical evidence that, for many realistic input distributions, the running time of this second algorithm is
actuallyO(n logn) expected time.

Key Words. Repeated median estimator, Line fitting, Robust estimators, Randomized algorithms, Compu-
tational geometry.

1. Introduction. Fitting a straight line to a finite collection of data points in the plane
is a fundamental problem in statistical estimation, with numerous applications. Although
methods such as least squares are well understood and easy to compute, these methods are
known to suffer from the phenomenon that a small number of outlying points can perturb
the line of fit by an arbitrarily large amount. For this reason, there has been increased
interest in a class of estimators, calledrobust estimators[17], [14], [27], that do not
suffer from this deficiency. Define thebreakdown pointof an estimator to be the fraction
of outlying data points (up to 50%) that may cause the estimator to take on an arbitrarily
large aberrant value. (See [8] and [27] for exact definitions.) The breakdown point of an
estimator is a measure of its robustness. For example, the (asymptotic) breakdown point
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of least squares is zero because even a single outlying data point can have an arbitrarily
large effect on the estimator. Examples of robust estimators include the following:

Theil–Sen estimator:The slope of the line of fit is taken to be the median of the set of(n
2

)
slopes5 that result by passing a line through each pair of distinct points in the

data set [34], [29]. In the plane, the Theil–Sen estimator has a breakdown point of
≈ 29.3%.

This problem has been studied under the name of theslope selection problem
in the field of computational geometry. The problem is to determine the slope of
any given rank. There exist asymptotically optimal algorithms for this problem,
which run inO(n logn) time andO(n) space. These include algorithms by Cole
et al. [5], Katz and Sharir [18], and Br¨onnimann and Chazelle [1].

It should be noted that all of the above algorithms rely on fairly complicated
techniques. (Chazelleet al. [2] have presented a simpler deterministic algorithm,
but its running time isO(n log2 n).) There are simpler, practicalrandomizedal-
gorithms by Matouˇsek [20] and Dillencourtet al. [7], and Shafer and Steiger [30].
These areLas Vegasrandomized algorithms, meaning that they always produce
correct results, and on any input, the expected running time, when averaged over
the random choices made in the algorithm, isO(n logn).

LMS estimator: Rousseeuw’sleast median of squares(LMS) estimator[26] is defined
to be the line that minimizes the median of the squared residuals. LMS has a
breakdown point of 50%. The best known algorithms for LMS run inO(n2) time,
due to Souvaine and Steele [32] and Edelsbrunner and Souvaine [9].

RM estimator: Siegel’srepeated median(RM) estimator[31] of a set ofn distinct
points in the plane{p1, p2, . . . , pn} is defined as follows. For each pointpi =
(xi , yi ), let θi denote the median of then− 1 slopes of the lines passing through
pi and each other point of the set. TheRM-slope, θ∗, is defined to be the median
of the multiset{θi }.6 The (hierarchical)RM-interceptis defined, in terms of the
computed repeated median slope, to be the median of the multiset,{yi − θ∗xi }.
The repeated median estimator has a breakdown point of 50%.

Observe that once the RM-slope has been computed, the RM-intercept can be com-
puted easily inO(n) additional time by any linear-time selection algorithm. Thus we
concentrate on the task of computing the RM-slope. A brute-force algorithm for com-
puting the RM-slope takesO(n2) time andO(n) space. Recently Stein and Werman [33]
proposed a deterministic algorithm for the RM-slope which runs inO(n log2 n) time.
However, their algorithm is rather complex, relying on several involved methods, such
as Cole’s improvement [4] to Megiddo’s parametric search technique [23].

In this paper we present two Las Vegas randomized algorithms for computing the
repeated median slope. Both algorithms are conceptually very simple, and use linear
storage. The first runs inO(n logn) expected time, improving Stein and Werman’s
result. This algorithm is optimal for the generalization to arbitrary selection mentioned
in the footnote, since element uniqueness can easily be reduced to this problem. The

5 For the purposes of this paper we define themedianof anm element multiset to be an element of rankdm/2e.
6 The above definitions can be generalized to the selection of elements ofarbitrary rank either for the choice
of theθi ’s, or for the choice ofθ∗.
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algorithm relies, however, on data structures for half-plane range searching, which are
fairly sophisticated. The second algorithm runs inO(n log2 n) expected time (O(logn)
iterations of a procedure that runs inO(n logn) time). This algorithm uses no sophisti-
cated data structures (only arrays), is quite easy to implement, and has a good running
time. Furthermore, we provide empirical evidence that for many typical input instances
the expected running time of this algorithm isO(n logn) (because the number of itera-
tions is constant).

In Section 2 we describe elements common to the two approaches and focus, in par-
ticular, on theO(n logn) algorithm, which is based on range searching. In Section 3 we
present a practical algorithm, which is based on Monte Carlo median estimates. Sec-
tion 4 provides experimental results of the performance of the latter algorithm. Section 5
contains concluding remarks.

2. The Algorithm. In this section we present the algorithmic framework common
to both algorithms and describe, specifically, theO(n logn) expected-time randomized
algorithm. Before introducing the algorithmic framework, it is conceptually helpful to
map the problem into its dual form. Recall that the input is a collection ofn points
pi = (xi , yi ), i = 1, . . . ,n. We map each point(x, y) from the original problem into a
line in dual space. Letθ andϕ denote the coordinates of dual space. The point(x, y) is
mapped into the dual line

{(θ, ϕ) | ϕ = xθ − y}.

It is easy to verify that given two distinct points in primal space, theθ -coordinate of the
intersection of their two dual lines is the slope of the line in primal space passing through
these points. (As in [7], we make the conventions that a vertical line has a slope of+∞
and parallel lines meet at+∞.) Theθ -coordinate of the intersection of two dual lines
is called anintersection abscissa. By theintersection abscissasof a given dual line, we
mean then − 1 intersection abscissas formed between this line and all the other dual
lines. Thus, given a pointpi = (xi , yi ), the slopes of then− 1 lines formed by joining
pi and each of the remaining points of the set are just the intersection abscissas of the
dual of pi .

By considering the arrangement of then dual lines in(θ, ϕ) space, we can pose the
repeated median slope problem in the following equivalent form. For the dual line of
point pi , consider its median intersection abscissa,θi . The RM-slopeθ∗ is the median
of these medians. Figure 1(a) illustrates a line arrangement in dual space wheren = 4.
The medianθ -coordinates of the intersections lying on the dual linesl1, l2, l3, andl4 are
θ2, θ5, θ4, andθ4, respectively. The repeated median is the median of these abscissas,
namelyθ4.

To simplify the presentation, we make the general position assumption that no two
pairs of points generate the same slope, which further implies that no three points are
collinear. (A more detailed report describes a complete implementation of the second
algorithm, which allows arbitrary point placement [24].)

We now digress momentarily to present the basic probability theoretic construct on
which our methodology relies. The lemma follows from Lemmas 3.1 and 3.2 in [7], but
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Fig. 1. Finding the RM in dual space: (a) An example of a line arrangement in dual space, forn = 4. The
RM is the abscissaθ4. (b) The setsL, C, andR with respect to the depicted interval,(θlo, θhi]: L = {l1},C =
{l3, l4}, R= {l2}.

we provide a detailed sketch here for completeness. Intuitively it states that given a set
of n numbers from which we can sample at random, we can compute a small confidence
interval for thekth smallest member of the set in time that is essentially independent
of n. The running time of the procedure, the degree of confidence, and the size of the
interval are related to one another.

LEMMA 2.1. Given a set of numbers2 = {θ1, θ2, . . . , θn}, an index k(1 ≤ k ≤ n),
and an integer r> 0, we can compute in O(r ) time an interval[θlo, θhi], such that, with
probability 1− 1/Ä(

√
r ), the kth smallest element of2 lies within this interval, and

the number of elements in2 that lie within the interval is at most n/Ä(
√

r ).
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PROOF: Sample (with replacement)r of the elements of2, and using any fast selection
algorithm, select from this sample the elementsθlo andθhi whose respective ranks are

klo = max

(
1,

⌊
rk

n
− 3
√

r

2

⌋)
,

khi = min

(
r,

⌈
rk

n
+ 3
√

r

2

⌉)
.

This can be done inO(r ) time. (For our purposes, it suffices to use a simplerrandomized
algorithm for selection (see, e.g., [16], [13], and [6] for specific details).)

Thekth smallest element is less thanθlo if and only if fewer thanklo sampled elements
are less than thekth smallest element. Since the probability that a given element is less
than or equal to thekth smallest element isk/n, it follows that, inr samples, the number
of sampled values that are less than thekth smallest element is a binomial random
variable with meanrk/n and standard deviation not greater than

√
r /2. The probability

that fewer thanklo sampled elements are less thanθlo is essentially the probability that
the binomial random variable is at least three standard deviations below its mean value.
By applying Chernoff’s bounds (see, e.g., [3] and [11]) and Chebyshev’s inequality [12],
it follows that this probability is 1/Ä(

√
r ). (See Lemmas 3.1 and 3.2 in [7] for complete

details.) A similar argument applies forkhi, and the probability that thekth smallest
element does lie within the interval is, therefore, 1− 1/Ä(

√
r ).

Since a fraction of the sample of sizeO(
√

r )/r lies within the interval (by definition),
it follows that the expected fraction of2 that lies within the interval isnO(

√
r )/r =

n/Ä(
√

r ). Again, Chernoff’s bounds can be invoked to show that this occurs with at
least the stated probability. ut

We return to the description of the algorithm. We apply an interval contraction tech-
nique, which is quite similar to the one used in the randomized algorithms for the
Theil–Sen estimator [7], [20]. We maintain an interval(θlo, θhi] that contains the re-
peated median slope. The initial interval is(−∞,+∞]. (This is consistent with the
conventions that were adopted from [7], namely that an interval is treated as half-open
half-closed, a vertical line has a slope of+∞, and no two lines intersect at−∞.)
The interval is contracted through a series of stages. During each stage we construct
a subinterval(θ ′lo, θ

′
hi] that contains the repeated median. It will be shown that each

stage runs inO(n logn) expected time, and the number of stages in the expected case
is O(1).

We consider the operation of a stage in greater detail. For the dual line of pointpi ,
i = 1, . . . ,n, we maintain three counts:Li , Ri , andCi , which denote, respectively, the
number of the line’s intersection abscissas that lie to the left, to the right, and within the
interval. (We discuss later how these counts are computed.) Depending on the relationship
betweend(n− 1)/2e, Li , and Li + Ci , we can determine whether the line’s median
intersection abscissa lies to the left, to the right, or within the interval. We partition the
set of lines into three subsetsL, R, andC, accordingly.

For example, in Figure 1(b) we haveL = {l1},C = {l3, l4}, andR = {l2}. Since we
assume that the repeated median lies withinC, it follows that|L| < dn/2e ≤ |L| + |C|.
A dual line is acandidateto supply the final repeated median if it lies inC. In particular,
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the candidate whose median intersection abscissa is of rankdn/2e − |L| within C is the
desired candidate.

In order to contract the interval, we apply Lemma 2.1 to the set of median intersection
abscissas of the candidate lines. Since we do not have ready access to this set, the
procedures used to access elements of this set randomly are discussed later. Assuming that
this subproblem can be handled, Lemma 2.1 suggests the following general algorithm:

(1) Set the initial interval to(−∞,+∞]. Initialize counts, such thatLi := Ri := 0 and
Ci := n−1. Likewise, initialize sets, such thatL := R := ∅ andC := {1, 2, . . . ,n}.

(2) Repeat the following steps until|C| = 1 (or, more practically, until
∑

i∈C Ci =
O(n), after which brute-force enumeration can be used).
(2a) Letβ (0< β < 1) be a constant whose value is considered later. Setr := ⌈nβ⌉,

and sampler dual lines ofC randomly, with replacement.
(2b) For each sampled line, compute its median intersection abscissa (by a method

to be described later).
(2c) Letk := dn/2e − |L| (the rank of the repeated median inC), and, applying

Lemma 2.1, let

klo := max

(
1,

⌊
rk

|C| −
3
√

r

2

⌋)
,

khi := min

(
r,

⌊
rk

|C| +
3
√

r

2

⌋)
.

Employ any fast selection algorithm to determine the elementsθ ′lo andθ ′hi of
these respective ranks from the sampled median intersection abscissas.

(2d) For each dual line inC count the number of intersection abscissas that lie
in each of the intervals(θlo, θ

′
lo], (θ ′lo, θ

′
hi], and(θ ′hi, θhi]. (Since we treat each

interval as if it is open on the left and closed on the right, no intersection
abscissa lies in more than one interval. Note also that only two of the counts
need to be considered, since the third count can be inferred from the other two.)

(2e) Based on these counts, determine which of the subintervals contains the re-
peated median and contract to this subinterval. (We expect it to be the middle
subinterval, with high probability.) Update the countsLi , Ri , andCi , and the
setsL, R, andC, accordingly.

To derive the running time of the algorithm, we must consider a number of issues
in greater detail. The first issue is the number of iterations required until the algorithm
terminates. Lemma 2.1 states that, with high probability, that is with probability greater
than or equal to 1−1/Ä(nβ/2), the repeated median is trapped within the interval(θ ′lo, θ

′
hi]

and the size ofC is reduced by a fraction of 1/Ä(nβ/2). After repeating this processt
times, the number of candidate lines will decrease by a factor of 1/Ä(ntβ/2). Since we
began withn candidates, after a constant number oft stages (t ∈ O(2/β)), we will have
found the repeated median. Thus it suffices to show that each stage can be performed in
O(n logn) expected time.

It is easy to verify that each of the steps of the algorithm can be performed inO(n)
time, except for the operations of computing the counts of the number of intersection
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abscissas that lie within a given interval, and computing the median intersection abscissa
on each of the sampled lines. We address these issues in the next two subsections.

2.1. Counting Intersection Abscissas. We consider the problem of computing the num-
ber of intersection abscissas,Li , Ri , andCi , that lie, respectively, to the left, to the right,
and within an interval, say(θlo, θhi]. Observe that, for each line, the sum of these counts is
n−1, and, hence, over all lines it is quadratic inn. Thus we cannot simply compute these
counts naively. We apply a standard reduction to the problem of counting the inversions
in a permutation. Aninversionin a list of numbers is defined to be a pair of elements
where the smaller element appears later in the list than the larger element. We present a
simple variant of the inversion-counting algorithm discussed in [7], where inversions are
counted individually for each line. First we sort and label the dual lines according to their
intersections with the vertical lineθ = θlo, and then we consider the permutation of this
labeling that results when we look at the intersections of the dual lines with the vertical
line θ = θhi. It is easy to see that the inversions in this permutation are in one-to-one
correspondence with the pairs of dual lines intersecting each other within the interval
(because their relative order of intersection with the vertical lines has changed).

It is a simple exercise to modify mergesort to count the number of inversions in which
each element is involved. Recall that mergesort [19] operates by splitting a list into left
and right sublists (of roughly equal sizes) which are sorted recursively and then merged
into a single sorted list. In order to count inversions, each element maintains a count of the
number of elements with which it is involved in an inversion. When the recursive sorting
calls are made, we count the number of inversions (per element) generated within each
of the sublists. When two sublists are merged, each element from, say, the left sublist
implicitly discovers the number of elements from the right sublist that are smaller. This
number is added to the inversion counter for the element. A symmetric argument applies
to elements of the right sublist. Thus all inversions can be counted inO(n logn) time
andO(n) space.

2.2. Median Computation. In this subsection we show how to compute the median
intersection abscissa for each of thenβ sampled lines in (overall)O(n logn) expected
time. Our approach is based on existing algorithms for solving range queries. Define
a double wedgeas the symmetric difference of two half-planes, that is, the locus of
points that lie in an infinite bow-tie-shaped region between two lines. We make use of
the following lemma, which follows easily from known results in range searching.

LEMMA 2.2. Given a collection P of n points in the plane, they can be preprocessed in
O(n logn) time and O(n) space, so that given a query double wedgew, the number of
points of P∩w can be counted in O(nγ ) time, whereγ is a constant smaller than one.
Furthermore, a point from P∩ w can be sampled at random in O(nγ ) time.

PROOF: The first statement, concerning the counting queries, is a well-known result from
range searching (see, e.g., [35], [10], [15], and [21] for various solutions). In order to
sample a random point, we can apply a standard trick to convert a counting procedure into
a sampling procedure. We look more closely at the range-counting algorithms. Given a
query double wedgew, they operate by decomposing the setP ∩ w into a collection
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of O(nγ ) disjoint subsets. These subsets arise from a fixed collection of subsets ofP
(so-calledcanonical subsets), which are (implicitly) represented in the range-counting
data structure. Specifically, the data structure stores the cardinality of each canonical
subset.

For a query double wedgew, we identify them = O(nγ ) canonical subsets
C1, . . . ,Cm, such thatP ∩ w is the disjoint union ofC1, . . . ,Cm. (These sets are
listed in some arbitrary but fixed order.) Given thatw containsk points, we gen-
erate a random integerr in the range from 1 tok, and find the indexj , such that
|C1| + · · · + |Cj−1| < r ≤ |C1| + · · · + |Cj−1| + |Cj |. This can easily be done since
we know the cardinalities of the canonical subsets. It remains, therefore, to draw the
(r − |C1| − · · · − |Cj−1|)th point ofCj , again, in accordance with some arbitrary but
fixed ordering of the points inCj .

Note that the sum of the cardinalities of all the canonical subsets isO(n logn).
Hence, inO(n logn) space, we can simply store the elements of each canonical subset
in an array, and then perform point selection from a given canonical subset. Assuming,
however, that query processing involves searching a partition tree (of any of the types
discussed in the above-mentioned range-searching references), the space can be reduced
to O(n). This is possible since all the canonical subsets are represented implicitly by a
rooted tree, and point selection from a given canonical subset can be performed by tracing
the appropriate branch in the tree until reaching the desired leaf. A reader familiar with
the data structure(s) can easily complete the algorithm. We omit a detailed discussion,
since it would require a specific description of the range-counting data structure. (Again,
see the references mentioned at the beginning of the proof for further details.)ut

We now define the constantβ introduced in step (2) of the algorithm to be 1− γ
from the previous lemma. Using this relation, we show how to compute the median
intersection abscissas of all the sampled dual lines in expected timeO(n logn). For each
of thenβ sampled lines, we describe a randomized binary search to compute the median
intersection abscissa, where each probe of the binary search will takeO(nγ ) time. The
expected number of probes will beO(logn), yielding, thereby, a total running time of
O(nβnγ logn) = O(n logn).

To describe the binary search, we return to primal space. Letpi be a point whose dual
line was sampled. Recall that we want to compute the median of the slopes of then− 1
lines passing throughpi and each other point of the data set. A general step of the binary
search works as follows. We assume that we have confined this median slope to lie within
some interval(θ1, θ2]. A point pj (i 6= j ) defines a linepi pj whose slope lies within this
range if and only ifpj lies within a wedge centered atpi and whose lines have slopesθ1

andθ2. By Lemma 2.2, we can sample at random one of the points from this wedge, say
pj , in O(nγ ) expected time. Letθ ′ be the slope of the linepi pj . Thus, by applying once
again the previous lemma, we can count the number of points in the wedge(θ1, θ

′], i.e.,
the number of intersection abscissas in this subinterval, inO(nγ ) time. This will enable
us to determine whether the median intersection abscissa lies within this subinterval or
within the subinterval,(θ ′, θ2], and recurse on the appropriate one. Since the probe point
is chosen randomly from within the range, the expected number of points eliminated
by each probe is a constant fraction of the remaining points. Thus, there areO(logn)
probes in the expected case.
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3. Estimating Median Intersection Abscissas. Although the algorithm presented in
the previous section is asymptotically efficient, its reliance on data structures for half-
plane range queries makes is less attractive for practical implementation. In this section
we present a more practical approach, which replaces step (2b) of the previous algorithm
by a scheme thatestimatesthe median intersection abscissas for each of thenβ randomly
sampled dual lines. (All the other stages of the previous algorithm remain intact.) Because
the algorithm returns, merely, an estimate of each of the medians, we cannot argue that
it terminates inO(1) stages in the expected case. Instead, we show that the expected
number of stages isO(logn), yielding, thereby, an overallO(n log2 n) expected running
time. Empirical evidence of the algorithm’s performance on numerous inputs from many
distributions suggests, however, that for many realistic data sets, the estimated medians
are close enough to the true medians, such that, for practical purposes, the algorithm
does terminate inO(1) stages, and hence runs inO(n logn) total time.

We begin by considering two simple strategies for converging on the repeated median
intersection abscissa. Recall that the algorithm maintains an interval(θlo, θhi] that con-
tains the desired intersection abscissa. The task of each stage is to contract this interval.
We consider two simple strategies for doing this.

The first strategy is to apply a simple randomized binary search for the repeated
median intersection abscissa. It is easy to modify the counting procedure described in
Section 2.1 to sample a single intersection abscissaθmid randomly from the interval. As
in step (2d) of the algorithm in Section 2, we can determine the subinterval,(θlo, θmid] or
(θmid, θhi], that contains the desired RM intersection abscissa, and then contract appropri-
ately. Clearly after each stage we expect to eliminate a constant fraction of the remaining
intersection abscissas from further consideration. Since the initial number of abscissas
is O(n2), this randomized binary search terminates inO(logn) stages with high prob-
ability. Since each stage can be performed inO(n logn) time, the total running time is
O(n log2 n).

The shortcoming of this strategy is that it requires at leastÄ(logn) stages to terminate
in the expected case. We introduce a second strategy that appears to converge much
more rapidly in practice. This second strategy makes use of the observation (made in
the previous section) that it is often easy to convert counting algorithms into sampling
algorithms. In particular, this can be applied to the inversion counting procedure presented
in Section 2.1 to generate a random subset of intersections on each of thenβ sampled
dual lines. For this strategy, we setβ = 1

2, so thatO(
√

n) dual lines are sampled. For
each such line, we invoke the sampling procedure described below to returnO(

√
n)

randomly sampled intersection abscissas that lie in the interval(θlo, θhi]. Hence, the total
number of sampled points isO(n).

Let pi be a point whose dual line,l i , was sampled. Recall thatLi is the count of
intersection abscissas that lie to the left of the interval, andCi is the count of intersection
abscissas that lie within the interval. Since the dual line ofpi was sampled, it is a
candidate, and hence its median intersection abscissa lies within the current interval,
(θlo, θhi]. Let ki = d(n− 1)/2e − Li be the rank ofθi within this interval. For each
sampled intersection abscissa onl i , the probability iski /Ci that it is less than or equal
to θi . Thus the expected number of sampled intersection abscissas that are less than or
equal toθi is roughly

√
nki /Ci . We select the sampled intersection abscissa whose rank

is
⌈√

nki /Ci
⌉

to be the estimate of the median intersection abscissa of the linel i . Since
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selection can be performed in linear time, the running time of this phase of the algorithm,
i.e., after sampling has been completed, isO(

√
n
√

n) = O(n).
The sampling itself can be performed inO(n logn) time by adapting the inversion

counting algorithm, similarly to the way that was described in the previous section.
Recall from the remarks of Section 2.1 that the set of intersection abscissas is in one-
to-one correspondence with the set of inversions in a given permutation. Also recall that
inversions are counted by a modification of mergesort. When two lists are merged in this
algorithm, each element in one list implicitly discovers the subset of elements in the other
list with which it generates an inversion. Note that this range comprises a contiguous
sublist of the other list, and each element is involved inO(logn) such merges. In this
way we can partition all the inversions involving any one element into a collection of
O(logn) disjoint subsets. Using the same trick that we applied in Section 2.2, we can
sample from these subsets inO(logn) time. The algorithm is described in detail in [24].
Since we are samplingO(n) items altogether, it follows that the total running time of
this sampling procedure isO(n logn).

Because the choice of the contracted interval for the second strategy is based on esti-
mates of the lines’ median intersection abscissas, pathological situations can be imagined
in which the estimates are so skewed that the algorithm’s rate of convergence is affected.
Intuitively, this is similar to the phenomenon that interpolation search suffers from, in
which highly skewed distributions can slow the algorithm’s convergence rate arbitrarily.
Thus, the algorithm operates by combining both strategies. The second (median estima-
tion) strategy is applied by default. If at any stage the number of intersection abscissas
fails to decrease by at least a modest constant factor, then the algorithm switches to
the first (binary search) strategy for the next stage. Our own practical experience with
the algorithm, on a number of distributions, has indicated that the estimated confidence
interval traps the repeated median the vast majority of the time, and this extra generality
is not really needed. However, it allows us to make the following claim.

LEMMA 3.1. The expected running time of the algorithm based on estimating intersec-
tion abscissas is O(n log2 n).

4. Experimental Results. We implemented the algorithm described in the previous
section and ran a number of experiments to study its performance on realistic input
distributions. The experiment considered values ofn ranging from 64 to 40,000, and 100
different data instances for each value ofn. In each case, a set ofn points associated
with one of the following data distribution types was generated inside a unit square (see
[24] for further details):

(1) Linear plus Gaussian perturbation.
(2) Linear plus one-sided (Weibull) perturbation.
(3) Bimodal plus Gaussian perturbation, i.e., a set ofn points,n1 of which are associated

with one specified line, andn2 = n−n1 of which are associated with another specified
line.

(4) Circular, i.e., points distributed along an arc of a circle.
(5) Uniform distribution in the unit square.
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Fig. 2. Examples of experimental data sets(n = 225) for the following distribution types: (a) linear plus
Gaussian; (b) linear plus Weibull; (c) bimodal plus Gaussian; (d) circular; (e) uniform in a unit square.

For each value ofn, we ran our algorithm on 20 instances for each of the above types.
The data instances generated correspond to lines of various slopes (and intercepts) and
to various degrees of perturbation. Examples of various data instances forn = 225 are
shown in Figures 2(a)–(e), depicting data instances of the distribution types (1)–(5),
respectively. (The slopes of the linear sources of Figures 2(a)–(c) are either 0.5 or−0.5.)
The corresponding RM values given as computed by the algorithm are shown.

For each data instance, we invoked our algorithm to find the RM estimate, and recorded
the running times and the values of other parameters of interest (e.g., the number of
iterations per each run, the number of times the algorithm has failed to capture the
desired intersection abscissa in a contracted subinterval, etc.). For comparison, we have
also recorded the running times of theO(n2)brute-force algorithm. In the vast majority of
the data instances run, our algorithm terminated withinfour iterations fornvalues ranging
from 64 to 40,000 (and, furthermore, the principal deviations from this rule were only for
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Fig. 3.Execution time statistics: (a) number of iterations observed versus log10 n; (b) normalized running time
versus log10 n; (c) normalized brute-force running time versusn; (d) superimposing (b) + (c). The efficient
algorithm is superior forn > 155.

small values ofn, because various probabilistic arguments apply only to sufficiently large
n). See Figure 3(a). Since each iteration takesO(n logn) time, this justifies empirically
our claim that the algorithm runs essentially in (expected)O(n logn) time. LettingTI(n)
and TB(n) denote, respectively, the running times (in milliseconds) of our inversion
counting algorithm and the brute-force algorithm, we used least squares to derive the
following linear models:TI(n)/n = 1.2 log10 n+ 7.2, andTB(n)/n = 0.05n+ 1.9. The
running times have been scaled down by a factor ofn to reduce the residuals for largen.
The results are summarized in Figures 3(b)–(d). Figure 3(b) showsTI(n)/n, Figure 3(c)
showsTB(n)/n, and Figure 3(d) shows both fits superimposed. We conclude from these
models that, forn > 102.19 ≈ 155, our algorithm performs faster than the brute-force
algorithm. (It should be noted that the experiments were carried out using floating-point
arithmetic, and that the running times reported might have been influenced by this fact.)

To investigate the probabilistic behavior of our algorithm, we also recorded the num-
ber of times the contraction stage has failed to trap the RM intersection abscissa, i.e.,
the frequency in which the RM intersection abscissa was not contained in the con-
tracted subinterval,(θ ′lo, θ

′
hi]. (Although the algorithm may take longer to run in such

cases, step (2e) ensures its Las Vegas nature, i.e., the algorithm always returns a correct
computational result.) With the choice of parameters made, it was observed that the
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RM intersection abscissa was trapped successfully for over 99% of the cases, i.e., the
algorithm exhibits an efficient probabilistic performance.

5. Conclusions. In this paper we presented two algorithms for the 50% breakdown
point repeated median (RM) line estimator. First, anO(n logn) (expected) running
time algorithm was provided. (This is the best theoretical result known.) An alternative,
simpler variant of the above algorithm (which runs inO(n log2 n)expected time) was also
suggested and pursued. The characteristic features of the two algorithms are summarized
as follows:

• Both algorithms are randomized in a Las Vegas sense, i.e., their (expected) running
time complexities occur with high probability, and they always return the correct
computational result (within the machine’s precision).
• Both algorithms are space optimal, i.e., they requireO(n) storage.
• The algorithms are extendible to higher dimensions. Specifically, we have shown that

a d-dimensional RM (hyperplane) estimator can be computed, with high probability,
in (expected)O(nd−1 logn) (O(nd−1 log2 n)) time andO(n) space, for fixedd [25].
• In principle, both algorithms are implementable. However, while the first algorithm

relies on rather sophisticated data structures, the second algorithm is based, merely, on
simple modifications of mergesort. We believe that the latter algorithm achieves the
best combination of both asymptotic and practical efficiency amongexactalgorithms
for 50% breakdown point estimators.

Furthermore, empirical results for a large number of data sets strongly suggest that
the (expected) running time of the second algorithm is essentiallyO(n logn), and
that the constants of proportionality (hidden by the asymptotic notation) are relatively
small.

Finally, due to this practical algorithm, statistical properties of the RM estimator
(e.g., asymptotic statistical efficiency) can now be studied and verified empirically for
large values ofn [28].

A few issues may be considered for future research. One immediate question is
whether a deterministicO(n logn)-time algorithm can be found for the RM line estimator
(e.g., by derandomization of the algorithm provided). Another question regards the choice
of the repeated median slope as a line estimator. Although the (repeated) median slope
is preserved under translation and scaling, it is not the case that the (repeated) median
slope of a rotated set of points is equal to the rotated (repeated) median slope (since, for
example, when points are nearly vertical we may find two clusters of slopes at+∞ and
−∞). Can the techniques of this paper be extended to estimators which are invariant
under rotation?
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