
Compressing Kinetic Data

from Sensor Networks

Sorelle A. Friedler� and David M. Mount��

Dept. of Computer Science, University of Maryland, College Park, MD 20742, USA
sorelle@cs.umd.edu

http://www.cs.umd.edu/~sorelle

mount@cs.umd.edu

http://www.cs.umd.edu/~mount

Abstract. We introduce a framework for storing and processing kinetic
data observed by sensor networks. These sensor networks generate vast
quantities of data, which motivates a significant need for data compres-
sion. We are given a set of sensors, each of which continuously monitors
some region of space. We are interested in the kinetic data generated by a
finite set of objects moving through space, as observed by these sensors.
Our model relies purely on sensor observations; it allows points to move
freely and requires no advance notification of motion plans. Sensor out-
puts are represented as random processes, where nearby sensors may be
statistically dependent. We model the local nature of sensor networks by
assuming that two sensor outputs are statistically dependent only if the
two sensors are among the k nearest neighbors of each other. We present
an algorithm for the lossless compression of the data produced by the
network. We show that, under the statistical dependence and locality as-
sumptions of our framework, asymptotically this compression algorithm
encodes the data to within a constant factor of the information-theoretic
lower bound optimum dictated by the joint entropy of the system.

1 Introduction

There is a growing appreciation of the importance of algorithms and data struc-
tures for processing large data sets arising from the use of sensor networks,
particularly for the statistical analysis of objects in motion. Large wireless sen-
sor networks are used in areas such as road-traffic monitoring [1], environment
surveillance [2], and wildlife tracking [3, 4]. With the development of sensors of
lower cost and higher reliability, the prevalence of applications and the need for
efficient processing will increase.

Wireless sensor networks record vast amounts of data. For example, road-
traffic camera systems [1] that videotape congestion produce many hours of video
� The work of Sorelle Friedler has been supported in part by the AT&T Labs Fellow-

ship Program.
�� The work of David Mount has been supported in part by the National Science

Foundation under grant CCR-0635099 and the Office of Naval Research under grant
N00014-08-1-1015.

S. Dolev (Ed.): ALGOSENSORS 2009, LNCS 5804, pp. 191–202, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

192 S.A. Friedler and D.M. Mount

or gigabytes of data for analysis even if the video itself is never stored and is in-
stead represented by its numeric content. In order to analyze trends in the data,
perhaps representing the daily rush hour or weekend change in traffic patterns,
many weeks or months of data from many cities may need to be stored. As the ob-
servation time or number of sensors increases, so does the total data that needs to
be stored in order to perform later queries, which may not be known in advance.

In this paper we consider the problem of compressing the massive quantities
of data that are streamed from large sensor networks. Compression methods can
be broadly categorized as being either lossless (the original data is fully recov-
erable), or lossy (information may be lost through approximation). Since lossy
compression provides much higher compression rates, it is by far the more com-
monly studied approach in sensor networks. Our ultimate interest is in scientific
applications involving the monitoring of the motion of objects in space, where the
loss of any data may be harmful to the subsequent analysis. For this reason, we
focus on the less studied problem of lossless compression of sensor network data.
Virtually all lossless compression techniques that operate on a single stream rely
on the statistical redundancy present in the stream in order to achieve high com-
pression rates [5, 6, 7]. In the context of sensor networks, this redundancy arises
naturally due to correlations in the outputs of sensors that are spatially close to
each other. As with existing methods for lossy compression [8, 9], our approach
is based on aggregating correlated streams and compressing these aggregated
streams.

A significant amount of research to date has focused on the efficient collection
and processing of sensor network data within the network itself, for example,
through the minimization of power consumption or communication costs [10,11,
12]. We focus on losslessly compressing the data locally and then downloading it
to traditional computer systems for analysis. Clustering the stationary sensors is
a strategy that has been previously used to improve the scalability as well as the
energy and communication efficiency of the sensor network [13]. Compressing the
data before transmission additionally improves the communication efficiency.

We are particularly interested in kinetic data, by which we mean data arising
from the observation of a discrete set of objects moving in time (as opposed to
continuous phenomena such as temperature). We explore how best to store and
process these assembled data sets for the purposes of efficient retrieval, visual-
ization, and statistical analysis of the information contained within them. We
assume that we do not get to choose the sensor deployment based on object
motion (as done in [14]), but instead use sensors at given locations to observe
the motion of a discrete set of objects over some domain of interest. Thus, it is to
be expected that the entities observed by one sensor will also likely be observed
by nearby sensors, albeit at a slightly different time. Well-designed storage and
processing systems should capitalize on this redundancy to optimize space and
processing times. In this paper we propose a statistical model of kinetic data
as observed by a collection of fixed sensors. We will present a method for the
lossless compression of the resulting data sets and will show that this method is

Compressing Kinetic Data from Sensor Networks 193

within a constant factor of the asymptotically optimal bit rate, subject to the
assumptions of our model.

Although we address the problem of compression here, we are more generally
interested in the storage and processing of large data sets arising from sensor
networks [8,15,16,17,18]. This will involve the retrieval and statistical analysis of
the information contained within them. Thus, we will discuss compression within
the broader context of a framework for processing large kinetic data sets arising
from a collection of fixed sensors. We feel that this framework may provide a
useful context within which to design and analyze efficient data structures and
algorithms for kinetic sensor data.

The problem of processing kinetic data has been well studied in the field of
computational geometry in a standard computational setting [19,20,21,22,23,24].
A survey of practical and theoretical aspects of modeling motion can be found
in [25]. Many of these apply in an online context and rely on a priori information
about point motion. The most successful of these frameworks is the kinetic data
structures (KDS) model proposed by Basch, Guibas, and Hershberger [23], which
models objects as points in motion, where the motion is expressed as piecewise
algebraic flight plans. Although KDS has been valuable for developing theoret-
ical analyses of points in motion (see [26] for a survey), it is unsuitable in many
real-world contexts due to these strong assumptions. Similarly, a framework for
sensor placement by Nikoleteas and Spirakis assumes that possible object trajec-
tories are modeled by a set of 3D curves over space and time [14]. Our framework
makes no a priori assumptions about the motion of the objects.

Algorithms that involve the distributed online processing of sensor-network
data have also been studied and successfully applied to the maintenance of a
number of statistics online [10, 11, 27, 28]. Efficiency is typically expressed as a
trade-off between communication complexity and accuracy or by the amount of
communication between a tracker and an observer. The idea of the tracker and
observer is reminiscent of an earlier model for incremental motion by Mount
et al. [29]. Unlike these models, our framework applies in a traditional (non-
distributed) computational setting.

Here is a high-level overview of our framework, which will be described in
greater detail in Section 2. We assume we are given a fixed set of sensors, which
are modeled as points in some metric space. (An approach based on metric
spaces, in contrast to standard Euclidean space, offers greater flexibility in how
distances are defined between objects. This is useful in wireless settings, where
transmission distance may be a function of non-Euclidean considerations, such
as topography and the presence of buildings and other structures.) Each sensor
is associated with a region of space, which it monitors. The moving entities are
modeled as points that move over time. At regular time intervals, each sensor
computes statistical information about the points within its region, which are
streamed as output. For the purposes of this paper, we assume that this infor-
mation is simply an occupancy count of the number of points that lie within the
sensor’s region at the given time instant. In other words, we follow the minimal

194 S.A. Friedler and D.M. Mount

assumptions made by Gandhi et al. [30] and do not rely on a sensor’s ability to
accurately record distance, angle, etc.

Again, our objective is to compress this data in a lossless manner by ex-
ploiting statistical dependencies between the sensor streams. There are known
lossless compression algorithms, such as Lempel-Ziv [7], that achieve the optimal
lower bound encoding bit rate (as established by Shannon [31]) asymptotically.
It would be infeasible to apply this observation en masse to the entire joint
system of all the sensor streams. Instead, we would like to partition the streams
into small subsets, and compress each subset independently. In our context, the
problem is bounding the loss of efficiency due to the partitioning process.

In order to overcome this problem we need to impose limits on the degree of
statistical dependence among the sensors. Our approach is based on a locality as-
sumption. Given a parameter k, we say that a sensor system is k-local if each sen-
sor’s output is statistically dependent on only its k-nearest sensors. In Section 3,
we prove that any k-local system that resides in a space of fixed dimension can be
partitioned so that joint compressions involve groups of at most k+1 sensors. We
show that the final compression is within a factor c of the information-theoretic
lower bound, where c is independent of k, and depends only on the dimension of
the space. In Section 4, we give experimental justification for our k-local model.

2 Data Framework

In this section we present a formal model of the essential features of the sensor
networks to which our results will apply. Our main goal is that it realistically
model the data sets arising in typical wireless sensor-networks when observing
kinetic data while also allowing for a clean theoretical analysis. We assume a
fixed set of S sensors operating over a total time period of length T . The sensors
are modeled as points in some metric space. We may think of the space as R

d

for some fixed d, but our results apply in any metric space of bounded doubling
dimension [32]. We model the objects of our system as points moving continu-
ously in this space, and we make no assumptions a priori about the nature of
this motion. Each sensor observes some region surrounding it. Our framework
makes no assumptions about the size, shape, or density of these regions. The
sensor regions need not be disjoint, nor do they need to cover all the moving
points at any given time.

Each sensor continually collects statistical information about the points lying
within its region, and it outputs this information at synchronized time steps. As
mentioned above, we assume throughout that this information is simply an occu-
pancy count of the number of points that lie within the region. (The assumption
of synchronization is mostly for the sake of convenience of notation. As we shall
see, our compression algorithm operates jointly on local groups of a fixed size, and
hence it is required only that the sensors of each group behave synchronously.)

As mentioned in the introduction, our framework is based on an information-
theoretic approach. Let us begin with a few basic definitions (see, e.g., [33]). We
assume that the sensor outputs can be modeled by a stationary, ergodic random
process. Since the streams are synchronized and the cardinality of the moving

Compressing Kinetic Data from Sensor Networks 195

point set is finite, we can think of the S sensor streams as a collection of S
strings, each of length T , over a finite alphabet. Letting lg denote the logarithm
base-2, the entropy of a discrete random variable X , denoted H(X), is defined
to be −∑

x px lg px, where the sum is over the possible values x of X , and px is
the probability of x.

We generalize entropy to random processes as follows. Given a stationary,
ergodic random process X , consider the limit of the entropy of arbitrarily long se-
quences of X , normalized by the sequence length. This leads to the notion of nor-
malized entropy, which is defined to be H(X) = limT→∞ − 1

T

∑
x,|x|=T px lg px,

where the sum is over sequences x of length T , and px denotes the probability of
this sequence. Normalized entropy considers not only the distribution of individ-
ual characters, but the tendencies for certain patterns of characters to repeat.

We also generalize the entropy to collections of random variables. Given a
sequence X = 〈X1, X2, . . . , XS〉 of (possibly statistically correlated) random
variables, the joint entropy is defined to be H(X) = −∑

x px lg px, where the
sum is taken over all S-tuples x = 〈x1, x2, . . . , xS〉 of possible values, and px is
the probability of this joint outcome [33]. The generalization to normalized joint
entropy is straightforward and further strengthens normalized entropy by con-
sidering correlations and statistical dependencies between the various streams.

In this paper we are interested in the lossless compression of the joint sensor
stream. Shannon’s source coding theorem states that in the limit, as the length
of a stream of independent, identically distributed (i.i.d.) random variables goes
to infinity, the minimum number of required bits to allow lossless compression of
each character of the stream is equal to the entropy of the stream [31]. In our case,
Shannon’s theorem implies that the optimum bit rate of a lossless encoding of the
joint sensor system cannot be less than the normalized joint entropy of the sys-
tem. Thus, the normalized joint entropy is the gold standard for the asymptotic
efficiency of any compressionmethod. Henceforth, all references to “joint entropy”
and “entropy” should be understood to mean the normalized versions of each.

As mentioned above, joint compression of all the sensor streams is not feasi-
ble. Our approach will be to assume a limit on statistical dependencies among
the observed sensor outputs based on geometric locality. It is reasonable to ex-
pect that the outputs of nearby sensors will exhibit a higher degree of statistical
dependence with each other than more distant ones. Although statistical depen-
dence would be expected to decrease gradually with increasing distance, in order
to keep our model as simple and clean as possible, we will assume that beyond
some threshold, the statistical dependence between sensors is so small that it
may be treated as zero. There are a number of natural ways to define such a
threshold distance. One is an absolute approach, which is given a threshold dis-
tance parameter r, and in which it is assumed that any two sensors that lie at
distance greater than r from each other have statistically independent output
streams. The second is a relative approach in which an integer k is provided, and
it is assumed that two sensor output streams are statistically dependent only if
each is among the k nearest sensors of the other. In this paper we will take the
latter approach, which we will justify after introducing some definitions.

196 S.A. Friedler and D.M. Mount

Formally, let P = {p1, p2, . . . , pS} denote the sensor positions. Given some
integer parameter k, we assume that each sensor’s output can be statistically
dependent on only its k nearest sensors. Since statistical dependence is a sym-
metric relation, two sensors can exhibit dependence only if each is among the
k nearest neighbors of the other. More precisely, let NN k(i) denote the set of
k closest sensors to pi (not including sensor i itself). We say that two sensors
i and j are mutually k-close if pi ∈ NN k(j) and pj ∈ NN k(i). A system of
sensors is said to be k-local if for any two sensors that are not mutually k-close,
their observations are statistically independent. (Thus, 0-locality means that the
sensor observations are mutually independent.) Let X = 〈X1, X2, . . . , XS〉 be a
system of random streams associated with by S sensors, and let H(X) denote
its joint entropy. Given two random processes X and Y , define the conditional
entropy of X given Y to be H(X | Y) = − ∑

x∈X,y∈Y p(x, y) log p(y | x).
Note that H(X | Y) ≤ H(X), and if X and Y are statistically independent,
then H(X | Y) = H(X). By the chain rule for conditional entropy [33], we
have H(X) = H(X1) + H(X2 | X1) + . . . + H(XS | X1, . . . , XS−1). Letting
Di(k) = {j : 1 ≤ j < i and xi and xj are mutually k-close} we define the k-
local entropy, denoted Hk(X), to be

∑S
i=1 H(Xi | Di(k)). Note that H(X) ≤

Hk(X) and equality holds when k = S. By definition of k-locality, H(Xi |
X1, X2, . . . , Xi−1) = H(Xi | Dk(i)). By applying the chain rule for joint entropy,
we have the following easy consequence, which states that, under our locality
assumption, k-local entropy is the same as the joint entropy of the entire system.

Lemma 1. Given a k-local system with set of observations X, H(X) = Hk(X).

We show in the full version of this paper that if KDS is used to observe a system
in which the sensor regions are modeled as a sparse collection of unit disks and
objects change their trajectories relatively frequently, KDS requires on the order
of Hk(X) bits of storage [34]. Thus, since KDS has full knowledge of the system,
Hk(X) is a reasonable measure of optimality.

One advantage of our relative characterization of mutually dependent sen-
sor outputs is that it naturally adapts to the distribution of sensors. It is not
dependent on messy metric quantities, such as the absolute distances between
sensors or the degree of overlap between sensed regions. Another reason arises
by observing that, in an absolute model, all the sensors might lie within dis-
tance r of each other. This would imply that all the sensors could be mutually
statistically dependent on each other, which would render optimal compression
based on joint entropy intractable. Nonetheless, by imposing a relatively weak
density assumption, our model can be applied in such contexts. For example,
consider a setting in which each sensor monitors a region of radius r. Given two
positive parameters α and β, suppose that we were to assume that the number of
sensors whose centers lie within any ball of radius r is at most α, and (instead of
our k-local assumption) we were to assume that the outputs of any two sensors
can be statistically dependent only if they are within distance βr of each other.
Then, by a simple packing argument, it follows that such a system is k-local for
k = O(α βO(1)) in any space of constant doubling dimension. Thus, our model
would be applicable in this context.

Compressing Kinetic Data from Sensor Networks 197

3 Compression Results

Before presenting the main result of this section, we present a lemma which is
combinatorially interesting in its own right. This partitioning lemma combined
with a compression algorithm allows us to compress the motion of points as
recorded by sensors to an encoding size which is c times the optimal, where c is
an integral constant to be specified in the proof of Lemma 2.

3.1 Partitioning Lemma

partition(point set P , k)

for all p ∈ P
determine NN k(p) and rk(p)

i = 1
while P �= ∅

unmarked(P) = P
Pi = ∅
while unmarked(P) �= ∅

r = minp∈unmarked(P) rk(p)
p′ = p ∈ P : r = rk(p)
Pi = Pi ∪ {p ∈ P : ‖pp′‖ ≤ r}
P = P \ {p ∈ P : ‖pp′‖ ≤ r}
unmarked(P) = unmarked(P) \

{p ∈ unmarked(P) : ‖pp′‖ ≤ 3r}
increment i

return {P1, P2, . . . , Pc}

Fig. 1. The partitioning algorithm that imple-
ments Lemma 2

First, we present some definitions
about properties of the static point
set representing sensor locations.
Let rk(p) be the distance from
some sensor at location p to its
kth nearest neighbor. Recall that
points are mutually k-close if they
are in each other’s k nearest neigh-
bors. We say that a point set P ∈
R

d is k-clusterable if it can be par-
titioned into subsets Ci1, Ci2, . . .
such that |Cij | ≤ k+1 and if p and
q are mutually k-close then p and
q are in the same subset of the par-
tition. Intuitively, this means that
naturally defined clusters in the
set are separated enough so that
points within the same cluster are
closer to each other than they are
to points outside of the cluster. The following lemma holds for all metrics with
constant doubling dimension, where these metrics are defined to limit to a con-
stant the number of balls that cover a ball with twice their radius [32]. Euclidean
spaces are of constant doubling dimension.

Lemma 2. In any doubling space there exists an integral constant c such that
for all integral k > 0 given any set P in the doubling space, P can be partitioned
into P1, P2, . . . , Pc such that for 1 ≤ i ≤ c, Pi is k-clusterable.

The partitioning algorithm that implements Lemma 2 is shown in Figure 1. It
proceeds by iteratively finding the unmarked point p with minimum r = rk(p),
moving all points within r, henceforth called a cluster, to the current partition,
and marking all points within 3r of p. A new partition is created whenever all
remaining points have been marked. The marked points are used to create a
buffer zone which separates clusters so that all points are closer to points within
their cluster than they are to any other points in the partition. The algorithm’s
inner loop creates these clusters, and the outer loop creates the c partitions.

198 S.A. Friedler and D.M. Mount

Proof (Sketch). (See the full version of this paper for a detailed proof [34].)
By the construction of the marking process, each partition is k-clusterable. We
will show that at most c partitions Pi are created by the partitioning algorithm of
Figure 1. We refer to each iteration of the outer while loop as a round. First note
that at the end of the first round all points are either marked or removed from P .
Each point that remains after the first round was marked by some point during
the first round. By a packing argument based on the minimum nearest neighbor
radius and the radius of the marked region around a point we show that points
can be marked by at most c = O(1+12O(1)) = O(1) rounds, creating c partitions.

Note that a cluster centered at p′ with less than k + 1 points does not violate
the k-clusterable property since this cluster would have been created by cluster-
ing NN k(p′) together as originally identified before any points were partitioned.
Such a cluster is formed because some of the original points in NN k(p′) were
previously added to a different partition. Since being mutual k-close is based on
the entire set, smaller clusters are still mutually k-close within that partition.

3.2 Compression Theorem
compress (stream set X, sensor set P , k)

{P1, P2, . . . , Pc} = partition (P, k)
for i = 1 to c

for all clusters j in Pi

containing streams Xij1 through Xijhij

X̂ij =
⋃T

t=1 Xij1t&Xij2t& . . .&Xijhij t

where Xijht is the tth character of Xijh

return
⋃

ij entropy compress(X̂ij)

Fig. 2. The compression algorithm, which takes a set
X of streams of length T and the associated set P of
sensors which recorded them and returns a compressed
encoding of length c · H(X). The partitioning algo-
rithm of Figure 1 is called and determines the constant
c. entropy compress is an entropy-based compression
algorithm that returns an encoded stream.

We now present the main
compression algorithm and
analysis. The algorithm,
presented in Figure 2, com-
presses each cluster formed
by the partitioning algo-
rithm (Figure 1) separately
and returns the union of
these. Each cluster is com-
pressed by creating a new
stream in which the tth

character is a new character
which is the concatenation
of the tth character of every
stream in that cluster. This
new stream is then com-
pressed using an entropy-
based compression algorithm which achieves the optimal encoding length in the
limit. For example, the Lempel-Ziv sliding-window compression algorithm could
be used [7]. We reason about the size of the resulting stream set encoding.

First, we introduce some notation. Let X be the set of streams containing the
information recorded by the sensors of set P where |X| = |P |. Given the set of
partitions {Pi} resulting from the partitioning lemma in Section 3.1, {Xi} is the
set of associated streams. Let {Cij} be the set of clusters that are created by
the partitioning algorithm, we call {Xij} the set of streams in cluster Cij and
Xijh is the hth stream in cluster Cij with cardinality hij .

Theorem 1. A stream set which represents observations from a k-local sensor
system can be compressed to an encoded string which has length at most c times

Compressing Kinetic Data from Sensor Networks 199

the optimal, where c is a constant depending on the doubling dimension of the
underlying point set.

Proof. First, we show that each cluster Cij is compressed to a string whose length
is equal to the joint entropy of the component streams of that cluster. Each clus-
ter consists of streams {Xij} which are merged into one new stream by concate-
nating the tth character of all the streams to create the tth character of the new
stream. This new stream, X̂ij , is then compressed using an optimal compression al-
gorithm. By construction of the streams X̂ij , the entropy H(X̂ij) of a single stream
is equal to the joint entropy of its component streams H(Xij1, Xij2, . . . , Xijhij).
The entropy-based encoding algorithm compresses each X̂ij to an encoded string
the length of the stream’s entropy and that compression is optimal [35], so H(Xij1,
Xij2, . . . , Xijhij) is the optimal encoding length for cluster Cij .

Our local dependence assumptions, explained in Section 2, say that the stream
of data from a sensor is only dependent on the streams of its k nearest neigh-
bors. Additionally, recall that in Section 2 we defined being mutually k-close
to require that streams are only dependent if they come from sensors who are
in each other’s k nearest neighbor sets. By the partitioning lemma from Sec-
tion 3.1, we know that each cluster Cij is independent of all other clusters in
partition Pi. From standard information theoretic results [33] we know that for
a collection of streams Y1, . . . , YS , H(Y1, Y2, . . . , YS) =

∑S
i=1 H(Yi) if and only

if the Yi are independent. Since the elements of {{Xi1}, {Xi2}, . . . , {Xi|{Cij}|}}
are independent, H(Xi) =

∑
j H({Xij}). Combining this with the fact that

H(X̂ij) is equal to the joint entropy of its component streams, we have that
H(Xi) =

∑
j H(X̂ij). H(Xi) is the optimal compression bound for partition Pi,

so we achieve the optimal compression for each partition.
Finally, we show that our compression algorithm is a c-approximation of the

optimal. We say that a compression algorithm provides a γ-approximation if the
length of the compressed streams is no more than γ times the optimal length.
Recall that c partitions are generated by the partitioning algorithm from Sec-
tion 3.1. Each of these partitions is encoded by a string of length H(Xi) in the
limit, so the total encoding size is

∑c
i=1 H(Xi) ≤ c · maxi H(Xi) ≤ c · H(X),

where H(X) is the joint entropy, which is a lower bound on the optimal encoding
size, and the last inequality follows since |X| ≥ |Xi| for all i. So our algorithm
provides a c-approximation of the optimal compression.

Note that using the same method we used to compress the members of individual
clusters, we could have combined the characters of all streams and compressed
these together. This method would have optimal compression to the joint en-
tropy of the streams. For demonstration of the problem with this method, con-
sider the Lempel-Ziv sliding-window algorithm [7]. The algorithm proceeds by
looking for matches between the current time position and some previous time
within a given window into the past. The length and position of these matches
are then recorded, which saves the space of encoding each character. The window
moves forward as time progresses. Larger window sizes yield better results since
matches are more likely to be found. The optimal encoded length is achieved

200 S.A. Friedler and D.M. Mount

by taking the limit as the window size tends to infinity [35]. If all streams are
compressed at once, the optimal compression rate is only achieved in the limit as
the window size becomes large and in practice compressing all streams at once
requires a much larger window before the compression benefits begin. By only
compressing k streams together we limit the effect of this problem.

4 Locality Results

Joint entropy values

Fig. 3. Plotted joint entropy values for values of k.
These are shown for k = 1 to k = 5 at increments of
1 and k = 10 to k = 50 at increments of 10.

In order to justify our
claim that sensor outputs
exhibit higher statistical de-
pendence on their nearest
neighbors, we analyze ex-
perimental data recorded by
sensors operating under as-
sumptions similar to our
framework. The data we an-
alyze was collected at the
Mitsubishi Electric Research
Laboratory [36]. It consists
of sensor activation times for
over 200 sensors observing
the hallways of a building.
Each sensor records times
of nearby motion in coor-
dinated universal time. For
our analysis, we group acti-
vations into time steps con-
sisting of the count of all
activations for a single sen-
sor over 0.1 second. These serve as the sensor counts over which we find the
normalized joint entropy of data for sensor pairs, and we consider these counts
only in terms of the presence or absence of motion during a given time step. We
consider one minute of this data, or 600 data points.

Recall that the normalized joint entropy of two sequences generated by a com-
mon process is defined in Section 2. For our experiment, we consider the value
T = 3. Probabilities are determined based on the observed outputs of the two
sensors whose pairwise joint entropy is being calculated over the sensor streams
containing 600 activation status values. The results shown in Figure 3 plot the
combinatorial neighbor distances for four sensors against the normalized joint
entropy values found. These neighbor distances are calculated based on the sen-
sor locations and do not take walls into account, so some seemingly close sensors
turn out not to be statistically dependent on each other. While each sensor’s
plot starts at a different initial value, there are few low entropy values (relative
to the start value) after k = 10, showing that as sensors become farther apart
they are less likely to be statistically dependent on each other.

Compressing Kinetic Data from Sensor Networks 201

In order to justify our claim on the value of compressing sensor outputs, and
further, jointly compressing neighboring sensor outputs, we consider eight sen-
sor outputs from a single hallway. The activation status was considered for these
sensors for 70,000 0.1 second intervals (or approximately 2 hours). The raw data
used 286.7 MB. These eight streams compressed separately with gzip (which
uses the sliding-window Lempel-Ziv algorithm) used a total of 15.5 MB or 5.4%
of the original space. Compressing the eight streams merged together character
by character (as described in the compression algorithm in Figure 2), used 7.1
MB, or an additional 45.7% of the separately compressed space.

References

1. Saunier, N., Sayed, T.: Automated analysis of road safety with video data. In:
Transportation Research Record, pp. 57–64 (2007)

2. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: ACM international workshop on wireless
sensor networks and applications, pp. 88–97 (2002)

3. MIT Media Lab: The owl project, http://owlproject.media.mit.edu/
4. Stutchbury, B.J.M., Tarof, S.A., Done, T., Gow, E., Kramer, P.M., Tautin, J., Fox,

J.W., Afanasyev, V.: Tracking long-distance songbird migration by using geoloca-
tors. Science, 896 (February 2009)

5. Huffman, D.A.: A method for the construction of minimum-redundancy codes. In:
Proc. of the IRE, vol. 40 (September 1952)

6. Rissanen, J.: Generalized Kraft inequality and arithmetic coding. IBM Jour. of
Research and Dev. 20 (1976)

7. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3) (May 1977)

8. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Processing approximate aggregate
queries in wireless sensor networks. Inf. Syst. 31(8), 770–792 (2006)

9. Gandhi, S., Nath, S., Suri, S., Liu, J.: Gamps: Compressing multi sensor data by
grouping and amplitude scaling. In: ACM SIGMOD (2009)

10. Cormode, G., Muthukrishnan, S., Zhuang, W.: Conquering the divide: Continuous
clustering of distributed data streams. In: IEEE 23rd International Conference on
Data Engineering, pp. 1036–1045 (2007)

11. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional
monitoring. In: SODA, pp. 1076–1085 (2008)

12. Soroush, E., Wu, K., Pei, J.: Fast and quality-guaranteed data streaming in
resource-constrained sensor networks. In: ACM Symp. on Mobile ad hoc network-
ing and computing, pp. 391–400 (2008)

13. Johnen, C., Nguyen, L.H.: Self-stabilizing weight-based clustering algorithm for
ad hoc sensor networks. In: Workshop on Algorithmic Aspects of Wireless Sensor
Networks (AlgoSensors), pp. 83–94 (2006)

14. Nikoletseas, S., Spirakis, P.G.: Efficient sensor network design for continuous mon-
itoring of moving objects. Theoretical Computer Science 402(1), 56–66 (2008)

15. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Dissemination of compressed his-
torical information in sensor networks. VLDB Journal 16(4), 439–461 (2007)

16. Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained
devices in delay tolerant networks. In: SENSYS (November 2006)

http://owlproject.media.mit.edu/

202 S.A. Friedler and D.M. Mount

17. Guibas, L.J.: Sensing, tracking and reasoning with relations. IEEE Signal Process-
ing Mag. 19(2) (March 2002)

18. Guitton, A., Trigoni, N., Helmer, S.: Fault-tolerant compression algorithms for
sensor networks with unreliable links. Technical Report BBKCS-08-01, Birkbeck,
University of London (2008)

19. Gupta, P., Janardan, R., Smid, M.: Fast algorithms for collision and proximity
problems involving moving geometric objects. Comput. Geom. Theory Appl. 6,
371–391 (1996)

20. Atallah, M.J.: Some dynamic computational geometry poblems. Comput. Math.
Appl. 11(12), 1171–1181 (1985)

21. Schomer, E., Theil, C.: Efficient collision detection for moving polyhedra. In: Proc.
11th Annu. ACM Sympos. Comput. Geom., pp. 51–60 (1995)

22. Schomer, E., Theil, C.: Subquadratic algorithms for the general collision detection
problem. In: European Workshop Comput. Geom., pp. 95–101 (1996)

23. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In:
SODA (1997)

24. Kahan, S.: A model for data in motion. In: STOC 1991: Proc. of the 23rd ACM
Symp. on Theory of Computing, pp. 265–277 (1991)

25. Agarwal, P.K., Guibas, L.J., Edelsbrunner, H., Erickson, J., Isard, M., Har-Peled,
S., Hershberger, J., Jensen, C., Kavraki, L., Koehl, P., Lin, M., Manocha, D.,
Metaxas, D., Mirtich, B., Mount, D.M., Muthukrishnan, S., Pai, D., Sacks, E.,
Snoeyink, J., Suri, S., Wolefson, O.: Algorithmic issues in modeling motion. ACM
Computing Surveys 34, 550–572 (2002)

26. Guibas, L.: Kinetic data structures. In: Mehta, D., Sahni, S. (eds.) Handbook of
Data Structures and App., pp. 23–1–23–18. Chapman and Hall/CRC (2004)

27. Babcock, B., Olston, C.: Distributed top-k monitoring. In: SIGMOD, pp. 28–39
(2003)

28. Yi, K., Zhang, Q.: Multi-dimensional online tracking. In: SODA (2009)
29. Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y.: A compu-

tational framework for incremental motion. In: Proc. 20th Annu. ACM Sympos.
Comput. Geom., pp. 200–209 (2004)

30. Gandhi, S., Kumar, R., Suri, S.: Target counting under minimal sensing: Complex-
ity and approximations. In: Workshop on Algorithmic Aspects of Wireless Sensor
Networks (AlgoSensors), pp. 30–42 (2008)

31. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-
nical Journal 27, 379–423, 623–656 (1948)

32. Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for proximity
search. In: SODA (2004)

33. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-IEEE
(2006)

34. Friedler, S.A., Mount, D.M.: Compressing kinetic data from sensor networks. Tech-
nical Report CS-TR-4941, UMIACS-TR-2009-10, University of Maryland, College
Park (2009)

35. Wyner, A.D., Ziv, J.: The sliding-window lempel-ziv algorithm is asymptotically
optimal. In: Proceedings of the IEEE, June 1994, pp. 872–877 (1994)

36. Wren, C.R., Ivanov, Y.A., Leigh, D., Westbues, J.: The MERL motion detector
dataset: 2007 workshop on massive datasets. Technical Report TR2007-069, Mit-
subishi Electric Research Laboratories, Cambridge, MA, USA (August 2007)

	Compressing Kinetic Data from Sensor Networks
	Introduction
	Data Framework
	Compression Results
	Partitioning Lemma
	Compression Theorem

	Locality Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

