Computer-Aided Design 44 (2012) 1235-1252

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Optimal uniformly monotone partitioning of polygons with holes

Xiangzhi Wei?, Ajay Joneja®*, David M. Mount®

2 Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
b Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA

ARTICLE INFO ABSTRACT

Article history:
Received 15 November 2011
Accepted 11 June 2012

Polygon partitioning is an important problem in computational geometry with a long history. In this
paper we consider the problem of partitioning a polygon with holes into a minimum number of uniformly
monotone components allowing arbitrary Steiner points. We call this the MUMC problem. We show that,
given a polygon with n vertices and h holes and a scan direction, the MUMC problem relative to this
direction can be solved in time O(n log n+ h log® h). Our algorithm produces a compressed representation
of the subdivision of size O(n), from which it is possible to extract either the entire decomposition or just
the boundary of any desired component, in time proportional to the output size. When the scan direction
is not given, the problem can be solved in time O(K (nlogn + hlog? h)), where K is the number of edges
in the polygon’s visibility graph. Our approach is quite different from existing algorithms for monotone
decomposition. We show that in O(n log n) time the problem can be reduced to the problem of computing
a maximum flow in a planar network of size O(h) with multiple sources and multiple sinks. The problem
is then solved by applying any standard network flow algorithm to the resulting network. We also present

Keywords:

Polygon subdivision

Uniformly monotone subdivision
Simple polygons

Network flow

Planar graphs

a practical heuristic for reducing the number of Steiner points.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Subdividing a polygon into simpler polygonal components is a
fundamental problem in computational geometry. Given a simple
n-vertex polygon in the plane, the abstract problem is to subdivide
the polygon’s interior into a collection of components of a certain
type. Perhaps the simplest example is polygon triangulation [1,2],
which involves subdividing the polygon into triangles. Other
examples include subdivisions into trapezoids [1,3] and convex
polygons [4]. Even for components of a given type, there may
be variations in the problem’s formulation. For example, in some
cases, the polygon may contain holes (that is, its boundary need not
be simply connected), and sometimes additional vertices, called
Steiner points, may be added as part of the decomposition. When
Steiner points are allowed, there are two variants, boundary Steiner
points, which may be added only along the polygon’s boundary
(meaning that the subdivision is formed by adding chords joining
two points on the polygon’s boundary) and arbitrary Steiner points,
which may be placed anywhere. An excellent survey of the area can
be found in [5].

Our focus will be on subdivisions that are called uniformly
monotone. A polygonal chain is monotone with respect to a given
direction, called the scan direction, if any line perpendicular to that

* Corresponding author.
E-mail addresses: xzwei@ust.hk (X. Wei), joneja@ust.hk (A. Joneja),
mount@cs.umd.edu (D.M. Mount).

0010-4485/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.06.005

direction intersects the chain in at most one point. A polygon is
monotone with respect the scan direction if any line perpendicular
to the scan direction intersects the polygon in at most one segment.
A subdivision is monotone if each of its faces is a monotone
polygon (possibly with respect to different scan directions). Such
a subdivision is uniformly monotone if all of its components are
monotone with respect to a common scan direction. (Formal
definitions will be given in Section 2.) We consider the problem
of decomposing a simple polygon into a minimum number of
uniformly monotone components. We refer to this as the MUMC
problem (minimum uniformly-monotone components). In our
formulation the input polygon may contain holes, and we assume
that (arbitrary) Steiner points are allowed. Uniformly monotone
subdivisions are useful in a number of practical applications,
including path planning [6] and in designing VLSI layouts [7].

The problem of monotone subdivision of polygonal objects has
been well studied. If minimizing the number of components is
not essential, it is known that in O(nlogn) time it is possible to
decompose a polygon with holes into O(n) uniformly monotone
components without the need for Steiner points [8,9]. For the
problem of minimizing the number of components, the complexity
depends on whether holes are present, Steiner points are
allowed, and whether the subdivision is required to be uniformly
monotone. For the case of Steiner-free, nonuniform monotone
decompositions, Keil [10] presented an O(Rn*) time algorithm for
the hole-free case, where R is the number of reflex vertices (that is,
vertices whose interior angle exceeds). He also showed that the
problem is NP-hard if the polygon has holes.

http://dx.doi.org/10.1016/j.cad.2012.06.005
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:xzwei@ust.hk
mailto:joneja@ust.hk
mailto:mount@cs.umd.edu
http://dx.doi.org/10.1016/j.cad.2012.06.005

1236

Table 1
Known results on subdividing polygon into monotone components.

X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

Monotone subdivision No Steiner points

With Steiner points

General Uniform General Uniform
Polygon w/o Holes O(Rn*) [10] 0((nlogn)R? 4+ nR> + R%) [11] Unknown O((nlogmR® + R°) [11]
Polygon w/ Holes NP-hard [10] NP-hard (see above) Unknown O(nlogn + hlog® h) (ours)

Liu and Ntafos [11] considered the MUMC problem for simple
polygons without holes. They showed that, given the scan
direction, it is possible to solve the Steiner-free MUMC problem in
O(nlogn + nR + R3) time. Their approach was to reduce MUMC
to the problem of computing a maximum set of independent
chords in a circle graph, where each node of the graph is a scan
reflex vertex of the polygon and each chord is a visibility edge
connecting a pair of such vertices (see Section 2 for definitions).
However, this approach is not feasible for a polygon with holes,
since the computation of a maximum set of independent chords
is equivalent to computing a maximum independent set in an
undirected graph, which is NP-hard [11,12].

They also presented an O((nlogn)R + R?) time algorithm for
the variant where boundary Steiner points are allowed. These al-
gorithms can be adapted to find the minimum decomposition over
arbitrary directions by testing a finite number of judiciously cho-
sen reference directions. Preparata and Supowit [13] showed that
O(R) reference directions suffice to determine the monotonicity of
a polygon with respect to arbitrary directions. Based on this, Liu
and Ntafos [11] showed that no more than O(R?) scan directions
need to be considered for solving MUMC over all possible direc-
tions. This implies that the MUMC problem for polygons without
holes can be solved in time O((n log n)R*+nR>+R>) for the Steiner-
free case and in time O((nlog n)R3 + R°) for the case of boundary
Steiner points.

In spite of these results, which are over twenty years old, it is
remarkable that the computational complexity of MUMC has not
been resolved for polygons with holes when Steiner points are
allowed. In this paper we show that, given a polygon with n total
vertices and h holes and a scan direction, the MUMC problem for
arbitrary Steiner points is solvable in O(nlogn + hlog®h) time.
Because the number of Steiner points in an optimal solution may
be as high as £2(nR), this algorithm may actually run faster than
the output size. This is possible because our algorithm produces a
compressed representation of the subdivision of size O(n). From
this representation, it is possible to extract the decomposition in
time proportional to its total size. The following table summarizes
the current best known results, including our results presented in
this paper (see Table 1).

As with Liu and Ntafos, our algorithm assumes that the scan
direction is given. To solve the general MUMC problem, we apply
a result of Arkin et al. [14], which shows that it suffices to test
O(K) reference directions, where K is the number of edges of the
polygon’s visibility graph. This implies that the general problem
can be solved in time O(K (nlogn + hlog? h)). These results are
presented formally in Theorem 2 of Section 5.4.

Our computational approach is quite different from that of Liu
and Ntafos, which is based on dynamic programming. Instead, we
show that in O(nlogn) time the MUMC problem can be reduced
to the problem of computing a maximum flow in a planar network
with multiple sources and multiple sinks, such that the numbers
of vertices and edges in this network are both O(h). The result,
which may be of independent interest, is presented in Theorem 1
of Section 5.4. The problem is then solved by applying a network
flow algorithm to the resulting network. In particular, we apply the
network flow algorithm of Borradaile et al. [15].

The rest of the paper is organized as follows. In the next section,
we present definitions and preliminary observations.

In Section 3, we show that the notion of independent chords in
[11] can be extended by generalizing chords into polygonal paths
cutting through the polygon. This allows us to reduce MUMC to
the problem of computing a maximum matching in an appropriate
bipartite graph. In Section 4 we extend this result by presenting a
reduction from MUMC to computing maximum flows in a sparse
network of size O(n). The network is essentially the dual graph of
a modified trapezoidal map of the the polygon. In Section 5 we
show how to reduce the size of the network to O(h). Although
our algorithm minimizes the number of components, we make
no effort to minimize the number of Steiner points. In Section 6
we present a discussion of a practical approach for reducing the
number of Steiner points.

2. Preliminaries

We begin by defining some standard terms. A simple polygon
is the region bounded by a simple, closed polygonal chain. We
allow the polygon to contain disjoint holes in its interior, each of
which is a simple polygon. A scan direction is a unit vector in the
plane, and a line perpendicular to the scan direction is called a
scan line. Given a scan direction, a simple polygon is monotone with
respect to this direction if any scan line intersects the polygon in
at most one line segment. Although our algorithms can be applied
to arbitrary scan directions (by the same methods used by Liu
and Ntafos [11]), it will simplify the presentation to assume that,
through an infinitesimal perturbation, the orthogonal projections
of the vertices along the scan direction are distinct.

For the sake of illustration, we shall assume throughout the
paper that the scan direction is parallel to the positive x-axis, and
hence scan lines are parallel to the y-axis. A vertex of a polygon is
reflex if its interior angle is greater than ir. A scan-reflex vertex (SRV)
is areflex vertex both of whose incident edges lie on the same side
of a scan line passing through the vertex. It is well known that a
polygon is monotone with respect to the scan direction if and only
if it has no SRVs [3,9]. Using the terminology of 3], if both incident
edges of an SRV are to the left of this scan line, it is called a merge
SRV, and if both are to the right of the scan line, it is called a split
SRV. (These vertices are highlighted with small triangles in Fig. 1.)
Throughout, R denotes the total number of reflex vertices, and r
denotes the total number of SRVs.

Given a simple polygon, an internal monotone chain (or simply
monotone chain) is an x-monotone polygonal chain that lies
entirely within the interior of the polygon, with the possible
exception of its endpoints. Two monotone chains are independent
if they do not intersect, except possibly at their endpoints. It is
not hard to show (see [3]) that an x-monotone subdivision can be
induced by the addition of a collection of independent monotone
chains, such that each merge SRV is the left endpoint of some
chain, and each split SRV is the right endpoint of some chain.
(Fig. 1(b) and (c) show two x-monotone subdivisions, with and
without Steiner points, respectively.) A monotone chain that starts
at a merge SRV or ends at a split SRV is said to eliminate this
vertex. From the above discussion, we can view the monotone
decomposition process as one of computing a collection of pairwise
independent monotone chains in order to eliminate all the SRVs
of the polygon. We call such a set an independent eliminating
set. The following two lemmas show that it suffices to consider
subdivisions induced in this manner.

X. Wei et al. | Computer-Aided Design 44 (2012) 1235-1252 1237

a Merge SRV b
Split SRV

C

Steiner point

Steiner point

Fig. 1. Terminology: (a) a polygon with one hole, (b) a Steiner-free x-monotone subdivision with eight components, (c) an x-monotone subdivision (with both boundary

and arbitrary Steiner points) with seven components.

Fig. 2. Eliminating sets: (a) an x-monotone subdivision of a polygon with one hole with seven components, which is generated by an independent eliminating set of size
seven, (b) a component (hatched) whose rightmost endpoint is not on P’s boundary, (c) extending the endpoint to P’s boundary.

Fig. 3. Configurations of internal monotone chains that cannot occur in a minimal x-monotone subdivision: (a) neither of the endpoints of the dotted chain are SRVs, (b) two
eliminating chains with a common endpoint and the other two endpoints are not SRVs, (c) two eliminating chains with a common endpoint and the other two endpoints
are incident at the same SRV, (d) two eliminating chains with a common endpoint and one of the other two endpoints is an SRV while the other is not.

Lemma 1. Let P be a polygon with h holes. Any x-monotone subdivi-
sion of P induced by an independent eliminating set of sizek + h — 1
has exactly k components.

Proof. We establish the relationship between the number of
components and the size of the eliminating set. The boundary
of P has h + 1 loops (one for P’s outer boundary and one for
each hole). Consider an independent eliminating set of some size
c. Each time we add a chain from the eliminating set, we either
create a connection between two disconnected boundary loops
(and thus decrease the number of boundary loops by one), or
we join two points on the same boundary loop (which induces a
split in the monotone subdivision). Since exactly h chains result
in the merging of boundary loops, the remaining ¢ — h chains
cause monotone components to be split. Because we start with
one component (the interior of P), the final number of monotone
components is ¢ — h + 1. Since c = k + h — 1, the number of
components in the subdivisionisequalto (k+h—1)—h+1 =k,
asdesired. O

Lemma 2. Let P be a polygon with h holes. If P has a minimal x-
monotone subdivision with k components, then there exists an x-
monotone subdivision of P with k components that is formed by an
independent eliminating set of size k + h — 1. Furthermore, if any pair
of eliminating chains of this set share a common endpoint, then their
other two endpoints are distinct SRVs.

Proof. Consider any minimal x-monotone subdivision. If this
subdivision is formed from an independent eliminating set, then
(by independence) the leftmost and rightmost vertices of each
component both lie on the boundary of P. (These vertices are
indicated by arrows in Fig. 2(a).)

Suppose that there is some component whose leftmost or
rightmost vertex v does not lie on P’s boundary (see the hatched

polygon in Fig. 2(b)). For concreteness, let us assume that it is a
rightmost vertex. (The other case is symmetrical.) Clearly, there
exists an x-monotone path on the boundary of the subdivision
emanating to the right of v that ends at a point w on P’s boundary.
As if ripping open a seam, we can split this path into two paths
by duplicating each vertex on this path, excluding w, one slightly
above the other (see Fig. 2(c)). Now the component’s rightmost
vertex is w, which lies on P’s boundary. The number of components
has not changed. By repeating this process, eventually the leftmost
and rightmost vertices of all the components will lie on P’s
boundary.

We assert that the resulting subdivision is generated by an
independent eliminating set. By walking from the leftmost vertex
to the rightmost vertex along the top boundary of each component
of the subdivision and removing the portions that are part of
P’s boundary, the result is a collection of x-monotone chains
joining two boundary points. By our seam ripping, these chains
are mutually independent. We need to show that each such chain
either starts or ends at an SRV, i.e,, it is an eliminating chain.

Suppose that this is not true and there exists a chain such that
neither of its endpoints are SRVSs, e.g., the dotted x-monotone chain
in Fig. 3(a). Removing this chain will result in the union of the
two x-monotone components sharing this chain as their common
boundary. Clearly this union is an x-monotone component. But
this reduces the total number of x-monotone components in the
subdivision by one, contradicting our assumption that the original
subdivision is minimal.

Next we show that if any pair of eliminating chains share a
common endpoint, then their other two endpoints are distinct
SRVs. Clearly, if the common endpoint is not an SRV, then the
other two endpoints must be distinct SRVs, since each eliminating
chain is incident to an SRV by definition. The other possibilities are
shown in Fig. 3(b)-(d). In each of these cases, we can remove the

1238 X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

a

Fig. 4. Producing a monotone subdivision from a matching in F: (a) the initial set of five FEPS, (b) adding Steiner points and untwisting, (c) adding PEPs to complete the

subdivision.

dotted eliminating chain and reduce the number of components by
one, contradicting our assumption that the subdivision is minimal.

Let ¢ be the size of the resulting independent eliminating set. By
Lemma 1, the number of monotone componentsk =c — h + 1.1t
follows thatc = k 4+ h — 1,as desired. O

3. Minimum subdivisions and maximum matchings

In this section we demonstrate a connection between comput-
ing a minimum uniformly monotone subdivision of the polygon P
and computing the maximum matching of a graph that encodes
the monotone path structure within P. We have seen in Lemma 1
that it suffices to consider only subdivisions induced by indepen-
dent eliminating sets. Each monotone chain appearing in such a
set can eliminate at most two SRVs (one at each end). It follows
directly that the number of chains needed in any optimal indepen-
dent eliminating set is at least as large as the maximum of the num-
ber of merge SRVs and split SRVs, and it is not greater than their
sum. Intuitively, it is clear that monotone chains that eliminate two
SRVs are preferred over those that eliminate only one.

To make this intuition more formal, we define a full eliminating
path (FEP) to be a monotone chain that starts at a merge vertex
and ends at a split vertex, and we define a partial eliminating path
(PEP) to be one that either starts at an SRV or ends at one, but not
both. (The non-SRV end of a PEP may lie either on P’s boundary or
on another eliminating path.) Our approach is to define a bipartite
graph F = (Vy, V5, E) that concisely encodes all the FEPs that
might be used by the subdivision algorithm. The nodes of Vy
correspond to the merge SRVs, the nodes of Vs correspond to the
split SRVs, and the edges E C V), x Vs consist of pairs (u, v) such
that there exists an x-monotone chain from u to v in P.

Recall from graph theory that a matching in a graph G = (V, E)
is a subset M C E such that each vertex is incident to at most one
edge of M [12]. Intuitively, in order to construct an independent
eliminating set of minimum size, each chain of the set should
eliminate one new merge SRV and one new split SRV. Such a set of
FEPs would naturally correspond to a matching in F. We make this
intuition more formal by showing that the MUMC problem (with
arbitrary Steiner points) can be reduced to computing a maximum
matching in F.

Lemma 3. Consider a polygon P with h holes and r SRVs. If the size of
a maximum matching in the bipartite graph F is m, then the size of a
minimal x-monotone subdivisionis (r —h + 1) — m.

Proof. We first show how to construct a set of independent
eliminating chains from a maximum matching in F. Let M be
a maximum matching in F, and let m = |M|. Each edge of M
corresponds to an FEP, but they need not be independent (see
Fig. 4(a)). First, consider the subdivision induced by these FEPs, and
let us assume (by a suitable perturbation) that whenever two such
FEPs intersect, they do so transversally, that is, by crossing each
other locally at a single point. For each such intersection point, we

add two Steiner points and then perturb and untwist the paths so
they do not intersect at this point (see Fig. 4(b)).

The resulting FEPs are pairwise independent. To complete the
monotone subdivision, each unmatched SRV is eliminated through
the addition of a PEP connecting it to any appropriate point on the
boundary of P (see Fig. 4(c)). Clearly, this independent eliminating
set satisfies the condition of Lemma 2. Therefore, this independent
eliminating set is sufficient for the construction of a minimal
x-monotone subdivision.

Next we show that the size of the x-monotone subdivision
induced by this independent eliminating set is minimum. Recall
that r denotes the total number of SRVs in P. The resulting
independent eliminating set consists of m FEPs, which together
eliminate 2m SRVs, and r — 2m PEPs to eliminate the remaining
SRVs. So it contains m + (r — 2m) = r — m chains. Conversely, if P
has an independent eliminating set of size r — m, then, in order to
cover all r SRVs, m of these chains must be FEPs and the remaining
r — 2m are PEPs.

In summary, P has an independent eliminating set of size r —m
if and only if F has a matching of size m. By Lemma 1, P has an
x-monotone subdivision with k = r — m — h + 1 components.
Since r — h+ 1 is constant for any given P, and therefore a minimal
x-monotone subdivision of P has k components. 0O

The above lemma suggests a method for generating a minimal
x-monotone subdivision. In practice, in generating each PEP, it is
sufficient to use a line segment joining the corresponding SRV to
any appropriate point either on the boundary of P or in the interior
of any FEP (an example is shown later in Fig. 6(c)). We will not
bother to discuss the implementation, since in the next section we
will present a considerably more efficient approach.

4. Efficient construction by maximum flow

In this section and the next we present an alternate approach
for solving the MUMC problem that is considerably more efficient
than the approach described in the previous section. Rather
than reducing the problem to computing a maximum matching
in a potentially dense bipartite graph, we reduce the problem
to computing a maximum flow in a sparse, planar graph.
This approach has the nice feature that it provides a concise
representation of the subdivision of size O(n). The results of the
previous section will be useful in establishing the optimality of this
reduction.

We begin by adapting some terminology from the theory of
network flows [12]. For our purposes, a multi-supply, multi-demand
network Gis a directed graph that has three types of nodes: supplies,
demands (which together are called terminals), and nonterminal
nodes. (Supplies and demands are more commonly called sources
and sinks, respectively.) Each terminal node is incident to a single
edge. For supplies, this edge exits the node, and for demands it
enters the node. Each supply and demand node is associated with
a finite nonnegative integer value called its capacity. Nonterminal
nodes have effectively infinite capacity. Such a network is planar if

X. Wei et al. | Computer-Aided Design 44 (2012) 1235-1252 1239

Fig. 5. Flow-based solution: (a) pseudo-trapezoidal map and (b) the associated flow network G.

the underlying directed graph is planar. A flow in such a network
is a function f that maps each edge to a nonnegative real number,
satisfying the following two requirements:

Capacity constraint: The flow on the edge incident to each
terminal does not exceed its capacity.

Flow balance: For each nonterminal node, the sum of flows
entering the node equals the sum of flows exiting the
node.

The total value of the flow, denoted |f|, is the sum of the flows
leaving the supply nodes (which, by flow balance, is equal to the
sum of flows entering the demand nodes). The max-flow problem
is that of computing a flow of maximum value in G. Because the
capacities in our network are integers, it is well known that there
exists a maximum flow such that the flow along each edge is an
integer [12].

The first step of the reduction of MUMC to a flow problem
involves computing a variant of a well known structure, called the
pseudo-trapezoidal map of P. Given a simple polygon P, possibly
with holes, the (standard) trapezoidal map is defined as follows.
For each vertex of P, shoot a vertical bullet path from this vertex
into the interior of P until it hits the boundary of P. Each SRV
generates two bullet paths, one shot up and one down. For our
purposes, it suffices to shoot bullet paths only from the reflex
vertices (both SRV and non-SRV). These bullet paths subdivide P
into a collection convex polygons, called pseudo-trapezoids (see
Fig. 5(a)). The vertical segment separating two adjacent pseudo-
trapezoids is called a wall. Because the number of walls is O(R), it
follows that the number of pseudo-trapezoids is O(R). The pseudo-
trapezoidal map can be constructed in O(n log n) time by a simple
adaptation of the plane sweep algorithm given in [3].

Given the pseudo-trapezoidal map, we define a planar multi-
supply, multi-demand network G as follows. There is one node of
G for each pseudo-trapezoid and one node for each SRV (these are
indicated by circles and triangles, respectively, in Fig. 5(b)). The
merge SRV nodes are the supplies, the split SRV nodes are the
demands, and the pseudo-trapezoid nodes are the nonterminals.
The edges of G are directed and are of two types. First, for each
pair of pseudo-trapezoids that share a common vertical wall, there
is an edge directed from the one on the left to the one on the
right. Second, each node associated with a merge (resp., split) SRV
is joined to the node associated with the pseudo-trapezoid to its
immediate right (resp., left). These SRV-trapezoid edges are also
directed from left to right. We associate capacities with each of
the nodes as follows. Each supply or demand node is assigned a
capacity of one, and all the other (trapezoid) nodes are assigned a
capacity of oo. (In fact, a capacity of r is sufficient.) Observe that
G is an acyclic, directed planar graph. The time to compute G is
dominated by the time to compute the pseudo-trapezoidal map,
which is O(n logn) [3].

Due to the unit capacities assigned to the nodes associated with
each SRV vertex, each merge SRV can generate up to one unit
of flow and each split SRV can receive up to one unit of flow.
Intuitively, a collection of FEPs corresponds to a collection of paths

in G, each starting at a merge SRV and ending at a split SRV. Such
a collection of paths corresponds to an integer-valued flow in G,
where the flow on each edge is the number of FEPs passing through
the corresponding wall of the pseudo-trapezoidal map. This is
made formal in the following lemma.

Lemma 4. Given an n-vertex polygon P with holes, in O(n log n) time
it is possible to compute a network G with O(n) nodes and edges, such
that there exists a matching in F of size m if and only if there exists
flow in G of value m.

Proof. The time to compute G and its size were discussed earlier.
To relate the sizes of the maximum matching and maximum flow,
observe that each FEP starts at some merge SRV of P, passes
through some sequence of walls of the pseudo-trapezoidal map
from left to right, and terminates at some split SRV. Therefore, each
FEP corresponds to a path from a supply node to a demand node
in G. A matching of size m in F corresponds to a collection of m
such paths, with at most one path emanating from each merge SRV
and at most one terminating at each split SRV. Thus, if we were to
generate one unit of flow along each path of G corresponding to
each monotone chain of the matching, we produce a flow of value
minG.

Conversely, let m be the maximum flow in G. As mentioned
earlier, because the capacities are integers, the flow along each
edge may be assumed to be an integer. By flow decomposition [16]
any such flow of value m can be mapped to a set of m distinct paths,
by peeling off one unit of flow along each supply-to-demand path
that carries positive flow [12]. By our capacity constraints, there
can be at most one path incident to any supply node and to any
demand node. Therefore, the set of edges of F associated with these
paths defines a matching in F, which completes the proof. O

By combining Lemmas 3 and 4, it follows that the MUMC
problem can be reduced to computing a maximum flow in G. In
the next section we present an efficient algorithm for doing this.

For the rest of this section we consider how, given a flow in
G, to extract an independent eliminating set for P, where the
number of FEPs in the eliminating set is equal to the flow value.
Let m denote this flow value. The process involves two steps:
first, computing the m FEPs of the eliminating set, which together
eliminate 2m of the SRVs, and second, adding r — 2m PEPs to
eliminate the remaining SRVSs. For the first step, suppose that we
have already computed the maximum flow in G (see Fig. 6(a)). As
mentioned above, the flow along each edge may be assumed to be
a nonnegative integer.

Consider any pseudo-trapezoid t of the map. The merge ver-
tices (respectively, split vertices) separate the left (respectively,
right) wall into one or more vertical segments. Each segment is as-
sociated with an edge e of G. Let f, denote the flow on this edge.
For each such segment, we create f, Steiner points, called portals,
spaced uniformly along this segment (see Fig. 6(b)). If this pseudo-
trapezoid has a merge SRV incident to its left side, and the edge of
G joining this merge SRV with 7 carries a positive flow (which must
be 1, because this is the node’s capacity) a portal is created at this

1240 X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

C Added as a PEP

Fig. 6. Mapping a flow to a monotone subdivision: (a) a flow in G, (b) mapping of flows to portals and paths, (c) the final set of paths. (One PEP has been added at the end

of the process.)

Fig.7. Anexample showing that §2(rR) Steiner points may be needed for a solution
to MUMC (assuming a horizontal scan direction).

SRV. The same is done for any split SRV incident to the right side of
7 that receives positive flow. It follows easily by flow balance that
7 has an equal number of portals on each side. To form the final set
of FEPs, an edge is generated from the ith portal on the left side of
to the ith portal on the right. By convexity of the pseudo-trapezoids
and the fact that we join corresponding portals on the left and
right, all such edges lie within t’s interior and are pairwise disjoint
(see Fig. 6(b)). By concatenating the resulting edges into paths, we
obtain the desired set of m independent FEPs (see Fig. 6(c)).

To complete the construction, for each node v associated with
a merge SRV that carries no flow (that is, one that has not been
eliminated by one of the FEPs), let t be the pseudo-trapezoid to its
right. Observe that the right side of ¢ must contain either a portal
or a vertex of P that is visible to this SRV (that is, the interior of the
line segment joining v to this point does not intersect the boundary
of P nor any FEP). A PEP is generated by adding a line segment
joining v to any such visible portal or vertex of P (see Fig. 6(c)).
A symmetrical process is performed for each split SRV that carries
no flow. The resulting set of paths defines the desired solution to
the MUMC problem.

Assuming that the flow is given, the time spent in the above
construction is proportional to the sum over all the pseudo-
trapezoids of the map of the flow passing through this trapezoid.
As mentioned earlier, the map has O(R) pseudo-trapezoids, and the
maximum flow through each pseudo-trapezoid is O(r). Therefore
the total time for the construction is O(rR). This also bounds the
total number of Steiner points in the final monotone subdivision
(Fig. 7 presents an example showing that this bound is tight.
Later in Section 6, we will present a heuristic approach for further
reducing the number of Steiner points).

The combinatorial complexity of the resulting subdivision could
be as large as O(n+rR) = O(n+R?). We show next that it is possible
to encode this subdivision much more concisely.

Lemma 5. Given an n-vertex polygon P with holes and given a flow
f in the associated network G, there exists a data structure of size
0(n) from which it is possible to obtain any desired component of the
associated x-monotone subdivision of P in time proportional to the
size of the component.

Proof. The data structure consists of the original polygon P and
its pseudo-trapezoidal map, which are stored in a manner that
permits local traversals of the pseudo-trapezoids of the map. Such
data structures of size O(n) are well known (for example, the

double-connected edge list [3]). For each segment of the pseudo-
trapezoidal map, we store the flow value of the associated edge of
G (that is, the number of portals along the segment). We explicitly
store all the PEP’s. Since each PEP consists of a single edge that
intersects a single pseudo-trapezoid, they can all be stored in space
O(r). The total size of this data structure is clearly O(n).

Given this representation, the monotone chain of the indepen-
dent eliminating set that emanates from any single SRV can be con-
structed as follows. Let us assume that this is a merge SRV, since
the split case is symmetrical. First, if the SRV carries no flow, then
the PEP associated with the SRV is output. Otherwise, each edge
of the FEP is constructed by walking the chain through the map as
follows. Since this is a merge SRV that carries flow, it contributes
a portal to the left wall of some pseudo-trapezoid. The chain be-
gins at this portal. Once the index of the portal on the left wall is
known, in O(1) time we determine the portal of this same index
on the right wall, and then connect them by a line segment. We
continue in this manner until arriving at the split SRV at the end of
the chain. It follows that the time to output the entire chain is pro-
portional to its size. Given this, it follows that we can traverse the
boundary of any component in time proportional to its size. O

5. Efficiently computing the maximum flow

In the previous section we showed how to reduce the MUMC
problem to computing a maximum flow in a directed planar net-
work, G, where the network is derived from the pseudo-trapezoidal
map of P. The network’s size is proportional to R, the number of
reflex vertices in P. In this section, we show that, through a col-
lapsing process, it is possible to reduce this flow problem to one
involving a planar network whose size is proportional the num-
ber of holes of P. Since the time needed to compute a maximum
flow is superlinear in the size of the network, this can result in a
significantly more efficient solution if the number of holes h of P
is small relative to the number of reflex vertices R. (Note that the
number of holes is never more than half the number of reflex ver-
tices. This follows directly from the fact that each hole has at least
two SRVs, corresponding to the leftmost and rightmost vertices of
the hole.)

The process involves collapsing two types of substructures
in the network and replacing each such substructure with an
appropriate flow-equivalent structure of constant size. The first
type of substructure, which is discussed in Section 5.1, is tree-like.
We show that each of these structures can be modeled as a single
node that is a net supplier or net demander of flow. The second
type, discussed in Sections 5.2 and 5.3, is path-like. We shall see
that each of these structures can be replaced by a chain of nodes of
constant size. We will show that, after collapsing these two types of
substructures, the resulting network has the same flow properties
as the original network, subject to a fixed correction term. The total
size of the collapsed network will be O(h), and the maximum flow
algorithm will then be applied to this collapsed network.

X. Wei et al. | Computer-Aided Design 44 (2012) 1235-1252 1241

5.1. Collapsing subtrees

As mentioned above, the first part of the collapsing process is
applied to substructures of the network that are tree-like in nature.
We define these structures through an edge-marking procedure. In
order to define this procedure, it will be convenient to ignore the
directions on the edges of G, and treat G as an undirected graph.
First, for each node of G of degree one, we mark its incident edge.
Next, for each node u of G that has the property that all but one of its
incident edges is marked, we mark u and this remaining edge. We
refer to this last edge as u’s exit edge. This procedure is repeated
until no more edges are marked. (Fig. 8(a) shows the polygon
P, the pseudo-trapezoidal map, and the (undirected) network G.
Fig. 8(b) shows the network after the marking procedure with
marked edges shown as solid lines and unmarked edges as broken
lines.)

It is easy to see that, on termination of the marking procedure,
there exists a (possibly empty) subset of the nodes X of G each of
which is incident to two or more unmarked edges. Call these the
unmarked nodes (shown as hollow points in Fig. 8(b)). It is also easy
to see that any simple path in the network between two unmarked
nodes consists entirely of unmarked edges (since any path formed
by taking a marked edge from an unmarked node can lead only
to marked nodes and marked edges). For each u € X, define T,
to be the substructure of G consisting of all the nodes reachable
from u by marked edges (shown in shaded regions of Fig. 8(b)). By
the above observation, these substructures are disjoint from each
other. Furthermore, each substructure is tree-like, where each exit
edge connects a node to its parent. Clearly, u is the root of T,. (If
there are no holes in the polygon, then the dual graph is already a
tree. In this case, we take u to be the last node to be marked, and
T, is the entire network.)

As we shall see, in addition to producing a certain amount of
internal flow, each tree-like substructure can be modeled either
as a net supplier or net demander of flow. The collapsing process
will replace each substructure by either a single supply node or
a single demand node, respectively. The capacity of this node is
equal to the net flow supplied or consumed by the substructure.
The computation of both the internal flow and net flow for any
substructure is presented in Algorithm 1. The algorithm works
recursively, propagating flow supply or demand to higher levels
of the substructure along the exit edges.

The algorithm works by associating two quantities with each
node u of the substructure. The first is the net flow supplied
by u, denoted N,, and the second is the internal flow generated
within the substructure rooted at u, denoted I,. The algorithm
is implemented recursively. The initial call is made to the root
of the tree, and recursive calls are made to the node’s children.
Information is passed up along the exit edges.

The pair (Ny, I,;) is computed for each node u as follows. First,
suppose that u is a leaf node, that is, a node of degree one (see
Fig. 9(a)). If u is an SRV, then N, = 1, and otherwise, N, = 0. In
either case, I, = 0. If u is an internal node of the tree, we make a
recursive to call to each of its children. In order to determine the
new internal flow generated at this node, we compute the sum of
the net supply flows entering u from the left, denoted N*, and the
sum of the net demand flows exiting u to the right, denoted N~. We
route min(N~, NT) units of flow through u from the left to right.
This quantity is added to the total internal flow. If u’s exit edge is
directed out of u, then u’s subtree is a net supplier of the remaining
max(0, N*T —N7™) units of flow (see Fig. 9(b)), and otherwise is a net
demander of max(0, N~ — N7T) units of flow (see Fig. 9(c)). If u is
the root, there is no exit edge. In this case, we return N* —N~ as the
net flow. The sign indicates whether Ty, is a net supply generator or
net demand generator.

An example of the execution of Algorithm 1 is given in Fig. 10(a)
and (b). Fig. 10(b) shows the values (N;, [;) for each node i after the

Algorithm 1: subtree-flow(u), computing the flow within a
tree-like substructure T, of G.
if (u is a leaf) then
if (uis an SRV) then return (1,0); // SRV leaf generates
one unit of flow
else return (0, 0); // non-SRV leaf generates no flow

else
N~ <« Nt «—] «0;
for (each child v of u) do
(Ny, I,) < subtree-flow(v); // recursively compute
subtree flow
if (v’s exit edge enters u from left) then N* < NT + N,;
// increment supply flow
else N~ < N~ +N,; // increment demand flow

I <141, // increment total internal flow
I < I+min(N~,NT); // total internal flow in u’s
subtree
if (u is the root) then return (Nt — N~,I); // return net
flow
else

if (u’s exit edge is directed out of u) then
return (max(0, N* — N7), I);
supply flow

else return (min(0, N~ — NT), I);

demand flow

// return net

// return net

algorithm has terminated. In particular, the values (N, I,;) for node
u are computed from the labels on the children of u; notice that
there is a net immediate demand of one unit, which can consume
a supply of one unit out of the three units incoming (one unit from
each child on its left). Therefore N, = 2. The total internal flow
consumed by its descendants to the left is two; adding this to the
one unit consumed immediately at this node gives I, = 3.

The collapsing process works by invoking Algorithm 1 on each
of the root nodes u of the maximal substructures T,. On return,
I, equals the total internal flow within T, (shown as heavy solid
lines in Fig. 10(c)). If N, = 0, we collapse T, to the single node u. If
N, > 0,wereplace T, by a single supply node directed into u with a
capacity of N,. (This case is shown in Fig. 10(c) and (d), where there
are two unmatched flows from SRVs shown as hollow triangles.) If
N, < 0, we replace T, by a demand node of capacity —N,, and add
an edge from u to this demand node.

An easy induction proof establishes that the flows generated by
the algorithm are valid. This is formalized in the following lemma.

Lemma 6. Given any node u that is the root of some substructure T,
let (Ny, I,) denote the result returned by Algorithm 1. Then there exists
a flow of total value I, + N, in T, with I, internal units of flow and
N, units of net supply (if N, > 0) or —N,, units of net demand (if
N, <0).

An important feature of the above algorithm is that it greedily
accepts internal flow whenever it is discovered. The following
lemma proves that this strategy is correct in the sense that any
maximal flow in the original network can be modeled in the
collapsed network, and vice versa. Let G be the original network,
and let G’ denote the collapsed network that results by applying
the collapsing procedure to each tree-like substructure of G. Let
be the sum of the internal flows of all the substructures.

Lemma 7. Given a network G and any node u that is the root
of some substructure T, let (Ny, I,) denote the result returned by
Algorithm 1. Let G, denote the network that results by applying the
subtree collapsing process to T,. Given any flow f in G, there exists a
flow in G, of value at least |f| — I,. Conversely, given any flow f’ in
G,, there exists a flow in G of value at least |f'| + I,. This latter flow
can be computed in time proportional to the size of T,.

1242 X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

Fig. 8. Tree-like substructures of the (undirected) network G: (a) original network and (b) the substructures with the marked edges (solid), unmarked edges (broken),
unmarked nodes (hollow), and subtrees T, (shaded). (All edges are directed from left to right.)

+ —
“““ 0 N 9% N
—<€ max(0, Nt — N7)

Fig. 9. The cases arising in the subtree-flow algorithm: (a) nodes of degree one, (b) internal nodes whose exit edge is directed out of u, (¢) internal nodes whose exit edge

is directed into u.

a

Fig. 10. Applying Algorithm 1 to a substructure with root u: (a) the substructure, (b) the (N, I)) values, (c) the edges carrying positive net flow (solid lines), (d) the collapsed

structure. (All edges are directed from left to right.)

Proof. We begin by establishing the lemma’s second assertion.
Consider any flow f’ in G,,. Let s, be the supply or demand node
associated with u as generated by the subtree collapsing process.
Let us assume that s, is a supply node (the demand case is
symmetrical), let N, be its capacity, and let fy denote the flow
assigned by f’ to s,’s incident edge, which we think of as the
net flow leaving the substructure. By flow capacity, fy < N,. By
Lemma 6, there exists a flow in T, with I, units of internal flow
and N, units of net flow through u. If fy < Ny, we systematically
reduce the flow provided by Lemma 6 by repeatedly finding a
flow-carrying path from a merge SRV in T, to u and reducing the
flow along this path by one unit. This is repeated N, — fy times,
until the flow passing through u is equal to fy. The resulting flow
matches the net flow of f’ through u, but has I, additional units
of internal flow. In order to implement this efficiently, rather than
working one path at a time, we process each edge in O(1) time,
by simply reducing the flow on the edge according to the desired
decrease in the number of paths. In this way, the total running time
is proportional to the size of T,.

Next, we establish the lemma’s first assertion. Let f be any
flow in G. Consider any unmarked node u of G, and let T, be
the associated substructure. We can decompose the flow f into
three components, flows internal to T,, flows external to T,, and
the net flow passing through u between T, and the rest of the
network. Let fT+ and f;~ be the sums of flows entering and exiting
u, respectively, from the edges of T,. Let fx+ and f, be the sums of
flows entering and exiting u, respectively, from the other edges of
G (see Fig. 11(a)). By flow balance, f;* + f;" = f;” + f; , and hence,
either ;¥ — f;~ > 0 (there is net flow leaving T,) or f," — fy > 0
(there is net flow entering u). Let us assume the former. (The other
case is symmetrical.)

Define fy to be fTJr — f7 . the net flow leaving T,,. Also, define f;
to be the total internal flow of f within T, which is the sum of the
flows emanating from the merge SRV nodes of T, minus the net

flow fy. (In Fig. 11(b), there are 5 units of flow emanating from the
merge SRVs in T, and fy = 4 units of net flow leaving T,;, so f; = 1.)

The flow generated by our algorithm is maximal in two respects.
First, it maximizes the internal flow I,. This can be seen by the
fact that we generate internal flow greedily whenever possible.
Hence, I, > f;.(Recall from earlier in Fig. 10(d) that I, = 3.) Second,
whatever flow cannot be resolved internally is passed up the tree
whenever possible. Thus, it satisfies the property that, subject to
the constraint of generating the maximum internal flow, it pushes
the maximum residual flow through u. This implies that I, + N, >
fi + fn, or equivalently, (I, — fi) — (fy — Ny) > 0.

Given the flow f in G, we compute a new flow in G of greater
or equal value as follows. First, we replace the flow assigned by
f within T, with the flow described in Lemma 6 (see Fig. 11(c)).
This results in an increase of the internal flow by I, — f;, but may
fail to satisfy flow balance at u. To remedy this, we consider two
cases. In the first case, assume that fy < N, that is, f pushes less
flow through u than our algorithm. We systematically reduce the
flow into u from N, to fy by finding a flow-carrying path from some
merge SRV in T, to u and reducing the flow along this path by one
unit. This is repeated N, — fy times. The resulting flow retains the
I, — f; additional units of internal flow, but now the flow through
u is the same as in f. Because I, > f;, the modified flow value is
IfI4+Iu—fi) = If|, as desired. The flow f’ in G, is defined by pushing
fn units of flow through the supply node adjacent to u (which is
legal, since its capacity is N, > fy).

In the second case, assume that fy > N, that is, f pushes more
flow through u than our algorithm. In this case we systematically
reduce the flow leaving u from fy to N, by finding a path starting
at u that carries f’s flow to some split SRV lying outside of T, and
reducing the flow along this path by one unit (see the upper right
edge in Fig. 11(c) and (d)). This is repeated fy — N,, times. The flow
through u, and hence the total flow value, has now decreased by

X. Wei et al. | Computer-Aided Design 44 (2012) 1235-1252 1243

d Decrease flow

. Violates
flow balance

i [L,=3
N, =2

Fig. 11. Proof of Lemma 8: (a) classification of flows as internal (solid) or external (broken), (b) a sample flow, (c) a modified flow with internal flow I,;, (d) establishing flow
balance. (All edges are directed from left to right, and edges that do not carry flow are shown as dotted lines.)

C

entry edge™™ ¢

Fig. 12. Chains in the flow network: (a) a portion of the pseudo-trapezoidal map before subtree collapsing, (b) after subtree collapsing, (c) the resulting chain (u, ..., Ug).

(Edge directions are from left to right.)

fnv — N,. Combined with the increase of (I, — f;) in internal flow,
the new flow has value

I+ @ —fi) = v = No) = If[+ (u +No) — i +fv) = If-

Observe that this is a legal flow, since we are pushing fy units of
flow through the supply node adjacent to u, which matches its
capacity.

Thus, in either case, the total flow cannot decrease. By repeating
this on each unmarked node u, the resulting flow has a total value
at least as large as f. For each u, the flow passing between the
supply or demand node s, associated with u satisfies the node’s
capacity constraint. The flows generated within each substructure
exactly match the internal flows generated by our algorithm. Thus,
we may map this to a flow within G, whose total value is smaller
by exactly the internal flow, I,. Therefore, we have |f'| + I, > [f],
which completes the proof. O

By applying the above lemma to each such substructure of G,
we obtain the following.

Lemma 8. Let G be a network, and let G’ be the network that results
by applying the subtree collapsing process to each substructure of G.
Let I7(G) be the sum of the internal flows I, over all nodes u that are
the roots of some tree-like substructure. Given a flow f in G, there
exists of flow in the collapsed network G’ of value at least |f| — It (G).
Conversely, given any flow f’ in G/, there exists a flow in G of value at
least |f’| + It (G). This latter flow can be computed in O(n) time.

5.2. Collapsing monotone chains

Let us consider the network after collapsing all the tree-like
substructures (see Fig. 12(a) and (b)). Each supply or demand node
in the resulting network is generally the result of collapsing a
subtree and hence has an associated nonnegative integer capacity.
The next phase of the collapsing process involves collapsing path-
like structures.

To define these structures, we begin by ignoring the directions
on the edges of the network and ignoring edges incident to
supply and demand nodes. Among the remaining nodes and edges,
consider any sequence of nodes (uo, . .., Ux4+1) such that:

(1) all consecutive pairs u;_1 and u; are adjacent,

(2) up and uy, 1 are of degree three or higher (ignoring supply and
demand nodes), and

(3) the nodes u; through u; have degree two (ignoring supply and
demand nodes).

Given such a sequence, we define a chain to be the subsequence
(uyq, ..., u) of degree-two nodes. (In Fig. 12(c), the original se-
quence is (ug, ..., u7), and the associated chain is (uq, ..., ug).)
The edge (ug, uq) is called the chain’s entry edge and (uy, uyy1) is
called its exit edge. Intuitively, a chain corresponds to the region
between two faces of P (for example f; and f, in Fig. 12(b)). In this
section, we will show that each such chain can be replaced by a
flow-equivalent chain of nodes of constant size.

Our approach for collapsing such chain structures involves two
steps. In this section, we show how to reduce each chain to a special
canonical form, called a zig-zag chain, in which the associated
edges of the network alternate in direction from left to right. Next,
in Section 5.3 we show how to replace each zig-zag chain with a
flow-equivalent chain of constant length.

For the first step, consider an arbitrary chain U = (uq, ..., uy)
of the network. The edge connecting two consecutive nodes u;_;
and u; is a forward edge if it is directed as (u;_1, u;), and otherwise
it is a backward edge. We can decompose any chain into maximal
monotone subchains, where each subchain consists entirely of
forward edges (see Fig. 13(a)) or entirely of backward edges (see
Fig. 13(b)). (In our earlier example, the chain in Fig. 12(c) consists
of two forward monotone subchains, (uy, u,) and (us, ug) and one
backward subchain (u, ..., us).)

It will simplify the presentation for now to assume that each
node u; of a monotone subchain is associated both with an adjacent
supply node of capacity s; and a demand node of capacity d;. If
no such node exists, we set s; or d; to zero. We will sometimes
abuse notation by talking about s; as a supply node and d; as a
demand node. Note that the directions of the entry edge and exit
edge cannot generally be inferred. (In Fig. 12(c) for example, the
chains (uq, u;) and (us, ug) are both maximal monotone forward
chains, but one has a forward entry edge and the other a backward
entry edge.)

1244 X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

a dther b

cither

Fig. 13. Chain examples: (a) a maximal forward monotone subchain, (b) a maximal backward monotone subchain, (c) a zig-zag chain.

We begin by showing how to collapse each maximal monotone
subchain U = (uy, ..., ug) into a single-edge chain. (After this, all
chains will be zig-zag chains, which we will deal with later.) By
symmetry, it suffices to consider just the case of a forward chain.
Because the supply and demand nodes adjacent to uy (resp., uy)
can route flow through the entry edge (resp., exit edge), and we
do not know the optimal routing, we will ignore them from our
processing for now. On the other hand, the supply and demand
nodes adjacent to u, through uy_; can only route flow in one
direction. Our approach will be to satisfy each of the demand nodes
d;, for2 < j < k—1, by drawing supply from the nearest preceding
supply node, thatis, from s; where 2 < i < j. Intuitively, this choice
is justified since we know that the flow must come from higher up
along the chain, and there is no harm in taking it from the closest
such supply node.

For the sake of efficiency, our algorithm maintains the supply
nodes having positive net supply on a stack (see Algorithm 2). The
stack is ordered so the closest unexhausted supply node to the
current demand node is on top and so is accessible in constant time.
Whenever a new flow is generated, we decrement the associated
supply and demand values, and increase a counter I of the total
internal flow generated in the process. When a node’s supply is
exhausted, it is popped from the stack.

Algorithm 2: Computing the flow within a forward monotone
subchain U = (uq, ..., ug).

forj < 2tok — 1do
push j onto stack;
stack
while (stack is nonempty and d; > 0)do // try to satisfy
d;’s demand
i < top of stack;
if (dj > s;) then
supply
dj < dj —s;; I < I +5;; s; < 0; popstack; // s; is
now exhausted
else

// push supply node s; onto the
// demand exceeds remaining

—dj; I<—I+de dj<—0;

Si <= Si // d; is now
satisfied

The process is illustrated in Fig. 14. The initial monotone sub-
chain is shown in Fig. 14(a). The procedure starts by attempting
to satisfy the demand of d,, which it does by removing 2 units of
flow from s, (reducing its value to 4). Next, ds tries to satisfy its de-
mand. At this time, the stack contains (s3, s,) with s3 on the top. It
first takes 1 unit from s3 (thus exhausting it and popping the stack),
next it takes the remaining 4 units from s, (also exhausting it and
popping the stack). At this point 2 + 1 + 4 = 7 units of internal
flow have been generated (see Fig. 14(b)). The process continues
until we have processed all the demand nodes from d, to ds. The
procedure terminates with I = 22 total units of internal flow gen-
erated (see Fig. 14(c)).

Let us consider the properties of supplies and demands after
termination. Define the core of the subchain to consist of the nodes

u;, for2 < i < k — 1 and the associated supply and demand nodes.
Let s]’. and d; denote the core supply and demand values that result
on termination of the algorithm. It is easy to see that Algorithm 2
implicitly defines a flow through the core, whose internal flow
value is I, and whose residual supply and demand values are given
by s; and d;.

LetS' = Y “) s/and D' = Y& d; denote the core’s total resid-
ual supply and residual demand, respectively. Let £ be the largest
index in the interval [2, k — 1] such that d, > 0, or £ = kif no
such index exists. (In Fig. 15(a), £ = 3.) We refer to the portion of
the core lying on or above level £ to be the upper core, and the rest
is the lower core (see Fig. 15(a)). By definition of ¢, all the demands
of the lower core are zero. It is also easy to see that all the supplies
in the upper core are zero. The reason is that each such supply s;
can reach dj, and since dj, is not exhausted, s must be. Thus, all the
nonzero residual supplies in the core lie in the lower core and all
the nonzero residual demands lie in the upper core.

We can say more about the flows in the upper and lower
cores. Returning to the original supplies and demands, define the
total upper supply to be Sy = Zf:z s;, and define Dy, S;, and D;
analogously for the total supplies/demands from the upper/lower
cores. (For example, in Fig. 15(b),Sy = 6+1=7,Dy = 249 = 11,
St =17 45 = 22,D; = 3 4 12 = 15.) Observe that any internal
flow generated by our algorithm that emanates from a supply node
in the upper core may only satisfy demands in the upper core.
This is because, in our algorithm, demand is satisfied from the
closest available supply, and d; has not been fully exhausted. It
follows that, D’ is equal to the excess demand present in the upper
core, that is, D' = Dy — Sy. (For example, in Fig. 15(a), we have
D' = 4.) Symmetrically, all the demands of the lower core are
satisfied by supplies in the lower core, and so, S’ = S; — D;. Thus,
we can partition the internal flow I generated by our algorithm into
two parts, those in the upper core and those in the lower core. The
total internal flow for the upper core is Sy, and the total internal
flow for the lower core is D;. (For example, in Fig. 14(a), we have

We assert that, given any flow f in the original network, there
exists a flow f” of greater or equal value that satisfies the basic
structural properties as the flow produced by Algorithm 2.

Lemma 9. Let G be the network resulting after subtree collapsing, and
let U = (uy, ..., u;) be a monotone subchain in G. Let 1, S’, and D’
denote the internal flow, residual supply, and residual demand as
generated by Algorithm 2. Given any flow f in G, there exists a flow
f' of greater or equal value in G, that satisfies the following properties,
where f; and f; denote the flows of f and f’, respectively, along the
edge (uj_1, u;):

(i) the internal flow of f’ within the core is |,
(i) f_, —f{ < S’ and
(iii) f{ — fi_; < D"
Proof. We may view the internal flows generated by Algorithm 2

as a multi-set of paths, each carrying one unit of flow from some
supply node of the core to some demand node of the core. By the

X. Wei et al. | Computer-Aided Design 44 (2012) 1235-1252 1245

Fig. 16. Proof of Lemma 9, where ¢ = 3,D' = 4,and S’ = 7: (a) increasing internal flow in the upper core so that f; — f, < D', (b) increasing internal flow in the upper core

so that fy — f; < 0, (c) an example of the entire process.

remarks made earlier, this multi-set can be partitioned into two
subsets, paths lying in the upper core and those in the lower core.

We will establish the assertion in two parts, by considering the
upper and lower cores separately. First, suppose that f; — f, > D'.
By viewing flows as paths, this means that there are more than D’
paths in f’s flow that pass through the entry edge but not through
the upper core’s exit edge, (u¢, u¢+1). These paths must terminate
at the demand nodes of the upper core. Algorithm 2 generates Sy
units of internal flow in the upper core, each of which terminates
at some demand node in the upper core. As observed earlier, D' =
Dy — Su. Therefore, (f1 — fg) + SU > D + (DU — D/) = Dy.
That is, the sum of the flows from f and the internal flows from
Algorithm 2 exceed the demand capacity of the upper core. Thus,
there must be at least one upper core demand node that receives
flow from both f and the internal flow of Algorithm 2. (In Fig. 16(a),
d, is such a node.) We remove from f the path to this node, and
add the internal flow to this node generated by the algorithm. This
decreases f; but does not alter f; (see Fig. 16(a)). We repeat this
process until f; — f, < D'.

Next, considering just the upper core again, suppose that f, —
fi > 0. The associated flow paths of f originate at some supply
node of the upper core and pass through the upper core’s exit
edge. Algorithm 2 generates Sy units of internal flow in the upper
core, each of which originates at some supply node in the upper
core. We have (f; — f1) 4+ Sy > Sy, implying that there must be at
least one upper core supply node that initiates flow for both f and
the internal flow of Algorithm 2. (In Fig. 16(b), s3 is such a node.)
We remove from f the path originating at this node (removing
the portion of the path lying within the lower core as well), and
add the internal flow originating from this node generated by the
algorithm. This decreases f, but does not alter f; (see Fig. 16(b)).
We repeat this process until f, — f; < 0.

By applying a symmetrical transformation on the lower core,
we may modify f so thatf,_; —f, < S"and f; —fi_1 < 0.(This may
result in a violation of the previously established conditions for the
upper core, which we fix by applying the upper-core modifications
again. Because each operation strictly decreases the flow value, this
process must eventually terminate.)

Ignoring its internal flow, the resulting flow has the following
properties. First, its net increase is

fici—fi<(ecr—f)+Ffo—fi) <S'+0=5".

Similarly, its net decrease is

fi—firn<hi—f)+ (fe—fic) <D +0=D"

It also carries f; units of flow directly through from f; to fi_1.

In contrast, the flow generated by Algorithm 2 consists only
of internal flow, and has up to D’ units of residual demand in
the upper core and up to S’ units of residual supply in the the
lower core. Therefore, we may replace f within the core with
an equivalent or greater flow as follows. First, use the I units of
internal flow generated by our algorithm. Next, generate f; units
of flow, which pass directly through from f; to fy_; (which we
can do because these nodes have infinite capacity). Then, generate
an equivalent amount of flow in the upper core to match f’s net
decrease (which we can do from the D’ units of residual demand).
Finally, generate a equivalent amount of flow in the lower core to
match f’s net increase (which we can do from the S units of residual
supply).

Because the internal flow saturates every supply node in the
upper core and every demand node in the lower core, the internal
flow is as large as possible, and so the value of this flow is at least
as high as f’s. Clearly, it is feasible, and it satisfies properties (i)

1246 X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

b

13 D—up)—<1 7
14 D—{ug—<1 16

Partially collapsed network

C

=22 I=22+7+14=143

Final collapsed network

Fig. 17. The subchain collapsing process.

through (iii) above (see Fig. 16(c)). Finally, define the final flow f’
by taking the above flow within the core and using the original flow
f throughout the rest of the network. O

The subchain collapsing process continues as follows. Observe
that the core’s residual demand D’ can only be satisfied by the flow
coming through u4. Similarly, any flow generated by the the core’s
residual supply must pass through uy. Therefore, we may collapse
the subchain by removing the core entirely, and replacing d; with
a demand node of capacity d{ = d; + D', and replacing s; with a
supply node of capacity s; = s, +S'. Call the resulting network the
partially collapsed network (see Fig. 17(b)).

Observe that this may generally result in having u; being
adjacent to both supply and demand nodes of non-zero capacity. As
established in Section 5.1, we may resolve as much flow as possible
through u4, since we would gain no advantage by deferring either
flow to a more distant supply-demand pair. Therefore, we may
route min(s}, d}) units of internal flow through u;. Similarly, we
may route min(sy, d) units of internal flow through uy. These flows
are added to I. Let (s], d{) denote the remaining supply/demand
capacities for u; (only one of these will be nonzero), and let (s;, d)
be the analogous values for u; (see Fig. 17(c)). This completes
the collapsing process for forward monotone subchains. Backward
subchains are processed symmetrically. We show that network
flows are preserved, up to the addition of the internal flows.

Lemma 10. Consider a monotone subchain U = (uq,...,u) in G
(after subtree collapsing). Let G’ denote the network after collapsing
this subchain, and let I1(U) denote the internal flow as generated by
Algorithm 2. Then for any flow f in G, there exists in G’ a flow of value
at least |f| — I(U), and given any flow f’ in G, there exists in G a flow
of value at least |f’| + I(U). This latter flow can be computed in time
proportional to the size of the chain.

Proof. The proof of the second assertion follows directly from the
remarks made during our description of the collapsing process. In
particular, each step of the collapsing process involves identifying
a path in U along which internal flow can be routed, and reducing
the supply and demand capacities accordingly. By simply reversing
the process, we can easily map any flow f’ in G’ to a flow f” in G.
The restoration of the internal flows to f” increases its flow value
by I(U), and we let f denote the result. Clearly, the algorithm runs
in time proportional to the size of the each chain.

The proof of the first assertion involves showing first that any
flow in G can be modified to a flow of equivalent value that
satisfies the general structural properties of the flow generated
by the collapsing process. We show this first for the partially
collapsed network. From Lemma 9, we may assume that f’s internal
flow within the core matches the internal flow generated by
Algorithm 2, and additionally, it satisfies up to D" units of demand
and S’ units of supply within the core. As observed earlier, the flow
paths of f that terminate at demand nodes in the core must flow
through 14, and so we may reroute these paths directly into d;,
which is legal because the capacity of d; has been increased by D’
units in the partially collapsed network. Similarly, the flow paths
of f that originate at supply nodes in the core must flow through
g, and we may reroute these paths directly into s, which is legal

because the capacity of s, has been increased by S’ units in the
partially collapsed network.

Therefore, within this subchain, we may assume that f has
been transformed into a flow that is valid for the partially
collapsed network and whose internal flow equals the internal
flow of Algorithm 2. To complete the proof, we observe that the
correctness of the final collapsing step (merging the supply and
demands of u; and uy) follows from Lemma 8. O

By applying the above lemma to every monotone subchain
within G, we obtain the following.

Lemma 11. Let G be a network (after applying the subtree collapsing
process), and let G' be the network resulting after applying the
collapsing process on all the monotone subchains of G. Let I ;(G)
denote the total internal flow generated in the process. Then for any
flow f in G, there exists in G’ a flow of value at least |f| — Iy (G),
and given any flow f’ in G/, there exists in G a flow of value at least
If'| + In(G). This latter flow can be computed in O(n) time, where n
is the size of G.

5.3. Collapsing zig-zag chains

Next, we show how to process collapsing zig-zag chains.
Consider a maximal chain U = (uy, ..., u;) of degree-two nodes
in the network after collapsing monotone subchains. Since each
maximal monotone subchain has been replaced by a single edge,
this is a zig-zag chain (see Fig. 18(a)), which alternates between
forward and backward edges. We are interested in collapsing
arbitrarily long chains to chains of a constant size, and so we may
assume that k > 3, and by removing the first node and/or last
node of the chain if necessary, we may assume that the entry
and exit edges are both forward edges. We may assume that each
even numbered node u; has no net demand (since such demand
could not be reached by any supply), and symmetrically, each odd
numbered node u; has no net supply. Thus, we may assume that
each even numbered node is incident only to a supply node s;, and
each odd numbered node is incident only to a demand node d;. (If
such a node does not exist, we create a trivial supply or demand
node of capacity 0.) We say that such a chain is admissible.

Our approach is to treat the flow on the entry edge as a variable,
fin, and derive a flow, which is based on this assumption about the
entry flow. Our flow satisfies demands and supplies in a greedy
manner. The flow along the ith edge of the chain will be denoted
by fi. The chain’s entry edge is the Oth edge, so fo = fi,. In order to
motivate our approach, first observe that, since u; is incident to a
demand node of capacity d;, we may assume that 0 < fj; < d;.
Up to d; units of demand are satisfied, which leaves up to d; — fi,
units of flow that may be pushed along edge (u,, u). Since u,
can generate up to s, units of this supply, the maximum flow
that can be pushed along this edge is fi = min(s,, d; — fin). It
is easy to see that there is no benefit to be gained by pushing
less flow along this edge, since in order to achieve the same total
flow we would need to push more flow on subsequent edges, and
this might violate subsequent capacity constraints. By applying the
same reasoning to the next edge of the chain, we see that the flow

X. Wei et al. | Computer-Aided Design 44 (2012) 1235-1252 1247

y__[n}X(z_yr),f?y]
T T
x oz oy f

Fig. 19. An illustration of the function [x, f, y] = max(x, min(f, y)) and Lemma 12.

along (u,, u3) is at most f, = min(ds, s, — f1). (Note that f; < s,
and therefore f, is nonnegative.) Continuing in this manner, we can
compute the maximum flow along each edge of the chain, subject
to the assumption that the incoming flow is f;; and our principle
of greedily applying flow (see Fig. 18(b) and (c) for two examples).
Although it is tempting to think that the complexity of any formula
describing this flow would grow as some function of k, we will
show that it is possible to express each of these flows by a formula
of constant size. Furthermore, we can also produce a formula of
constant size for the total internal flow in the chain, that is, the
sums of flows between the nodes of the chain. This will enable
us to replace the entire chain by a single flow-equivalent chain of
constant size.

Since we will be manipulating expressions involving max and
min, it will simplify the presentation to define some helpful
notation. Given values x <y, define [x, f,y] to be a shorthand
for max(x, min(f, y)). Intuitively, this “clamps” the value of f
between x and y (see Fig. 19(a)). The next lemma summarizes a
few important facts about this notation.

Lemma 12. Givenreals x, y, and z:

(i) if x < min(y, z), then min(z, [x, f, y]) = [x, f, min(y, z)] (see
Fig. 19 (b))

(ii) if max(x,z) < y, then max(z, [x,f,y]) =
(see Fig. 19 (c))

(iii) if x <y, then [x,f,y] =x+[0,f —x,y — x]

(iv)if0<y<zthen[0,f —x,z] —[0,f —x,y] =
»,z—yl

(V) ifO<y<zthen[0,f —
[0,f —x,2z].

[max(x, 2), f, y]

x+y),z—yl+1[0,f —xy] =

Proof. Claims (i)-(iii) are easy consequences of the definition of
the notation. To prove claim (iv), we consider two cases. If f —x < y,
then, since y < z, both [0, f — x,z] and [0, f — x, y] are equal
to max(0, f — x), and therefore their difference is 0. In this case,
f—&x+y) <0,andso[0, f—(x+y), z—y] = 0. On the other hand,
iff —x > y,then [0, f —x, z] = min(f —x,z) and [0, f —x,y] =y
Thus, their difference is min(f — x,z) —y = min(f — (x+y),z —
y). Observe that this quantity is nonnegative when f — x > y.
Combining these two cases, we have [0, f —x,z] — [0, f — x,y] =
[0, f — (x+Y), z—y]. Finally, claim (v) follows easily from (iv). O

Given an (unknown) flow of f;; on the chain’s entry edge, we will
show how to compute quantities c;, b;, and r; such that there exists
aflow of the form f; = ¢;+[0, fi,—1i_1, b along each forward edge
(ui_1, u;) and of value f; = ¢; — [0, fi, — r,, b;] along each backward
edge (u;, u;_1). Intuitively, ¢; indicates the base capacity, which is
the amount of flow on the edge if f;; = 0. The quantity b; indicates
the bottleneck, which is the maximum amount by which the flow
on this edge may change, depending on variations in f,. Finally, r;
denotes the residual demand, which indicates how large f;;, must be
in order to affect the flow on this edge. In order to compute the
total internal flow, we compute a fourth quantity t;, which reflects
the total internal flow for the first i edges when f;;, = 0.

Algorithm 3 shows how these quantities are computed given
the chain’s supply and demand capacities as input. While the
formulas given in the algorithm are not complicated, it is not easy
to justify them intuitively. Their correctness is established below in
Lemma 14. (It follows from the lemma’s proof that all the quantities
take on nonnegative integer values.)

Algorithm 3: chain-flow(U), computing the flow coefficients
along an admissible zig-zag chain U = (uy, ..., u).

(o, T—1, T, bo, ty) < (0,0, dq, dq, 0); // initialize
fori < 1tokdo // process each node of the chain
if (i is odd) then // u; is incident to demand d;
‘ Ai < di —Ciq; i < min(4;, siy1);
bj <= bi_1 — [0, A; — siy1, bia]; 1 < riq —bi;
else // u; is incident to supply s;
L Aj <= si —Ci1; i < min(4;, di1);

bi < [0, diy1 — A, biq]; rj < Tie1 +b;;
i < ti1 + G

return (¢, by, re—1, te—1);
exit and internal flows

// parameters defining the

Fig. 20(a) shows the quantities computed by Algorithm 3 for
the chain of Fig. 18(a). Given the returned values (c, b, r, t), define
foue(c,b, 1) =c+[0, fin—r,blandI(r,t) =t —[0, fi,—1,d; —1].
Fig. 20(b) shows the flow formulas for each edge. The algorithm
returns (c, b, r,t) = (1,6, 7, 26). The exit flow is fo:(c, b, 1) =
1+ [0, fiy — 7, 6], and the total internal flow is I(r,t) = 26 —
[0, fin — 7, 6].

1248

a b fm 0+

X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

€ Total internal flow

=0 g =310 S BN 2~ 0. fin ~ 7.6
A g byt
0 - 0 13 13 0 10> 1(]] 20 ;, """""" “““““ j
1 13 10 10 3 10 ai — 5 Jin
2l 0 0 10 13 10 7 =10, fin
3011 7 6 7 17 1> .
4 0 0 6 13 17 0, fin =17,6] Exit flow

<]
509 9 6 726 9~ [0, fu — 7.6 9 [TEm— ;]
6/ 1 1 6 - - 100> . 14100, fin — 7,6
Sou = 1410, f —7,6] Y Jin

Fig. 20. Example of Algorithm 3: (a) computed quantities for the chain of Fig. 18(a), (b) the flow functions for each edge, (c) the exit flow and total internal flow functions.

Before establishing the algorithm’s correctness, we present
a technical lemma regarding the quantities computed by the
algorithm.

Lemma 13. Givenan admissible zig-zag chainU = (uy, ..., uy), the
quantities computed by Algorithm 3 satisfy the following conditions
for0<i<k:

(D)ifi=1,0=<b <bh,
(ii) if iisodd, 0 <r1; <1, 4+ b; < d;
(iii) if iiseven, 0 < r1; < d;.

Proof. To prove (i), observe that, by definition of the bracket
notation, both [0, A; — siy1, bi—1] and [0, diy1 — A, bi_4] are
nonnegative and at most b;_1. It follows directly (in either the even
or odd case) that 0 < b; < b;_1, as desired.

Assertions (ii) and (iv) are established by induction. For the basis
cases (i € {—1,0}), by definition,r_; = 0Oandry = dy,s00 <
r_1 <ry<d;.Ifi > 0isodd, thenr; +b; = (ri_1 — b;)) + b; = ri_1,
and by inductionr;_y < dq.Alsor; =1;_1 —b; =1i_5 + bj_1 — b;.
Since b; < b;_1, by induction we have r; > r;_, > 0. On the other
hand, ifi > 0is even, thenr; = ri_; + b; < ri_y + bj_1, which
by induction is at most d;. Since b; > 0, we have r; > r;_1. By
induction, ri_; > 0, and therefore,0 <r; <d;. O

The following lemma summarizes the nature of the flow
computed by Algorithm 3.

Lemma 14. Given an admissible zig-zag chainU = (uq, ..., uy), let
(c, b, r, t) be the quantities returned by Algorithm 3. For any real f;,,
where 0 < fi; < d,, there exists a flow through U whose entry edge
carries flow f;,, whose exit edge carries flow f,,(c, b, r), and whose
total internal flow is I(r, t).

Proof. Given the values computed by Algorithm 3, we will prove
that, for 0 < i < k, there is a flow such that, if i is odd, the ith edge
carries flow of f; = ¢; — [0, fi, — i, b;], and if i is even it carries flow
fi = ¢ + [0, fin — 1i_1, b;]. (Recall that edge 0 is the entry edge.)
By Lemma 13(i), b; is nonnegative, and so these expressions satisfy
the requirements of our bracket notion. We will also show that
the capacity constraints are satisfied. In particular, if i is odd, then
0 < f; < min(d,, si+1), and if i is even, then 0 < f; < min(s;, diy1).
Finally, let]; denote the sum of flows on the first i edges of the chain,
not counting the entry edge. Thatis, [; = 2}21 f;-We will show that
1 - tl [O fm Ti, dl - T,‘].

To see that this suffices to establish the lemma, recall that the
chain has an even number of nodes, and so the output flow is
fi = e + 10, fin — 1e=1, bkl = ¢ + [0, fin — 1, bl = foue(c, b, 7).
Because the total internal flow is determined by the flow on edges
1throughk — 1,wehavely_1 = ty_1 — [0, fin — 1%—1, d1 — 1] =
t— [0, fin—r1,dy — 1] =I(r,).

For the basis, observe that for i = 0, the flow is fy = fi;,. Since u
can handle at most d; units of flow, we may assume that 0 < fj, <
dy, which can be equivalently expressed as fy = 0+]0, fi,+0, d{] =

co + [0, fin — r_1, bo]. The internal ﬂow is zero, which can be
expressed as Ip = 0 — [0, f;, — dy, 0] — [0, fin — 19, d1 — 1], as
desired.

For the induction step, first consider the case where i is odd,
which implies that u; is adjacent to the demand node d; (see
Fig. 21(a)). By the induction hypothesis, the flow on the incoming
edge tou;isfiy = ¢i1 + [0,fin — iz, biq]and 0 < fi 1 <
min(s;_1, d;). Up to d; units of this flow may be absorbed, leav-
ing d; — fi—1 units of flow for edge (u;;1, u;). Up to sy units of
supply can be provided by the subsequent supply node. Thus, we
may assign min(s;y1, d; — fi—1) units of flow to this edge. Letting
Ai =d; — ci_q, we have

fi = min(siq, di — fi1)
= min(Siy1, di — (¢i—1 + [0, fin — Ti—2, bi—1]))
min(sit1, A — [0, fin — riz2, bi_1])
= A; — max(4; — siy1, [0, fin — ric2, bic1]),
where in the last step we used the fact that min(x,y — z) =
y —max(y — X, z).

We consider two subcases. First, suppose that A; — si1q < b;_1.
Letx = 0,y = bi_1,and z = A; — s;11. By Lemma 13(i) we have
0 < b;_4, and so for this subcase we have max(x, z) < y. Thus, we
satisfy the preconditions of Lemma 12(ii), from which we have

fi=Ai—
Setting I = max(0, A; —
and y = b;_1) we have,
fi= A= I, fin — 1ic2, bid]
=(Ai—T) -0, fin —1i2
To simplify the first term, observe that I = max(0, A; — s;i11) =
A;—min(A4;, si+1) = A;— ¢, and therefore, A; — I = c;. Note that
in this subcase, we can express I" as [0, A; — Si+1, bi—1]. Thus, by
definition of b;, we have b;_; — I' = b;. By definition of r;_; (even
case)andr; (odd case),we haver;_{ =r,_»+b;_jandr; = r;_1—b;.
Therefore, we obtain
rio+l =@ 1—bi)+T=r_1—
=r1—b=n.

[max(0, A; — sit1), fin — Ti—2, bi—1].

Sit+1), then by Lemma 12(iii) (withx = I

—I,bi_1—T1].

(bioa —1T7)

Combining these observations, we have f; = ¢; —
desired.
The second subcase is A; —

[vain -

r;, bil, as

Si+1 > bi_1. In this case we have

fi = A — max(4; — siy1, [0, fin — 1ic2, bizq])
= Ai — (Ai = Siz1) = Sit1.

X. Wei et al. | Computer-Aided Design 44 (2012) 1235-1252 1249

a Jic1=ci—1+ [0, fin — ri—2,bi1]

Ji=¢i =0, fin — 74,04

Si+1D>

b Jici=cic1 =10, fin

— i1, bj—1]

fi=ci+ 0, fin—

<d;11

i1, by]

Fig. 21. Proof of Lemma 14: (a) for odd i and (b) for even i.

This can be expressed equivalently as f; = si.1 — [0,f — 13, 0].
By Lemma 13(i) b;_y > 0, and so in this subcase A; > si;1.
Therefore, c; = min(A4;, Siy1) = Siy1. By definition, b; = b;_; —
[0, A; — sit1, bi1] = bi—1 — bi—; = 0. Therefore, we have f; =
— [0, fin — 13, bi], as desired.
Let us also consider the total internal flow when i is odd. By the
definition of internal flow and the induction hypothesis we have

I =11+
= (ti—1 — [0, fin — ric1, dy — 1iq]) + (i — [0, fin — 11, Bi])
= (ti-1 +¢) — ([0, fin — rizq, dy — 1i21] + [0, fin — 13, bi]).

By definition, t;_1 4+ ¢; = t; and (since i is odd) r; + b; = r;_1, which
yields

Iy =t; — ([0, fin — (r; + by), dy — 11 — bi] + [0, fin — 13, bi]).

By setting x = r;,y = b;, and z = d; — r;, it follows from Lemma 13
that the preconditions of Lemma 12(v) hold, and by applying this
lemma we have I; = t; — [0, fi; — 17, di — 3], as desired.

Next, we consider the case where i is even, which implies that
u; is adjacent to the supply node s; (see Fig. 21(b)). By the induc-
tion hypothesis, the flow on the incoming edge to u; is fi_; =
Ci1— [0, fin — i1, biiland 0 < fiy < min(d;i_y,s;). Up tos;
units of this flow may be supplied by s;, leaving s; —f;_1 units of flow
for edge (u;, uiy1). Up to diq units of flow can be absorbed by the

subsequent demand node. Thus, we may assign min(d;1, S; —fi—1)
units of flow to this edge. Letting A; = s; — ¢;_1, we have
fi = min(diyq, s; — fi-1)

= min(di;1, i — (¢i—1 — [0, fin — ri—1, bi—1])

= min(dit1, 4; + [0, fin — i1, bi—1])

= A; +min(di;1 — Ay, [0, fin — i1, biaD).

As before, we consider two subcases. If di;; — A; > 0,thenc; =

Aj, and min(b;_1, diy1— A;) canbe expressed as [0, di;1 — A;, bi_1],

which by definition is b;. Letx = 0,y = bj_y,and z = di;1 — A;.
By Lemma 13(i) we have 0 < b;_1, and so for this subcase we have
x < min(y, z). Thus, we satisfy the preconditions of Lemma 12(i),
from which we have

fi = Ai + [0, fin — riey, min(bi_q, diy1 — A))]
= ¢+ [0, fin — 1iz1, bil,
as desired.

The second subcase is di; 1 — A; < 0. Clearly, fi = A; + (dip1 —
Aj) = di+q, which can be expressed equivalently as di+1 +[0,f —
ri—1, 0]. In this case we have ¢; = d;;1, and since b; = [0, d,H —
Aj, bi_1], we have b; = 0. Therefore, f; = ¢; + [0, fi, — 1i_1, bi], as
desired.

Finally, let us consider the total internal flow when i is even.
Clearly,

i =1li1+fi

= (ti-1 — [0, fin — i1, dy — 1iq]) + (G + [0, fin — 121, biD).
By definition, t;_; +c¢; = t; and (sinceiis even)r;_i; = r;—b;, which
yields
I =t;— ([0, fin — riz1, dy — 1 + bi] — [0, fin — 111, biD).

Fig. 22. Proof of Lemma 15.

By setting x = r;_1,y = b;,and z = d; — r; + b, it follows from
Lemma 13(iii) that the preconditions of Lemma 12(iv) hold, and so
by applying this lemma we have

I = t; = [0, fin — (ri=1 + by), (dy — i + b;) — by]
=t — [0, fyu — 1, dy — 13,

which completes the case where i is even, and so completes the
proof. O

The previous lemma shows the existence of a flow through a
zig-zag chain U. Next, we show that this is essentially the best
possible, in the sense that given any valid flow through U, such
that the entry edge carries flow f;,, there exists a flow of greater or
equal value that has the same structure as the flow described in the
previous lemma.

Lemma 15. Consider an admissible zig-zag chain U = (uq, ..., u)
in a network G. Let (c,b,r,t) be the quantities returned by
Algorithm 3. Let f’ be any valldﬂow inGand let f;, fr,. and I, denote
the entry, exit, and total internal flow for U, respectively. Then, there
exists a flow f” in G of equal or greater value to f', whose entry flow
is f;r, whose exit flow is not greater than f;,., and whose total internal

ut’
flow within U is I(r, t).

Proof. Consider any legal flow f’ through the chain (see Fig. 22(a)).
We construct the flow f” as follows. The entry edge carries f;,.
For 1 <i <k, let f denote the value of flow on the ith edge as
given in the proof of Lemma 14, under the assumption that the
entry flow is f;. That is, f” = ¢; — [0, f;, — r;, b;] if i is odd and
" = ¢ +10, f;, — i1, bi], if i is even. Finally, the exit edge carries
the minimum of f;,, and the exit flow fo, (c, b,), defined earlier
(see Fig. 22(b)).

We assert that f” is a valid flow. Except for the exit edge, all
edges carry the same flow as computed in the proof of Lemma 14,
and the flow on the exit edge is no larger than the exit flow
established in the lemma. Therefore, all the supply and demand
capacity constraints can be satisfied.

To complete the proof, we show that the total value of f” is at
least as large as that of f’. We do this by successively modifying f’
in a manner that does not decrease its total value, until we obtain
a new flow that is equal to f”.

Assuming that the two flows differ, consider the first edge
(u;, u;r1) on which they differ. Since f” and f” have the same entry
flow, we have 1 < i < k. Let f/ and f” denote the flows of f and

1250

X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

a C(U): b LA ¢ b; 7 l; ¢
\ . ol - o R 0
1| dy dy—r di—r 7 dy—r
- 2ol 0 o0 boobtr di—r fout = ¢ = [0, fin = 7]
b 3| b b b r di—r+b
o e e b - 1= (d=r+b) = [0, fiy—r,dy 7]

Fig. 23. Zig-zag chain collapsing: (a) the collapsed structure C(U) for a network U whose first demand capacity is d; and for which (c, b, r, t) is the output of Algorithm 3,
(b) a summary of the computations of Algorithm 3, (c) the exit flow and total internal flow.

f” one = (u;, ui+1), respectively. As in Lemma 14, f” is chosen to
be the maximum flow on e, subject to the incoming flow (which
is the same for both flows) and the capacity constraints associated
with u; and u;4+. Therefore, f/ < f”. This implies thati < k, since
by definition, f," < f;,, = f,. Let A = f” — f/. We modify f’ by
increasing the flow on e by A and decreasing the flow on the next
edge of the chain by min(f;, ;, A). The resulting flow is clearly valid,
and this modification does not decrease the total internal flow of f'.
Eventually, the two flows will be identical, which establishes that

the total internal flow of f” is at least as large as thatof f'. O

The above lemma implies that, for each admissible zig-zag
chain, the characterization given in Lemma 14 of the flow produced
by Algorithm 3 is essentially complete, since, by applying this to
every chain of the network, we may assume that any maximum
flow is of this form. As mentioned earlier, our approach is to
collapse each such zig-zag chain in the network into a zig-zag
chain of constant size such that Algorithm 3 returns the same
values on the replacement chain as for the original chain. By the
above lemma, the two chains are flow-equivalent.

Given an admissible zig-zag chain U = (uy, ..., u), let (c, b,
r, t) be the quantities returned from Algorithm 3. Before present-
ing the replacement network, we give a lemma that establishes
some useful relations among these quantities.

Lemma 16. Given an admissible zig-zag chainU = (uy, ..., uy), the
quantities (c, b, r, t) returned by Algorithm 3 are all nonnegative.
Also, recalling that d, is the demand capacity associated with uq, the
quantities b and r satisfyb < dyandr < b+r < d;.

Proof. By definition, (c, b, r, t) = (ck, bk, rk—1, tk—1). The proof of
Lemma 14 establishes that ¢, is the flow on the exit edge for a valid
flow (when f;; = 0) and t_, is the sum of edge flow in the same
flow. Therefore, ¢, and t;_; are both nonnegative. Recalling that k
is even, the nonnegativity of by and r_; follows from Lemma 13(i)
and (iii). Lemma 13(i) implies that the b;’s are nonincreasing, and
since by = d;, we have b = b, < d;. Since k — 1 is odd, by
Lemma 13(ii) we have ry_1 < r¢_1 4+ br_1 < d;. Since by,_1 < by,
we haver <r + b < dq, which completes the proof. O

Given U and the quantities (c, b, r, t) returned from Algo-
rithm 3, the collapsed zig-zag network, denoted C(U), is shown in
Fig. 23(a). By the above lemma, all the capacities are nonnegative,
so this is a valid chain. Our next lemma together with Lemma 15
implies that, with respect to maximum flows, the replacement
chain is equivalent to the original chain.

Lemma 17. Consider an admissible zig-zag chain U = (uq, ..., u).
Let (c, b, r, t) denote the quantities returned by Algorithm 3 on U.
Then, when run on C (U), this algorithm returns (c, b, r, dy —r + b).

Proof. The proof involves running the algorithm on C(U). A
summary of the execution of this algorithm is shown in Fig. 23(b),
where the returned values are shown in bold. The only nontrivial
quantities to compute are the b;’s. Their values are justified below.

i=1: by =by—[0, A1 — 59, bg] =d; — [0, 1, dq]. By Lemma 16,
0<r<dysob;y=d;—r.

2: b, = [0,d3 — Ay, bq] = [0,b,d; — r]. By Lemma 16,
0<b<dy—r,s0b, =bh.

. b3 = bz—[O,A3 —S4,b2] =b-— [O,b—(C+b),b] =
b—0=h.

: by =[0,ds — Ay, b3] = [0, 0o, b] = b (by our convention
thatdyy; =00). O

i

Together, Lemmas 14, 15 and 17 imply that, if we collapse an
admissible zig-zag chain U by replacing it with C(U), we obtain
a chain of constant size that differs from U only with respect to
the fact that it generates t — (dy — r + b) fewer units of internal
flow, which we denote by I(U). (It can be shown that this quantity
is always nonnegative, but the correctness of our results does not
depend on this.) By collapsing all the admissible zig-zag chains of
G, we obtain the main result of this section.

Lemma 18. Let G be a network (after subtree and monotone chain
collapsing), and let G' be the result of applying the zig-zag chain
collapsing process to G. Let I;(G) denote the sum of 1(U) over all
admissible zig-zag chains in G. Given a flow f in G, there exists of flow
in G of value at least |f| — I;(G). Conversely, given any flow f’ in G,
there exists a flow in G of value at least |f'| + I;(G). This latter flow
can be computed in O(n) time, where n is the size of G.

5.4. Maximum flow in the collapsed network

In this section we combine the results of the previous three
sections. Let G = (V,E) denote a planar multi-supply, multi-
demand network, as defined in Section 4. Let G’ = (V’, E’) denote
the network resulting after collapsing subtrees, monotone chains,
and zig-zag chains. Recall the internal flow values I (G), I (G) and
I7(G) defined in Lemmas 8, 11 and 18, respectively. Combining
these lemmas we have the following.

Lemma 19. Let G be a planar multi-supply, multi-demand network,
and let G’ be the result of applying the subtree, monotone chain, and
zig-zag chain collapsing processes to G. Let 1(G) = It (G) + I (G) +
I;(G). Given a flow f in G, there exists of flow in G’ of value at least
If| — I(G). Conversely, given any flow f’ in G/, there exists a flow in G
of value at least |f'| + I(G). This latter flow can be computed in O(n)
time, where n is the size of G.

Thus, computing the maximum flow in G reduces to computing
the maximum flow in the collapsed network G’ and then adding
back the internal flows I(G), which were lost in the collapsing
process. The running time of the entire procedure is equal to sum
of the time to produce the collapsed network, the time to compute
the maximum flow in G/, and the time to convert the flow in G’ to a
flow in G. It follows from the remarks made in earlier sections that
the collapsed network can be computed in O(n) time, and, by the
above lemma, the time to convert the flow in G’ to a flow in G is
O(n). It only remains to analyze the size of the collapsed network
and the time to compute the maximum flow in this network.

X. Wei et al. | Computer-Aided Design 44 (2012) 1235-1252 1251

Lemma 20. The collapsed network G’ is of size O(h), where h is the
number of faces of G.

Proof. For now, let us ignore the supply and demand nodes and
also the edge directions of G'. The result is a planar graph. The
collapsing process does not remove cycles from the graph, and
therefore G’ has h faces. After collapsing, each chain consists of a
constant number of vertices and edges. By replacing each chain by
a single edge, the total size of the graph is within a constant factor
of the original. Since all chains and tree-like structures have been
removed, every vertex of the resulting planar graph is incident to
three or more edges.

Let v, e, and h denote the numbers of vertices, edges, and faces
in this graph. By summing the degrees of the vertices, we count
each edge twice, and since all the vertices are of degree at least
three, we have 2e =), deg(u) > 3v. Since the graph is planar
and connected, by Euler’s formula [17] we have v — e + h = 2.
Therefore, v—(3/2)v+h > 2,orequivalentlyv < 2(h—2) = O(h).
Also, the number of edgesise = v+ h —2 < 3(h — 2) = O(h).
Therefore, the total size of G’ is O(h). O

In order to compute the maximum flow in G, we apply a recent
result due to Borradaile et al. [15], which shows that the maximum
flow in a planar multiple source, multiple sink network of size n
can be computed in O(nlog> n) time. In our case, the size of G’ is
0(h), and so the time to compute the maximum flow is O(h log? h).
The algorithm of Borradaile et al. assumes that capacities are stored
on edges, while our network has node capacities. Because only the
supply and demand nodes have finite capacities, we may simply
move each such node’s capacity to its (unique) incident edge. Let
f’ be the resulting maximum flow in G'. By Lemma 19, in O(n) time,
the resulting flow can be mapped back to a flow f in the original
network G. In summary we have the following.

Theorem 1. Given a planar n-vertex network G with multiple sources
and multiple sinks and h faces. It is possible to compute a maximum
flow in G in time O(n + hlog> h) time.

Let us now apply this result to solve the MUMC problem. Recall
that the input consists of a simple n-vertex polygon P with h
holes. Let R denote the number of reflex vertices in P, and let r
denote the number of scan reflex vertices (SRVs). In O(n log n) time
we can compute the pseudo-trapezoidal decomposition of P. In
O(n) time we can compute the associated flow network G, which
was introduced at the start of Section 4. As shown in Lemmas 1,
3 and 4, the maximum flow in G, denoted |f|, determines the
number of monotone components in an x-monotone subdivision.
In particular, by Lemmas 3 and 4, the number of monotone
components is k = (r — h + 1) — |f|. Let G’ denote the collapsed
network. The collapsing process does not remove cycles from the
graph, and therefore G’ has h + 1 faces, one for each hole of P and
one for P’s exterior. By Theorem 1, we can compute this maximum
flow in time O(n + hlog? h).

The overall running time is O(nlogn + hlog® h). As shown in
Section 4, the entire subdivision can be output in time proportional
to its size, which is O(n + R?). By Lemma 5, we can store the flow
in a manner that uses only O(n) space and allows us to extract the
boundary of any x-monotone component in time proportional to
its size, which is O(n + R).

This provides a solution to the standard MUMC problem where
the monotonicity direction is specified. To solve the general MUMC
problem (where the monotonicity direction is not specified), we
apply aresult of Arkin et al. [14], which shows that it suffices to test
O(K) reference directions, where K is the number of edges of the
polygon’s visibility graph. In summary, we have our main result.

Theorem 2. Consider an n-vertex polygon P with h holes and R reflex
vertices. Then:

(i) For any given scan direction, it is possible to solve the MUMC
problem (for this scan direction) in time O(nlogn + hlog> h).

(ii) It is possible to solve the general MUMC problem (that is, over all
possible scan directions) in time O(K - (nlogn + hlog> h)) time,
where K is the number of edges in P’s visibility graph.

In additional O(n + R?) time, it is possible to output the complete
monotone subdivision. From a representation of size O(n), it is possible
to output the boundary of the any desired component in O(n+R) time.

6. Final path fairing

While the results of the previous sections provide a minimum
number of components, the price we pay is that the number of
Steiner points may be quite large. Although there exist worst-case
inputs in which any optimal solution involves a quadratic number
of Steiner points (for example, a narrow zig-zagging polygon
with many merge SRVs on one side and many split SRVs on the
other), such cases are unlikely to arise in typical applications.
This raises the question of whether it is possible reduce the total
number of Steiner points, while retaining the property of having
the minimum number of monotone components.

Let S denote the subdivision induced by applying our flow-
based solution and Lemma 4, but before adding in the PEPs. We
consider a simple approach to reduce the total number of Steiner
points along the FEPs of S, an operation we call path fairing. We do
this by reducing the number of edges (or links) in the FEPs of S.

Our approach is based on a local refinement. Let D be the dual
of S (as defined in Section 3). (In Fig. 24(a), D is the blue graph
embedded in the subdivision S.) Let u and v be two adjacent
nodes of D connected by an edge e = (u, v) in D. These two nodes
correspond to two components (that is, two adjacent subpolygons
of P) that share a common boundary in the subdivision.

Starting at an arbitrary node of D, we can traverse the edges of
Din any order, e.g., in depth-first order. For each edge e = (u, v) in
D, we will replace the common boundary of the two components
corresponding to u and v with a minimum link x-monotone path
between them. To do so, let P, denote the union of the two polygons
incident to u and v. Let £ and r denote the leftmost and rightmost
endpoints of the common boundary of the two polygons, and let
U, be a maximal x-monotone polygon contained within P,. For
example, U, can be defined to be the portion of P, lying between
two vertical lines, one through ¢ and one through r (see Fig. 24(a),
the left polygon is U, of the two subpolygons (of P) corresponding
to the thick blue edge of D).

Suri [18] gave an algorithm for computing a minimum link
path (not necessarily x-monotone) in any simple polygon without
holes (U, in our case). His algorithm runs in linear time, assuming
that the polygon has been triangulated. We can produce such a
triangulation in time linear in the complexity of U, by a simple
traversal of the boundary of U, through the pseudo-trapezoidal
map of P, which has already been computed. The next lemma states
that any minimum link path generated by Suri’s algorithm can be
converted into a path that is x-monotone, without increasing the
number of links. The proof can be found in [19].

Lemma 21. Given an x-monotone polygon and two points £ and r
within this polygon, there exists a minimum link path between ¢ and
r that is x-monotone.

Clearly, the running time of this path-fairing algorithm is
proportional to the size of the final subdivision. As analyzed in
Section 4, the size of the final subdivision is O(n + rR), and is
therefore the running time of the path fairing algorithm.

Since each application of this algorithm provides only a local
improvement, it would be possible to repeat the algorithm a

1252 X. Wei et al. / Computer-Aided Design 44 (2012) 1235-1252

Fig. 24. Final path fairing.

constant number of times, or until no further reduction occurs in
the number of Steiner points.

The path-fairing algorithm is illustrated in Fig. 24. D is the blue
graph embedded in the final subdivision S. For the union of two
polygons incident to the thick edge of D, we consider only the part
between the walls incident to the two endpoints of the common
boundary, as shown on the left the common boundary of the two
polygons is replaced by a minimum link x-monotone path, a single
link in fact.

After implementing this path fairing operation for every two
adjacent polygons for one time, in Fig. 24(b), the fairing paths
marked by the red links in S are shown. Finally, we need to add
the PEPS to eliminate all the merge and split SRVs that are not the
endpoints of any FEPs. This can be done by implementing a plane
sweep paradigm on each polygon of the resulting S. Luckily, we
have the pseudo-trapezoidal map already, therefore the PEPs can
be added in linear time with respective to the size of the resulting
S. The final subdivision is shown in Fig. 24(c), PEPs are marked by
the pink links, for simplicity, graph D is removed.

7. Concluding remarks

We have resolved a longstanding open problem in the area of
polygon decomposition, called MUMC, which involves computing
the minimum number of uniformly monotone components
(allowing arbitrary Steiner points). In contrast to most existing
approaches to polygon decomposition, which have been based on
dynamic programming, we show that the problem can be reduced
to computing the maximum flow in a planar network with multiple

sources and multiple sinks. Our approach is based on a novel
collapsing process, which reduces the size of a planar network to
one in which the total size of the network is proportional to the
number of faces in the network.

Although the final subdivision is optimal with respect to the
number of components, because of the Steiner points, it may
have size that is superlinear in the input size. Our algorithm
outputs a concise representation of the final decomposition,
whose size is only linear in the size of the input polygon. From
this representation, it is possible to extract any or all of the
components of the decomposition in time proportional to the
output size. This data structure may find applications in other
polygon decomposition problems.

We have also presented a simple heuristic for path fairing,
which reduces the number of Steiner points in the final decompo-
sition. While this heuristic can significantly reduce the number of
Steiner points, it does not necessarily achieve a global minimum.
In particular, it does not alter the general structure (that is, the ho-
motopy group) of the solution. This suggests a number of problems
for future research. For example, among all solutions to the MUMC
problem that achieve the minimum number components, what is
the computational complexity of finding the subdivision that min-
imizes the number of Steiner points?

Acknowledgments

The second author’s part of this work was supported by GRF
grant 614309. The third author’s work has been supported by the
National Science Foundation under grant CCF-1117259 and the
Office of Naval Research under grant N00014-08-1-1015.

References

[1] Preparata FP, Shamos MI. Computational geometry: an introduction. Berlin:
Springer-Verlag; 1990.

[2] Chazelle B. Triangulating a simple polygon in linear time. Discrete &
Computational Geometry 1991;6:485-524.

[3] de Berg M, van Kreveld M, Overmars M, Schwarzkopf O. Computational
geometry: algorithms and applications. 3rd ed. Berlin, Germany: Springer-
Verlag; 2008.

[4] Chazelle B, Dobkin DP. Optimal convex decompositions. In: Toussaint GT,
editor. Computational geometry. Amsterdam, Netherlands: North-Holland;
1985. p. 63-133.

[5] Keil JM. Polygon decomposition. In: Handbook of computational geometry.
North-Holland Publishing Co.; 2000. p. 491-518.

[6] Dwivedi R, Kovacevic R. Automated torch path planning using polygon
subdivision for solid freeform fabrication based on welding. Journal of
Manufacturing Systems 2004;23:278-91.

[7] Nahar S, Sahni S. Fast algorithm for polygon decomposition. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 1988;7:473-83.

[8] Lee DT, Preparata FP. Location of a point in a planar subdivision and its
applications. SIAM Journal on Computing 1977;6:594-606.

[9] Garey MR, Johnson DS, Preparata FP, Tarjan RE. Triangulating a simple polygon.
Information Processing Letters 1978;7:175-9.

[10] Keil JM. Decomposing a polygon into simpler components. SIAM Journal on
Computing 1985;14:799-817.

[11] Liu R, Ntafos S. On decomposing polygons into uniformly monotone
components. Information Processing Letters 1988;27:85-9.

[12] Kleinberg], Tardos E. Algorithm design. Boston, MA: Addison-Wesley; 2006.

[13] Preparata FP, Supowit KJ. Testing a polygon for monotonicity. Information
Processing Letters 1981;12:161-4.

[14] Arkin EM, Connelly R, Mitchell JSB. On monotone paths among obstacles
with applications to planning assemblies. In: Proceedings of the 5th annual
symposium on computational geometry. 1989. p. 334-43.

[15] Borradaile G, Klein P, Mozes S, Nussbaum Y, Wulff-Nilsen C. Multiple-source
multiple-sink maximum flow in directed planar graphs in near-linear time. In:
Proceedings of the 52nd annual [EEE symposium on foundations of computer
science. 2011. p. 170-79.

[16] Ahuja RK, Magnanti TL, Orlin JB. Network flows: theory, algorithms, and
applications. Englewood Cliffs, NJ: Prentice-Hall; 1993.

[17] van Lint JH, Wilson RM. A course in combinatorics. Cambridge; 1992.

[18] Suri S. A linear time algorithm with minimum link paths inside a simple
polygon. Computer Vision, Graphics, and Image Processing 1986;35:99-110.

[19] Wei X, Joneja A. On minimum link monotone path problems. Transactions of
the ASME Journal of Computing and Information Science in Engineering 2011;
11(3):031002. http://dx.doi.org/10.1115/1.3615687.

http://dx.doi.org/doi:10.1115/1.3615687

	Optimal uniformly monotone partitioning of polygons with holes
	Introduction
	Preliminaries
	Minimum subdivisions and maximum matchings
	Efficient construction by maximum flow
	Efficiently computing the maximum flow
	Collapsing subtrees
	Collapsing monotone chains
	Collapsing zig--zag chains
	Maximum flow in the collapsed network

	Final path fairing
	Concluding remarks
	Acknowledgments
	References

