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1 Motivation

Computer graphics is the source of many interest-
ing and challenging applications for the design of
geometric algorithms and data structures. Appli-
cations in global illumination simulation and ra-
diosity [7] have motivated our study of problems
involving lines in 3-space. In particular we are in-
terested in geometric data structures for answer-
ing wvisibility range queries. Given a 3-dimensional
scene defined by a set of polygonal patches, we wish
to preprocess the scene to answer queries involv-
ing the set of patches of the scene that are visible
from a given range of points over a given range of
viewing directions. Queries of this form are central
to global illumination simulation. This has led us
to the study of data structures for storing and ac-
cessing subdivisions over directed-line space, where
each point in this space is associated with a di-
rected line in 3-space.

In the search for these data structures, we have
come across an important problem. Our solution to
this problem shows that choices for the data struc-
tures used to store the 3-dimensional scene may
have a considerable impact on the design of data
structures and algorithms for answering visibility
range queries.

Data structures based on recursive subdivisions
of space are popular methods for answering range
queries. These data structures recursively subdi-
vide space into cells until some criterion is satisfied.
Such criterion typically involve the number of data
objects that intersect the cell, but in the case of ap-
proximations may also involve the size of the cell,
measured by its diameter or volume [6]. The prob-
lems of determining the size of a cell and whether
a cell represents a nonempty region of space are

implicit (and usually trivial) in the design of algo-
rithms for building these data structures.

In the case of directed lines in 3-space, there is
a natural way of subdividing space. Given two di-
rected lines, we may assign them an orientation,
which is either positive, zero, or negative accord-
ing to the direction of one line relative to a viewer
looking along the direction of the other. Thus
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Figure 1: Orientations.

we may use directed lines in 3-space as a basis
for subdividing directed-line space. An equivalent
formulation, which may be more natural in some
circumstances, is to consider subdivisions of line
space according to whether lines intersect an ori-
ented polygonal patch. In particular, given a con-
vex polygonal patch in 3-space, whose boundary is
oriented in some direction, we say that a directed
line stabs the patch if it intersects the interior of
patch and it crosses the oriented patch according
to a right-handed transversal. Fquivalently the line
has a positive orientation with respect to every di-
rected edge of the patch. Such a line is also called
a transversal.

Consider a set of convex, oriented polygonal
patches in 3-space. Let n denote the total num-
ber of edges in all the patches. Teller showed that
in O(n?) time it is possible to determine the exis-
tence of a transversal of these patches, and more
generally to compute a complete description of the



set of stabbing lines [9]. Amenta [2] showed that
if the patches consist of a set of orthogonal (that
is, axis-aligned) rectangles, then the existence of a
transversal can be determined in more efficiently
in O(n) time by a variation of linear programming.
Megiddo [5] showed that the orthogonal case can be
solved in O(n) time in all fixed dimensions through
linear programming. This suggests one advantage
of using orthogonal rectangles and lines in 3-space
(as arise in quad-trees, k-d trees, and R-trees [6],
for example) as the basis of subdivisions of directed
line space.

An extension to this problem is that of deter-
mining not just the existence of a stabbing line,
but various properties and functions of this set of
lines. Examples of this include computing random
samples over this set, balanced spatial decomposi-
tions, and measurements of the size or diameter of
this set. It is the latter problem that we consider
here. We introduce a way of measuring the size of a
set of directed lines that stab a set of n polygonal
patches in 3-space. We show that if the patches
are orthogonal rectangles, then this measure can
be approximated in O(n) time.

2 The Size of a Set of Lines

Let P denote a set of oriented convex polygonal
patches in 3-space. Let S(P) denote the set of
stabbers, that is, the set of directed lines in 3-
space that stab every patch in P. Given two lines
ly, Ly € S(P), let dist({y,(,) denote the minimum
distance between these lines, and let ang((,,(,) de-
note the minimum angle of rotation to make /¢,
parallel to {,. Intuitively, these two quantities will
be small if patches of P define a narrow “tunnel”
through which the stabbers must pass.

Because the distance and angle taken from dif-
ferent domains, and since our size will depend on
both, we normalize them over the interval [0, 1] as
follows. We assume that we are given an orthogo-
nal cube ' in 3-space that encloses the scene and
all of the patches of P. Let D denote the diam-
eter of C'. Every line in S(P) intersects C, and
hence the closest distance between any pair of stab-
bers is at most D. Define the normalized distance
dist’(¢,, ;) to be dist({,,(,)/D. We also assume
that the lines of S(P) lie within a region of angu-

lar diameter 7/2, and thus the angle between ¢,
and {, can be at most /2. We define the normal-
ized angle ang'({,, () to be sinang({,,(,). Clearly
both normalized quantities lie in the interval [0, 1].
Finally we define the size of S(P) to be

size(P) = sup  max(ang'({,,{,),dist'({,,(,)).
Ly Lg€S(P)

Intuitively, if the set P admits a set stabbers that
have a very narrow range of angles and distances,
then size(P) will be small.

Although we do not know of an efficient way
to compute size( P) without of computing a com-
plete representation of S(P) (which can be done
in roughly O(n?) time [9]), we claim that we can
approximate the size in O(n) time. Our approach
combines the use of Plicker coordinates and vari-
ants of linear programming spaces of fixed dimen-
sion.

3 Plucker Coordinates

Perhaps the most elegant method for represent-
ing directed lines in 3-space is through the use of
Pliicker coordinates. Let £ be a directed line in 3-
space, and let ¢ and b be any two points on £, such
that £ is directed from a to b. Let [ag, a1, az, as] and
[bo, by, b2, bs] be the homogeneous coordinates of a
and b with ag,bg > 0 be the homogenizing coordi-
nates (so that the Cartesian coordinates of a, for
example, are (ay/ag,az/ag,as/ag)). The Plicker
coordinates of { are the six real numbers

[7T017 To2, T03, 723, 731, 7T12]7

where m;; = a;b; — a;b;. It is easy to see that
any positive scalar multiple of the coordinate vec-
tor represents the same line. Thus we can regard
the Pliicker coordinates of a directed line as a point
in projective 5-space P° [8]. Not all Pliicker coor-
dinates represent lines in 3-space. The coordinates
of aline in 3-space must satisfy the quadratic equa-
tion
To1723 + T02m31 + T12mo3 = 0.

The locus of points satisfying this equation is called

the Grassmann manifold (also called the Pliicker
hypersurface).



Consider two directed lines £, and {, in 3-space,
and let p and ¢ denote their respective Pliicker co-
ordinates. Define p X ¢ to be

P01923 + Po2¢31 + Po3qi2 + P239o1 + P31902 + P12903-

Define the orientation of {, relative to {, to be the
negation of the sign of p X ¢. Observe that the
set of lines ¢, that have a particular orientation
relative to a fixed line {, is the intersection of a
halfspace in 5-dimensional Pliicker space with the
Grassmann manifold.

Given a set P of oriented polygonal patches in
3-space, two lines {, and {, are in the same ori-
entation class (o-class) relative to P if both have
the same orientations with respect to all the lines
of P. The set S(P) is the particular o-class that
we are interested in. These two lines are in the
same isotopy class (i-class) relative to P if there
is way of continuously mapping (, to {, (a con-
nected path on the Grassmann manifold between
their respective Pliicker coordinates) such that all
the points on this path are in the same o-class. A
striking feature of lines in 3-space is that two lines
may be in the same o-class relative to P, but are
not in the same i-class [4]. We say that two di-
rected lines ¢, and {, are in the same orthogonal
sign class (s-class) if the signs of the components
of the 3-dimensional directional vectors for the two
lines are equal. There are 8 orthogonal sign classes,
one for each of the coordinate octants.

Given a set of n oriented patches P, it follows
that S(P) is the intersection of the Grassmann
manifold together with a set of n halfspaces (one
for each line of P) in Pliicker space. An i-class
of S(P) is any connected component of this inter-
section. Consider a set of patches P consisting of
a set of oriented orthogonal rectangles in 3-space,
and suppose that we consider only lines in a single
orthogonal sign class. (This will be the case if for
each coordinate axis there is at least one rectangle
in P orthogonal to this axis.) Amenta has shown
in this case S(P) is connected [1], that is, if it is
nonempty, then it has a single i-class. This is one of
the important properties possessed by orthogonal
constraints.

4 The Approximation

For our approximation we assume that we are given
a set P of n oriented orthogonal rectangles in 3-
space, and a cube (' enclosing the rectangles of
P. To restrict ourselves to a single orthogonal sign
class, we assume that P contains at least one rect-
angle orthogonal to each of the three coordinate
axes. If this is not the case, then we may add an
appropriate face of C' to enforce this constraint.
We may assume without loss of generality that the
lines of S(P) are directed into the positive octant.

Our approximation is based on two observations.
The first is that the first three Pliicker coordi-
nates indicate the direction of a line. In partic-
ular, it is easy to verify that if (7wo1, 7m0z, To3) are
the first three coordinates of a directed line ¢ (not
a line at infinity), then this vector is the direc-
tional vector for £. Because all scalar multiples
of Pliicker coordinates represent the same line, we
may apply a suitable normalization by requiring
that w91 + 72 + 793 = 1. From our assumption that
lines are directed into the positive octant, these co-
ordinates will all lie within the interval [0,1]. By
computing bounds on these three normalized com-
ponents for all lines in S(P), we can bound the
range of possible line angles.

The second observation is that, although it is dif-
ficult to bound the normalized distances between
lines, it is a consequence of the fact that P con-
sists of orthogonal rectangles that if there are two
lines of S(P) with a large normalized distance, then
there are two lines of S(P) whose normalized an-
gle is proportionately as large. This does not hold
for arbitrary convex polygonal patches. Thus, it
suffices to compute an approximation to the max-
imum normalized angle.

Here is the approximation procedure. Given the
set of patches P, convert each directed side of each
rectangle of P into a halfspace in 6-dimensional
Pliicker space. Add to this set of halfspaces the
constraint mgy + w2 + o3 = 1. Observe that any
line directed into the positive octant intersects this
plane in a point whose coordinates are in the in-
terval [0,1]. It follows from Amenta’s results [1]
that the resulting system of O(n) linear inequali-
ties is of LP-type [3]. For each axis, i € {1,2,3},
invoke any linear time procedure for generalized
linear programming (in dimension 6) to determine



lower and upper bounds on the i-th coordinate, de-
noted mg; and 7T6|:Z», respectively. If the system is
infeasible, then return an indication of this. Oth-
erwise return the maximum width,

_ + -
A= mZ:;LX (71'072» — 7r072»)

as the approximation. Observe that 0 < A < 1.
The running time is dominated by the O(n) time
needed for generalized linear programming in di-
mension 6 [3].

5 Analysis

In this section we show that the above algorithm
returns a value that is within a constant factor of
size(P). In particular, we prove the following re-
sult.

Theorem 5.1 Given a set of oriented orthogonal
patches P, let A denote the value returned by the
size approzimation algorithm of the previous sec-
tion. Then

1 size(P)
— < ——=< 4\/5.
32— A T

The proof begins with a series of technical lem-
mas. The first lemma provides bounds on the angle
between two vectors, in terms of bounds on the dif-
ferences in their coordinates.

Lemma 5.1 Let pg and py be two points in 3-space
that lie in the positive octant on the plane T : x +
y+2z=1, and let

A = max(|po.z — p1.2|, |po.y — p1.y|, |po-z — p1.2]).

Letting o denote the origin, consider the two vectors
0py and opy, and let 8 denote the angle between
these vectors. Then

A

Proof: We present the lower and upper bounds
separately. Define A, = |pp.z — py.z|, and define
A, and A, analogously.

Lower Bound. Assume without loss of general-
ity that A = A,. Consider, the triangle formed
by the intersection of T with the positive octant

(b)
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Figure 2: The lower bound.

and the trapezoidal region on this triangle shown
in Figure 2(a). For a fixed A, the smallest angle
between any two vectors, occurs when points pg, p1
lie on a plane containing the z-axis. Let ¢ denote
the angle between this plane and the z-axis, and
let a, denote the length of the segment on this
plane between the origin and 7T'. (See Figure 2(b).)
We see that a,cos¢ 4 a,sing = 1, which gives
a, = 1/(cosp +sin ) and 1/v/2 < a, < 1. Con-
sider ag, a1, and a, from Figure 2(c). By similar
triangles, we have the relations
1 _ 1—2’0 _ 1—(A—|—2’0)

Gy ap ay

Thus ag = a,(1—2p) and a3 = a,(1—(A+2p)). The
angle # between the two directions can be expressed
as § = 01 — 0y. The value of tan 8 = tan(6; — 6p) is
then

a,A
a2(1 = 20)(1 — (A + 20)) + z0(A + 20)’

tanf =

where tan 6y = zo/ap = z0/a,(1 — 2p) and tan b, =
z1/a1 = (A+20)/a,(1—(A+2y)). The value of z

ranges from 0 to 1 — A. To get the minimum value



of tan 8, we find the maximum value of its denom-
inator. The denominator of tan# is a quadratic in
zg whose leading coeflicient is 1 + ai > 0. Thus
the maximum value of the denominator occurs at
one of the extreme values z5p = 0 or z5 = 1 — A.
We have tan 6 equal to the value A/a,(1 — A) for

2o =0 and a,A/(1 — A) for zp =1 — A, where

a,A A
<
1-A 7 a,(1-A)

because A is fixed and 1/\/5 < a, < 1. Thus, the
lower bound of tan @ is

A a,A
<
V2(1-A) T 1-A

< tané.

Figure 3: The upper bound.

Upper Bound. Let [(pgp1) be the length of seg-
ment pop1. In Figure 3(a), each one of ranges A,
Ay, or A, will result in a segment of length V2A,,
\/§Ay or V2A, along the plane T'. The maximum
length of segment connecting any two points of the
intersection of T' and the positive octant happens
when two or three of A,, Ay, A, are equal to A,
and [ is the longest diagonal of the hexagon illus-
trated in Figure 3(b). Each pair of parallel edges

of the hexagon are separated by distance at most
V2A. This implies that the length of its edge is
at most 1/2/3A, and the length of the diagonal
is at most \/8/3A. Thus, the bound of {(popy) is
I(pop1) < /B/3A.

Let d be the distance from the origin to any
point on the triangle defined by plane 7. Then d is
bounded as 1/y/3 < d < 1, where d = 1 happens at
the corners of this triangle, d = 1/4/3 happens at
the triangle’s centroid (1/3,1/3,1/3). The relation
between angle 8 of vectors op,, op; and the length
of segment pop;, as depicted in Figure 3(c), is

[|0bol| tan & < [lopy — op|| < [|0py || sin 6.
Combining with inequalities on [(pop1) and d, we
have the upper bound on of tan#@, ||op, — op,|| =
[(pop1),

tan 0

8
< ||lopyl| tan 8 < < JjA.
\/§ > H POH > (Popl) =V3

That is, tanf < 2v2A. The quantity sin @
has the properties sinf < tanf and sinf =
tanf/V1 + tan?@. It follows that the bounds on

sin 6 are
A . A
3v2 T (1-A)2(8A7+1)
since (1—A) < 1and (8A%+1) < 9. This completes

the proof. O
For the next lemma, define disto.(p, ¢) to be the

<sinf < 2v2A,

L, distance between two points, that is, the maxi-
mum absolute difference between corresponding co-
ordinates of p and ¢. It is easy to see that

dist(p, q) ) .
——— < disteo(p, q) < dist(p, q).
S (P, q) (P, q)

We can define the L., distance between any two
sets as the minimum L., distance between any pair
of points from each of the sets. The next lemma
states that if two lines are distance d apart then
there is a projection to a coordinate plane that at-
tests to this separation.

Lemma 5.2 Let {1 and {3 be two lines in 3-space,
let d = dist({y,(3) and let p be any point on (;.
There exists a coordinate plane such if £}, t5 and p’
denote the orthogonal projections of these elements
onto this plane, then

disto. (p', 0) >

4
7



Proof: Let d' = d/+/3. Suppose to the contrary
that in all three orthogonal coordinate projections,
the distance from p’ to ¢} is less than d’. Then it
follows that disteo(p, {2) (in 3-space) would be less
than d’. This implies that dist(p,{y)/v3 < d’, and
hence

dist({y, l3) < dist(p, ls) < d,

a contradiction. O

The third lemma provides a bound on the angle
between two lines in the plane, given conditions
on the vertical distance between the lines at some
point.

Lemma 5.3 Consider two directed lines {1 and
ly in the plane both with positive slopes, and one
whose slope is at most 1. Suppose that they meet
at some point q, and within horizontal distance at
most h from ¢ the lines are vertically separated by
distance at least v. Let 8 denote the angle between
these lines. Then

0> mi ( 1 v )
sin min | —,——|.
- V3 hv/10

Figure 4: Lemma 5.3.

Proof: It is easy to see that the minimum value
of # is achieved when the horizontal distance is h,
the vertical distance is v, and the line with the
smaller slope has a slope of 1. The line with the
larger slope has a slope of at least (v + h)/h. By
basic trigonometry (the law for the tangent of the
difference of two angles, in particular) it follows
that ( /b1
v+ — v
tan ¥ > L+ (v+h)/h  2h+v

If v < h then we have tan 6 > v/(3h) implying that
sinf > v/(hy/10). On the other hand, if v > h,
then we have tan@ > h/2h = 1/2, from which we
have sin 6 > 1//3. O

The analysis of the size approximation is based
on proving the following main lemma. Intuitively
it states that if there are two lines in S(P) that
are separated by a large normalized distance, then
there are two lines in S(P) that are separated by
a proportionately large normalized angle. Thus, in
order to approximate the size of P, it suffices to
approximate the range of angles. Recall that we
assume that P has been so constrained that the
lines of S(P) are directed into the positive octant,
and that all the patches of P lie within a cube C'.

Lemma 5.4 (Main Lemma) Let {1,{; € S(P).
Then there exist lines {5,y € S(P) such that

diSt/(ﬁl, KQ)
vio

Assuming this result for now, we can prove The-
orem 5.1 as follows. Consider the value A that is
returned by the approximation. Thinking of the

ang’(ﬁg, £4) Z

directional component of the Pliicker coordinates,
(701, To2, To3), as (,y, #) coordinates, recalling the
normalization 7oy + To2 + To3 = 1, and the fact that
we consider lines directed into the positive octant
(implying that mo; > 0), we may apply Lemma 5.1
to infer that there exist two lines (3, {4 € S(P)such
that

A
—— < ang'({s,0,) < A2V/2.
3\/§—ang(3 4)—

By its definition, size(P) is at least as large as
ang’({s, (4), implying that

A
size(P) > —=.
(P)z 35
If size(P) is determined by the normalized angle
between two lines (3,04 € S(P), then we have
size(P) = ang’({3,44) < A2v/2 < Adv/5.

If, on the other hand, size(P) is determined by
the normalized distance between two lines {1,y €
S(P) then from the Main Lemma there exist
two lines (3,04 € S(P) such that ang'({s,(4) >
dist({y,03)/+/10. From this and the inequality

above it follows that
size( P)=dist/(£y, {y) <ang'({3,£4)V10 < AdV/5,

which establishes Theorem 5.1.



6 Proof of the Main Lemma

Consider lines {1,y € S(P). We assume that these
lines are in general position. Let d = dist({y,(3).
Let ()}, and C}; denote the low and high end-
points of the enclosing cube €. Thus, for exam-
ple, all points in C' have z-coordinates satisfying
Cro.r <z < Chx. Given any object pin 3-space,
let p* denote its orthogonal projection onto the zy-
coordinate plane. Define p¥ and p® analogously.

Consider any point on ¢4 within the cube C'. Ap-
ply Lemma 5.2. Without loss of generality, we
may assume that the axes have been labeled so
that the projection described in the lemma is on
the zy-coordinate plane, and that the projected
line with the smaller slope has slope at most 1
(by swapping the z and y axes if necessary). Let
d' = d//3. From the lemma it follows that at some
point within the cube the L., distance between this
point to {5 is at least d’, implying that the vertical
distance between this point and £, is at least d’.

Consider the vertical strip on the zy-coordinate
plane defined by the projections of the sides of the
cube of C,

Cror <z < Chpy.z.

Consider 5 and (3, the respective projections of {4
and {, onto the zy-plane. We define two lines (3
and {5 on the zy-plane. The lines {3 and £, will
be constructed so that these are their projections
onto the zy-plane. We consider three cases, as il-
lustrated in Fig. 5.

Case (a) If ¢ and (5 intersect within the strip,
then we let (5 = (5 and (§ = (7.

Otherwise one of the lines lies above the other
(has a larger y-coordinate as shown in Fig. 6)
throughout the strip. We may assume without loss
of generality that (y lies above ;. Let (5 be the
line connecting the intersection of {§ with the left
side of the strip to the intersection of (5§ with the
right side of the strip.

Case (b) If {4 has the smaller slope, then let (3
be (3.

Case (c¢) If {4 has the larger slope, then let (5 be
0.

Let 6 denote the angle between (5 and (]. The
diameter of C'is D, implying that the width of the
strip is D’ = D/+/3. Observe that within horizon-
tal distance at most D’ of the intersection of €3 and
(3, the vertical distance between the lines is at least

z_yz
s |2_|3
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4 z
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Figure 5: Projection onto the zy-plane.

d’, and that (5 has slope at most 1. By applying
Lemma 5.3 (where (f and (3 are the {; and {3 in
Lemma 5.3, respectively) it follows that

sinf > min(L dil) = min(L L)

- V3 D'V10 V3 DV10/)
Since d < D, the second term is always smaller,
implying that sin 6 > d/(D+/10).

Observe that if we can find two lines (3,0, €
S(P) whose projections are (5 and (7, then the an-
gle between these two lines in 3-space will be at
least as large as #, and so establish the desired
bound of Lemma 5.4 and completing the proof.
The remainder of the proof is concerned with find-
ing these lines.

First we observe that in Case (a) we may select
l3 = {5 and {4 = {1 to complete the proof. Thus
it suffices to consider cases (b) and (c). Since (] is
equal to either {§ or (3, if we choose {4 to be equal
to £y or lq, respectively, then €4 € S(P). Thus it
suffices to find /5.

Let H denote the plane formed by extruding the
line (3 parallel to the z-direction. Also consider the
extrusion of the strip as well, to the region bounded
between two planes that are orthogonal to the -
axis. By choosing any line (in general position)
on I, it will follow that its xy-projection is (3.
We may think of each patch in P as consisting of



four directed, axis-parallel constraint lines. Let (.
denote such a line that is parallel to the z-axis.

To establish whether any given line ¢ in 3-
space satisfies this constraint, it suffices to con-
sider whether the projection £* of the line £ onto
the zy-plane lies above or below (depending on the
direction of (,) the point r onto which (, projects.
Since all patches lie within C', whose projection lies
within the strip, r lies within in the strip. By our
choice of (% in either of cases (b) or (c), if both (5
and (3 lie below (above) point 7, then (3 lies below
(above) r as well. Thus by choosing (s to lie on H,
it follows that it will satisfy any z-axis parallel con-
straints that both ¢, and /5 satisfy. Also observe
that we have chosen (5 so that it is directed into the
positive quadrant, and so it satisfies the sign-class
constraint (at least with respect to 2 and y).

We will apply this same analysis to the other
two orthogonal projections. First consider y-axis
parallel constraint lines. For ¢ = 1,2, see Fig. 6,
let @; and b; denote the intersections of line ¢; with
the lower (low z) and upper (high 2) sides of the
strip, respectively. Let h, and h; denote the lines
along which H intersects the lower and upper sides
of the strip.

Figure 6: The enclosing cube.

By our assumption that (] lies below (3 within
the strip, and our assumption on the sign class of
the lines it follows that @y lies on h, and by lies on

hy and
ai.y < {az.y, 07y} < b3y

(where a < {b,¢} means that « < b and a < ¢).
We also have, for ¢ = 1,2, a¥.z < b¥.z, by the sign
assumption. Let @), and )] denote the y-parallel
projections of ay and by onto h, and hy respectively.

Consider the projection of the strip onto the zz-
coordinate plane. (See Fig. 7.) The segments a;a;
and b1 by project onto segments ajay and byb5. Let-
ting (4 denote the projection of {3 onto the zz-
plane, to guarantee that s satisfies all y-parallel
constraints that £, and £y do, we should select {3
so that ¢} intersects both of these segments. Fur-
thermore, if (] and (3 intersect at some point pY
within the projected strip, then (§ should also in-
tersect this point (for example, as the dashed line
in the figure does).

=ty b
X
@
ARV hs
ai azzalzy
f:-'ly K p%/ hb
X
(b)
ha

Figure 7: Projection onto the zz-plane.

We consider two cases illustrated in Fig. 7.
Case Fig. 7(a) In the first case, (] and ¢ do not
intersect within the strip. Consider the projections
onto the zy-plane (see Fig. 8). Our requirement
that (3 intersects the segments aja) and byb3, im-
plies that in this projection, the line % intersects
the segments a{a%’ and /"6 (shown in heavy lines
in the figure).

If af.z > af.z (see Figs. 8(a)) then because the
y-projections of the lines do not intersect within
the strip, we have 0.z > b3.z. Let {3 be the line
passing through a), and b}. It is easy to see that
{3 satisfies the sign-class constraints as well as all
x-parallel constraints because it lies entirely to the
right of the line {5 and to the left of the line £
while in the strip.



(b)
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Figure 8: Projection onto the zy-plane.

On the other hand, if a7.z < a3.z (see Figs. 8(b)-
(c)) then we have b7.z < b3.z. There are two sub-
cases to consider.

(1) If line (7 intersects the segment b{"by or line

0% intersects segment afay’ (the former occurs

in Fig. 8(b)) then let {3 be the line, either ¢4
or {5, whose projection satisfies this condition.
(We would take €3 = {4 in the figure.) Since
(5 is equal to either {1 or {3 it is in S(P).

(11) If both lines £ and (5 fail to intersect segments
ajaly’ and b"by (see Fig. 8(c)), then it follows
that (% intersects h, to the left of afaf’ and (
intersects hy to the right of 4703, Let (> be the
line extending through a1b,. This line satisfies
all z-parallel constraints because it lies in the
portion of the strip the right of {3 and to the
left of 7.

ay a

Figure 9: Projection onto the zy-plane.

Case Fig. 7(b) In the second case, (] and (;
intersect at some point pY within the strip. As
before, consider the projections onto the zy-plane
(see Fig. 9). As before, there are two subcases.
Either ay.z < 3.z, implying that b7.2 > b3.2, or
ai.z > aj.z, implying that b7.z < b5.2. These two
cases are symmetric with respect to a 180 degree



rotation and a reversal of a’s and b’s, 1’s and 2’s,
so it suffices to consider just the former case.

The projected intersection point pY defines a y-
parallel line (passing through ¢; and (3) and in-
tersecting H at some point p. The zy-projection
of p, denoted p*, is the intersection of the line
segments a{bf" and a5’b%. (This is because these
are zy-projections of unique lines on H whose zx-
projections are ajby and ajby, respectively.) Let ¢*
denote the intersection of lines ({ and (3.

(1) If line (% intersects the segment ajaf’ (see
Fig. 9(a)), then we claim that the line ex-
tending the segment ¢"p” intersects both the
segments afaf’ and bi7b%. This is because ¢”
lies within the double wedge whose apex is p
and whose extreme lines pass through the end-
points of these segments. In this case let /3
be the unique line on H projecting onto the
segment ¢“p*. Because it lies on H and inter-
sects segments afaf’ and bTb3, it satisfies the
z- and y-parallel constraints of P. Because
it passes through ¢” it satisfies the z-parallel
constraints of P. It satisfies the sign-class con-
straints because the slope of the line lies be-
tween the (positive) slopes of a7b{" and a5'b3.

(11) On the other hand, if line (5 does not inter-
sect the segment ajay’ (see Fig. 9(b)), then
it follows from slope considerations that it in-
tersects h, to the left of this segment. Let /3
be the unique line on H that projects onto the
segment a7bf”. (Observe that ¢” lies outside of
the strip in this case.) This line passes through
p”, and intersects segments ajaf’ and b3,

and hence it satisfies the z- and y-parallel con-
straints of P. It satisfies the z-parallel con-
straints because it lies in the portion of the
strip to the left of {7 and the right of (5. Fi-
nally, it satisfies the sign-class constraints be-
cause af.z < bf¥.z.

This completes the case analysis for the construc-
tion of {3. Because we showed in all cases that
{3 satisfies all three orthogonal constraints as well
as the sign-class constraints, it is in S(P), and
this completes the proof of the Main Lemma and,
hence, the analysis of the approximation algorithm.
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