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� Motivation

Computer graphics is the source of many interest�
ing and challenging applications for the design of
geometric algorithms and data structures� Appli�
cations in global illumination simulation and ra�
diosity ��� have motivated our study of problems
involving lines in ��space� In particular we are in�
terested in geometric data structures for answer�
ing visibility range queries� Given a ��dimensional
scene de�ned by a set of polygonal patches	 we wish
to preprocess the scene to answer queries involv�
ing the set of patches of the scene that are visible
from a given range of points over a given range of
viewing directions� Queries of this form are central
to global illumination simulation� This has led us
to the study of data structures for storing and ac�
cessing subdivisions over directed�line space	 where
each point in this space is associated with a di�
rected line in ��space�

In the search for these data structures	 we have
come across an important problem� Our solution to
this problem shows that choices for the data struc�
tures used to store the ��dimensional scene may
have a considerable impact on the design of data
structures and algorithms for answering visibility
range queries�

Data structures based on recursive subdivisions
of space are popular methods for answering range
queries� These data structures recursively subdi�
vide space into cells until some criterion is satis�ed�
Such criterion typically involve the number of data
objects that intersect the cell	 but in the case of ap�
proximations may also involve the size of the cell	
measured by its diameter or volume �
�� The prob�
lems of determining the size of a cell and whether
a cell represents a nonempty region of space are

implicit �and usually trivial� in the design of algo�
rithms for building these data structures�

In the case of directed lines in ��space	 there is
a natural way of subdividing space� Given two di�
rected lines	 we may assign them an orientation	
which is either positive	 zero	 or negative accord�
ing to the direction of one line relative to a viewer
looking along the direction of the other� Thus
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we may use directed lines in ��space as a basis
for subdividing directed�line space� An equivalent
formulation	 which may be more natural in some
circumstances	 is to consider subdivisions of line
space according to whether lines intersect an ori�
ented polygonal patch� In particular	 given a con�
vex polygonal patch in ��space	 whose boundary is
oriented in some direction	 we say that a directed
line stabs the patch if it intersects the interior of
patch and it crosses the oriented patch according
to a right�handed transversal� Equivalently the line
has a positive orientation with respect to every di�
rected edge of the patch� Such a line is also called
a transversal�

Consider a set of convex	 oriented polygonal
patches in ��space� Let n denote the total num�
ber of edges in all the patches� Teller showed that
in O�n�� time it is possible to determine the exis�
tence of a transversal of these patches	 and more
generally to compute a complete description of the



set of stabbing lines ���� Amenta ��� showed that
if the patches consist of a set of orthogonal �that
is	 axis�aligned� rectangles	 then the existence of a
transversal can be determined in more e�ciently
in O�n� time by a variation of linear programming�
Megiddo ��� showed that the orthogonal case can be
solved in O�n� time in all �xed dimensions through
linear programming� This suggests one advantage
of using orthogonal rectangles and lines in ��space
�as arise in quad�trees	 k�d trees	 and R�trees �
�	
for example� as the basis of subdivisions of directed
line space�

An extension to this problem is that of deter�
mining not just the existence of a stabbing line	
but various properties and functions of this set of
lines� Examples of this include computing random
samples over this set	 balanced spatial decomposi�
tions	 and measurements of the size or diameter of
this set� It is the latter problem that we consider
here� We introduce a way of measuring the size of a
set of directed lines that stab a set of n polygonal
patches in ��space� We show that if the patches
are orthogonal rectangles	 then this measure can
be approximated in O�n� time�

� The Size of a Set of Lines

Let P denote a set of oriented convex polygonal
patches in ��space� Let S�P � denote the set of
stabbers	 that is	 the set of directed lines in ��
space that stab every patch in P � Given two lines
�p� �q � S�P �	 let dist��p� �q� denote the minimum
distance between these lines	 and let ang��p� �q� de�
note the minimum angle of rotation to make �p
parallel to �q� Intuitively	 these two quantities will
be small if patches of P de�ne a narrow �tunnel�
through which the stabbers must pass�

Because the distance and angle taken from dif�
ferent domains	 and since our size will depend on
both	 we normalize them over the interval ��� 
� as
follows� We assume that we are given an orthogo�
nal cube C in ��space that encloses the scene and
all of the patches of P � Let D denote the diam�
eter of C� Every line in S�P � intersects C	 and
hence the closest distance between any pair of stab�
bers is at most D� De�ne the normalized distance

dist���p� �q� to be dist��p� �q��D� We also assume
that the lines of S�P � lie within a region of angu�

lar diameter ���	 and thus the angle between �p
and �q can be at most ���� We de�ne the normal�

ized angle ang���p� �q� to be sin ang��p� �q�� Clearly
both normalized quantities lie in the interval ��� 
��
Finally we de�ne the size of S�P � to be

size�P � � sup
�p��q�S�P �

max�ang���p� �q�� dist
���p� �q���

Intuitively	 if the set P admits a set stabbers that
have a very narrow range of angles and distances	
then size�P � will be small�

Although we do not know of an e�cient way
to compute size�P � without of computing a com�
plete representation of S�P � �which can be done
in roughly O�n�� time ����	 we claim that we can
approximate the size in O�n� time� Our approach
combines the use of Pl�ucker coordinates and vari�
ants of linear programming spaces of �xed dimen�
sion�

� Pl�ucker Coordinates

Perhaps the most elegant method for represent�
ing directed lines in ��space is through the use of
Pl�ucker coordinates� Let � be a directed line in ��
space	 and let a and b be any two points on �	 such
that � is directed from a to b� Let �a�� a�� a�� a�� and
�b�� b�� b�� b�� be the homogeneous coordinates of a
and b with a�� b� � � be the homogenizing coordi�
nates �so that the Cartesian coordinates of a	 for
example	 are �a��a�� a��a�� a��a���� The Pl�ucker

coordinates of � are the six real numbers

����� ���� ���� ���� ���� �����

where �ij � aibj � ajbi� It is easy to see that
any positive scalar multiple of the coordinate vec�
tor represents the same line� Thus we can regard
the Pl�ucker coordinates of a directed line as a point
in projective ��space P� ���� Not all Pl�ucker coor�
dinates represent lines in ��space� The coordinates
of a line in ��space must satisfy the quadratic equa�
tion

������ � ������ � ������ � ��

The locus of points satisfying this equation is called
the Grassmann manifold �also called the Pl�ucker
hypersurface��



Consider two directed lines �p and �q in ��space	
and let p and q denote their respective Pl�ucker co�
ordinates� De�ne p� q to be

p��q�� � p��q�� � p��q�� � p��q�� � p��q�� � p��q���

De�ne the orientation of �p relative to �q to be the
negation of the sign of p � q� Observe that the
set of lines �p that have a particular orientation
relative to a �xed line �q is the intersection of a
halfspace in ��dimensional Pl�ucker space with the
Grassmann manifold�

Given a set P of oriented polygonal patches in
��space	 two lines �p and �q are in the same ori�

entation class �o�class� relative to P if both have
the same orientations with respect to all the lines
of P � The set S�P � is the particular o�class that
we are interested in� These two lines are in the
same isotopy class �i�class� relative to P if there
is way of continuously mapping �p to �q �a con�
nected path on the Grassmann manifold between
their respective Pl�ucker coordinates� such that all
the points on this path are in the same o�class� A
striking feature of lines in ��space is that two lines
may be in the same o�class relative to P 	 but are
not in the same i�class ���� We say that two di�
rected lines �p and �q are in the same orthogonal

sign class �s�class� if the signs of the components
of the ��dimensional directional vectors for the two
lines are equal� There are � orthogonal sign classes	
one for each of the coordinate octants�

Given a set of n oriented patches P 	 it follows
that S�P � is the intersection of the Grassmann
manifold together with a set of n halfspaces �one
for each line of P � in Pl�ucker space� An i�class
of S�P � is any connected component of this inter�
section� Consider a set of patches P consisting of
a set of oriented orthogonal rectangles in ��space	
and suppose that we consider only lines in a single
orthogonal sign class� �This will be the case if for
each coordinate axis there is at least one rectangle
in P orthogonal to this axis�� Amenta has shown
in this case S�P � is connected �
�	 that is	 if it is
nonempty	 then it has a single i�class� This is one of
the important properties possessed by orthogonal
constraints�

� The Approximation

For our approximation we assume that we are given
a set P of n oriented orthogonal rectangles in ��
space	 and a cube C enclosing the rectangles of
P � To restrict ourselves to a single orthogonal sign
class	 we assume that P contains at least one rect�
angle orthogonal to each of the three coordinate
axes� If this is not the case	 then we may add an
appropriate face of C to enforce this constraint�
We may assume without loss of generality that the
lines of S�P � are directed into the positive octant�

Our approximation is based on two observations�
The �rst is that the �rst three Pl�ucker coordi�
nates indicate the direction of a line� In partic�
ular	 it is easy to verify that if ����� ���� ���� are
the �rst three coordinates of a directed line � �not
a line at in�nity�	 then this vector is the direc�
tional vector for �� Because all scalar multiples
of Pl�ucker coordinates represent the same line	 we
may apply a suitable normalization by requiring
that ����������� � 
� From our assumption that
lines are directed into the positive octant	 these co�
ordinates will all lie within the interval ��� 
�� By
computing bounds on these three normalized com�
ponents for all lines in S�P �	 we can bound the
range of possible line angles�

The second observation is that	 although it is dif�
�cult to bound the normalized distances between
lines	 it is a consequence of the fact that P con�
sists of orthogonal rectangles that if there are two
lines of S�P � with a large normalized distance	 then
there are two lines of S�P � whose normalized an�
gle is proportionately as large� This does not hold
for arbitrary convex polygonal patches� Thus	 it
su�ces to compute an approximation to the max�
imum normalized angle�

Here is the approximation procedure� Given the
set of patches P 	 convert each directed side of each
rectangle of P into a halfspace in 
�dimensional
Pl�ucker space� Add to this set of halfspaces the
constraint ��� � ��� � ��� � 
� Observe that any
line directed into the positive octant intersects this
plane in a point whose coordinates are in the in�
terval ��� 
�� It follows from Amenta�s results �
�
that the resulting system of O�n� linear inequali�
ties is of LP�type ���� For each axis	 i � f
� �� �g	
invoke any linear time procedure for generalized
linear programming �in dimension 
� to determine



lower and upper bounds on the i�th coordinate	 de�
noted ����i and ����i	 respectively� If the system is
infeasible	 then return an indication of this� Oth�
erwise return the maximum width	

� � max
i

�
����i � ����i

�

as the approximation� Observe that � � � � 
�
The running time is dominated by the O�n� time
needed for generalized linear programming in di�
mension 
 ����

� Analysis

In this section we show that the above algorithm
returns a value that is within a constant factor of
size�P �� In particular	 we prove the following re�
sult�

Theorem ��� Given a set of oriented orthogonal

patches P � let � denote the value returned by the

size approximation algorithm of the previous sec�

tion� Then




�
p
�
� size�P �

�
� �

p
��

The proof begins with a series of technical lem�
mas� The �rst lemma provides bounds on the angle
between two vectors	 in terms of bounds on the dif�
ferences in their coordinates�

Lemma ��� Let p� and p� be two points in ��space

that lie in the positive octant on the plane T � x �
y � z � 
� and let

� � max�jp��x� p��xj� jp��y � p��yj� jp��z � p��zj��

Letting o denote the origin� consider the two vectors

�op� and �op�� and let 	 denote the angle between

these vectors� Then

�

�
p
�
� sin 	 � �

p
��

Proof � We present the lower and upper bounds
separately� De�ne �x � jp��x � p��xj	 and de�ne
�y and �z analogously�
Lower Bound� Assume without loss of general�
ity that � � �z � Consider	 the triangle formed
by the intersection of T with the positive octant
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Figure �� The lower bound�

and the trapezoidal region on this triangle shown
in Figure ��a�� For a �xed �	 the smallest angle
between any two vectors	 occurs when points p�� p�
lie on a plane containing the z�axis� Let 
 denote
the angle between this plane and the x�axis	 and
let a� denote the length of the segment on this
plane between the origin and T � �See Figure ��b���
We see that a� cos
 � a� sin
 � 
	 which gives
a� � 
��cos
 � sin
� and 
�

p
� � a� � 
� Con�

sider a�	 a�	 and a� from Figure ��c�� By similar
triangles	 we have the relations




a�
�


� z�
a�

�

� ��� z��

a�
�

Thus a� � a��
�z�� and a� � a��
����z���� The
angle 	 between the two directions can be expressed
as 	 � 	�� 	�� The value of tan 	 � tan�	�� 	�� is
then

tan 	 �
a��

a���
� z���
� ��� z��� � z���� z��
�

where tan 	� � z��a� � z��a��
� z�� and tan 	� �
z��a� � ���z���a��
� ���z���� The value of z�
ranges from � to 
��� To get the minimum value



of tan 		 we �nd the maximum value of its denom�
inator� The denominator of tan 	 is a quadratic in
z� whose leading coe�cient is 
 � a�� � �� Thus
the maximum value of the denominator occurs at
one of the extreme values z� � � or z� � 
 � ��
We have tan 	 equal to the value ��a��
��� for
z� � � and a����
��� for z� � 
��	 where

a��


��
� �

a��
���

because � is �xed and 
�
p
� � a� � 
� Thus	 the

lower bound of tan 	 is

�p
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���
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Figure �� The upper bound�

Upper Bound� Let l�p�p�� be the length of seg�
ment p�p�� In Figure ��a�	 each one of ranges �x	
�y	 or �z will result in a segment of length

p
��x	p

��y or
p
��z along the plane T � The maximum

length of segment connecting any two points of the
intersection of T and the positive octant happens
when two or three of �x��y��z are equal to �	
and l is the longest diagonal of the hexagon illus�
trated in Figure ��b�� Each pair of parallel edges

of the hexagon are separated by distance at mostp
��� This implies that the length of its edge is

at most
p
����	 and the length of the diagonal

is at most
p
����� Thus	 the bound of l�p�p�� is

l�p�p�� �
p
�����

Let d be the distance from the origin to any
point on the triangle de�ned by plane T � Then d is
bounded as 
�

p
� � d � 
	 where d � 
 happens at

the corners of this triangle	 d � 
�
p
� happens at

the triangle�s centroid �
��� 
��� 
���� The relation
between angle 	 of vectors �op�	 �op� and the length
of segment p�p�	 as depicted in Figure ��c�	 is

k �op�k tan	 � k �op� � �op�k � k �op�k sin 	�
Combining with inequalities on l�p�p�� and d	 we
have the upper bound on of tan 		 k �op� � �op�k �
l�p�p��	

tan 	p
�
� k �op�k tan 	 � l�p�p�� �

r
�

�
��

That is	 tan 	 � �
p
��� The quantity sin 	

has the properties sin 	 � tan 	 and sin 	 �
tan 	�

p

 � tan� 	� It follows that the bounds on

sin 	 are

�

�
p
�
�

�

�
���
p
����� � 
�

� sin 	 � �
p
���

since �
��� � 
 and �����
� � �� This completes
the proof� ut
For the next lemma	 de�ne dist��p� q� to be the

L� distance between two points	 that is	 the maxi�
mum absolute di�erence between corresponding co�
ordinates of p and q� It is easy to see that

dist�p� q�p
�

� dist��p� q� � dist�p� q��

We can de�ne the L� distance between any two
sets as the minimum L� distance between any pair
of points from each of the sets� The next lemma
states that if two lines are distance d apart then
there is a projection to a coordinate plane that at�
tests to this separation�

Lemma ��� Let �� and �� be two lines in ��space�

let d � dist���� ��� and let p be any point on ���

There exists a coordinate plane such if ���� �
�

� and p�

denote the orthogonal projections of these elements

onto this plane� then

dist��p
�� ���� �

dp
�
�



Proof � Let d� � d�
p
�� Suppose to the contrary

that in all three orthogonal coordinate projections	
the distance from p� to ��� is less than d�� Then it
follows that dist��p� ��� �in ��space� would be less
than d�� This implies that dist�p� ����

p
� � d�	 and

hence

dist���� ��� � dist�p� ��� � d�

a contradiction� ut
The third lemma provides a bound on the angle

between two lines in the plane	 given conditions
on the vertical distance between the lines at some
point�

Lemma ��� Consider two directed lines �� and

�� in the plane both with positive slopes� and one

whose slope is at most �� Suppose that they meet

at some point q� and within horizontal distance at

most h from q the lines are vertically separated by

distance at least v� Let 	 denote the angle between

these lines� Then

sin 	 � min
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Figure �� Lemma ����

Proof � It is easy to see that the minimum value
of 	 is achieved when the horizontal distance is h	
the vertical distance is v	 and the line with the
smaller slope has a slope of 
� The line with the
larger slope has a slope of at least �v � h��h� By
basic trigonometry �the law for the tangent of the
di�erence of two angles	 in particular� it follows
that

tan 	 � �v � h��h� 



 � �v � h��h
�

v

�h� v
�

If v � h then we have tan 	 � v���h� implying that
sin 	 � v��h

p

��� On the other hand	 if v � h	

then we have tan 	 � h��h � 
��	 from which we
have sin 	 � 
�

p
�� ut

The analysis of the size approximation is based
on proving the following main lemma� Intuitively
it states that if there are two lines in S�P � that
are separated by a large normalized distance	 then
there are two lines in S�P � that are separated by
a proportionately large normalized angle� Thus	 in
order to approximate the size of P 	 it su�ces to
approximate the range of angles� Recall that we
assume that P has been so constrained that the
lines of S�P � are directed into the positive octant	
and that all the patches of P lie within a cube C�

Lemma ��� �Main Lemma� Let ��� �� � S�P ��
Then there exist lines ��� �	 � S�P � such that

ang����� �	� � dist����� ���p

�

�

Assuming this result for now	 we can prove The�
orem ��
 as follows� Consider the value � that is
returned by the approximation� Thinking of the
directional component of the Pl�ucker coordinates	
����� ���� ����	 as �x� y� z� coordinates	 recalling the
normalization ����������� � 
	 and the fact that
we consider lines directed into the positive octant
�implying that ��i � ��	 we may apply Lemma ��

to infer that there exist two lines ��� �	 � S�P � such
that

�

�
p
�
� ang����� �	� � ��

p
��

By its de�nition	 size�P � is at least as large as
ang����� �	�	 implying that

size�P � � �

�
p
�
�

If size�P � is determined by the normalized angle
between two lines ��� �	 � S�P �	 then we have

size�P � � ang����� �	� � ��
p
� � ��

p
��

If	 on the other hand	 size�P � is determined by
the normalized distance between two lines ��� �� �
S�P � then from the Main Lemma there exist
two lines ��� �	 � S�P � such that ang����� �	� �
dist���� ����

p

�� From this and the inequality

above it follows that

size�P ��dist����� ����ang����� �	�
p

����

p
��

which establishes Theorem ��
�



� Proof of the Main Lemma

Consider lines ��� �� � S�P �� We assume that these
lines are in general position� Let d � dist���� ����
Let Clo and Chi denote the low and high end�
points of the enclosing cube C� Thus	 for exam�
ple	 all points in C have x�coordinates satisfying
Clo�x � x � Chi�x� Given any object p in ��space	
let px denote its orthogonal projection onto the zy�
coordinate plane� De�ne py and pz analogously�
Consider any point on �� within the cube C� Ap�

ply Lemma ���� Without loss of generality	 we
may assume that the axes have been labeled so
that the projection described in the lemma is on
the xy�coordinate plane	 and that the projected
line with the smaller slope has slope at most 

�by swapping the x and y axes if necessary�� Let
d� � d�

p
�� From the lemma it follows that at some

point within the cube the L� distance between this
point to �� is at least d

�	 implying that the vertical
distance between this point and �� is at least d

��
Consider the vertical strip on the xy�coordinate

plane de�ned by the projections of the sides of the
cube of C	

Clo�x � x � Chi�x�

Consider �z� and �z�	 the respective projections of ��
and �� onto the xy�plane� We de�ne two lines �z�
and �z	 on the xy�plane� The lines �� and �	 will
be constructed so that these are their projections
onto the xy�plane� We consider three cases	 as il�
lustrated in Fig� ��
Case �a	 If �z� and �z� intersect within the strip	
then we let �z� � �z� and �z	 � �z��
Otherwise one of the lines lies above the other

�has a larger y�coordinate as shown in Fig� 
�
throughout the strip� We may assume without loss
of generality that �� lies above ��� Let �z� be the
line connecting the intersection of �z� with the left
side of the strip to the intersection of �z� with the
right side of the strip�
Case �b	 If �� has the smaller slope	 then let �z	
be �z��
Case �c	 If �� has the larger slope	 then let �z	 be
�z��
Let 	 denote the angle between �z� and �z	� The

diameter of C is D	 implying that the width of the
strip is D� � D�

p
�� Observe that within horizon�

tal distance at most D� of the intersection of �z� and
�z		 the vertical distance between the lines is at least
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Figure �� Projection onto the xy�plane�

d�	 and that �z	 has slope at most 
� By applying
Lemma ��� �where �z	 and �z� are the �� and �� in
Lemma ���	 respectively� it follows that

sin 	 � min

�

p
�
�

d�

D�
p

�

�
� min

�

p
�
�

d

D
p

�

�
�

Since d � D	 the second term is always smaller	
implying that sin 	 � d��D

p

���

Observe that if we can �nd two lines ��� �	 �
S�P � whose projections are �z� and �z		 then the an�
gle between these two lines in ��space will be at
least as large as 		 and so establish the desired
bound of Lemma ��� and completing the proof�
The remainder of the proof is concerned with �nd�
ing these lines�
First we observe that in Case �a� we may select

�� � �� and �	 � �� to complete the proof� Thus
it su�ces to consider cases �b� and �c�� Since �z	 is
equal to either �z� or �

z
�	 if we choose �	 to be equal

to �� or ��	 respectively	 then �	 � S�P �� Thus it
su�ces to �nd ���
Let H denote the plane formed by extruding the

line �z� parallel to the z�direction� Also consider the
extrusion of the strip as well	 to the region bounded
between two planes that are orthogonal to the x�
axis� By choosing any line �in general position�
on H 	 it will follow that its xy�projection is �z��
We may think of each patch in P as consisting of



four directed	 axis�parallel constraint lines� Let �r
denote such a line that is parallel to the z�axis�

To establish whether any given line � in ��
space satis�es this constraint	 it su�ces to con�
sider whether the projection �z of the line � onto
the xy�plane lies above or below �depending on the
direction of �r� the point r onto which �r projects�
Since all patches lie within C	 whose projection lies
within the strip	 r lies within in the strip� By our
choice of �z� in either of cases �b� or �c�	 if both �z�
and �z� lie below �above� point r	 then �z� lies below
�above� r as well� Thus by choosing �� to lie on H 	
it follows that it will satisfy any z�axis parallel con�
straints that both �� and �� satisfy� Also observe
that we have chosen �z� so that it is directed into the
positive quadrant	 and so it satis�es the sign�class
constraint �at least with respect to x and y��

We will apply this same analysis to the other
two orthogonal projections� First consider y�axis
parallel constraint lines� For i � 
� �	 see Fig� 
	
let ai and bi denote the intersections of line �i with
the lower �low x� and upper �high x� sides of the
strip	 respectively� Let ha and hb denote the lines
along which H intersects the lower and upper sides
of the strip�
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Figure 
� The enclosing cube�

By our assumption that �z� lies below �z� within
the strip	 and our assumption on the sign class of
the lines it follows that a� lies on ha and b� lies on
hb and

ax� �y � fax��y� bx��yg � bx��y�

�where a � fb� cg means that a � b and a � c��
We also have	 for i � 
� �	 axi �z � bxi �z	 by the sign
assumption� Let a�� and b�� denote the y�parallel
projections of a� and b� onto ha and hb respectively�

Consider the projection of the strip onto the zx�
coordinate plane� �See Fig� ��� The segments a�a�
and b�b� project onto segments ay�a

y
� and b

y
�b

y
�� Let�

ting �y� denote the projection of �� onto the zx�
plane	 to guarantee that �� satis�es all y�parallel
constraints that �� and �� do	 we should select ��
so that �y� intersects both of these segments� Fur�
thermore	 if �y� and �y� intersect at some point py

within the projected strip	 then �y� should also in�
tersect this point �for example	 as the dashed line
in the �gure does��
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Figure �� Projection onto the zx�plane�

We consider two cases illustrated in Fig� ��
Case Fig� 
�a	 In the �rst case	 �y� and �y� do not
intersect within the strip� Consider the projections
onto the zy�plane �see Fig� ��� Our requirement
that �y� intersects the segments ay�a

y
� and by�b

y
�	 im�

plies that in this projection	 the line �x� intersects
the segments ax�a

�x
� and b�x� b

x
� �shown in heavy lines

in the �gure��
If ax� �z � ax� �z �see Figs� ��a�� then because the

y�projections of the lines do not intersect within
the strip	 we have bx��z � bx��z� Let �� be the line
passing through a�� and b��� It is easy to see that
�� satis�es the sign�class constraints as well as all
x�parallel constraints because it lies entirely to the
right of the line �x� and to the left of the line �x�
while in the strip�
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Figure �� Projection onto the zy�plane�

On the other hand	 if ax� �z � ax��z �see Figs� ��b��
�c�� then we have bx��z � bx��z� There are two sub�
cases to consider�

�i� If line �x� intersects the segment b�x� b� or line
�x� intersects segment ax�a

�x
� �the former occurs

in Fig� ��b�� then let �� be the line	 either ��
or ��	 whose projection satis�es this condition�
�We would take �� � �� in the �gure�� Since
�� is equal to either �� or �� it is in S�P ��

�ii� If both lines �x� and �
x
� fail to intersect segments

ax�a
�x
� and b�x� b� �see Fig� ��c��	 then it follows

that �x� intersects ha to the left of a
x
�a
�x
� and �x�

intersects hb to the right of b
�x
� b

x
�� Let �

� be the
line extending through a�b�� This line satis�es
all x�parallel constraints because it lies in the
portion of the strip the right of �x� and to the
left of �x� �
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Figure �� Projection onto the zy�plane�

Case Fig� 
�b	 In the second case	 �y� and �
y
�

intersect at some point py within the strip� As
before	 consider the projections onto the zy�plane
�see Fig� ��� As before	 there are two subcases�
Either ax� �z � ax��z	 implying that bx��z � bx� �z	 or
ax� �z � ax� �z	 implying that bx��z � bx� �z� These two
cases are symmetric with respect to a 
�� degree



rotation and a reversal of a�s and b�s	 
�s and ��s	
so it su�ces to consider just the former case�

The projected intersection point py de�nes a y�
parallel line �passing through �� and ��� and in�
tersecting H at some point p� The zy�projection
of p	 denoted px	 is the intersection of the line
segments ax�b

�x
� and a�x� b

x
�� �This is because these

are zy�projections of unique lines on H whose zx�
projections are ay�b

y
� and ay�b

y
�	 respectively�� Let qx

denote the intersection of lines �x� and �x� �

�i� If line �x� intersects the segment ax�a
�x
� �see

Fig� ��a��	 then we claim that the line ex�
tending the segment qxpx intersects both the
segments ax�a

�x
� and b�x� b

x
� � This is because qx

lies within the double wedge whose apex is p
and whose extreme lines pass through the end�
points of these segments� In this case let ��
be the unique line on H projecting onto the
segment qxpx� Because it lies on H and inter�
sects segments ax�a

�x
� and b�x� b

x
� 	 it satis�es the

z� and y�parallel constraints of P � Because
it passes through qx it satis�es the x�parallel
constraints of P � It satis�es the sign�class con�
straints because the slope of the line lies be�
tween the �positive� slopes of ax�b

�x
� and a�x� b

x
� �

�ii� On the other hand	 if line �x� does not inter�
sect the segment ax�a

�x
� �see Fig� ��b��	 then

it follows from slope considerations that it in�
tersects ha to the left of this segment� Let ��
be the unique line on H that projects onto the
segment ax�b

�x
� � �Observe that q

x lies outside of
the strip in this case�� This line passes through
px	 and intersects segments ax�a

�x
� and b�x� b

x
�	

and hence it satis�es the z� and y�parallel con�
straints of P � It satis�es the x�parallel con�
straints because it lies in the portion of the
strip to the left of �x� and the right of �x� � Fi�
nally	 it satis�es the sign�class constraints be�
cause ax� �z � b�x� �z�

This completes the case analysis for the construc�
tion of ��� Because we showed in all cases that
�� satis�es all three orthogonal constraints as well
as the sign�class constraints	 it is in S�P �	 and
this completes the proof of the Main Lemma and	
hence	 the analysis of the approximation algorithm�

References

��� N� Amenta� Finding a line transversal of axial ob�
jects in three dimensions� In Proc� �rd ACM�SIAM

Sympos� Discrete Algorithms� pages ���	�� �

��

��� N� Amenta� Helly�type theorems and general�
ized linear programming� Discrete Comput� Geom��
����
������ �


�

��� J� Matou�sek� M� Sharir� and E� Welzl� A subexpo�
nential bound for linear programming� In Proc� �th

Annu� ACM Sympos� Comput� Geom�� pages ����
�

��

�
� M� McKenna and J� O�Rourke� Arrangements of
lines in ��space� a data structure with applications�
In Proc� �th Annu� ACM Sympos� Comput� Geom��
pages �	������ �
���

��� N� Megiddo� Finding a ling of sight thru boxes in d�
space in linear time� Unpublished manuscript� �

��

��� H� Samet� The Design and Analysis of Spatial Data

Structures� Addison�Wesley� Reading� MA� �

��

�	� F� Sillion and C� Puech� Radiosity Global Illumina�

tion� Morgan Kau�mann� �


�

��� J� Stol�� Oriented Projective Geometry� A Frame�

work for Geometric Computations� Academic Press�
New York� NY� �

��

�
� S� J� Teller� Computing the antipenumbra of an area
light source� Comput� Graph�� ���
����
��
�� July
�

�� Proc� SIGGRAPH �
��


