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Abstract

Fitting two-dimensional conic sections (e.g., circular and elliptical arcs) to a finite
collection of points in the plane is an important problem in statistical estimation and
has significant industrial applications. Recently there has been a great deal of inter-
est in robust estimators, because of their lack of sensitivity to outlying data points.
The basic measure of the robustness of an estimator is its breakdown point, that is,
the fraction (up to 50%) of outlying data points that can corrupt the estimator. In
this paper we introduce nonlinear Theil-Sen and repeated median (RM) variants for
estimating the center and radius of a circular arc, and for estimating the center and
horizontal and vertical radii of an axis-aligned ellipse. The circular arc estimators have
breakdown points of =~ 21% and 50%, respectively, and the ellipse estimators have
breakdown points of &~ 16% and 50%, respectively. We present randomized algorithms
for these estimators, whose expected running times are O(n?logn) for the circular case
and O(n>logn) for the elliptical case. All algorithms use O(n) space in the worst case.
Key words: Circular arc fitting, aligned ellipse fitting, robust estimation, Theil-Sen
estimator, RM estimator, randomized algorithms, computational geometry, arrange-
ments, range searching.

*A preliminary version of this report was presented at the Fifth Canadian Conference on Computational
Geometry [32].

"Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742. Email: mount@cs.umd.edu. Part of this research was done while the author was
visiting the Max-Planck Institut fiir Informatik, Saarbriicken, Germany. The support of the National Science
Foundation under grant CCR-9310705 is gratefully acknowledged.

iDepartment of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Is-
rael, and Center for Automation Research, University of Maryland, College Park, MD 20742. FEmail:
nathan@macs.biu.ac.il. This research was carried out, in part, while the author was also affiliated with
the Center of Excellence in Space Data and Information Sciences, Code 930.5, NASA Goddard Space Flight
Center, Greenbelt, MD 20771.



1 Introduction

Fitting a curve, for example, a straight line or a circular arc, to a finite collection of data
points in the plane is a fundamental problem in statistical estimation, with numerous in-
dustrial applications. Although methods such as ordinary least squares (OLS) are well un-
derstood and easy to compute, they are known to suffer from the phenomenon that a small
number of outlying points can perturb the function of fit by an arbitrarily large amount. For
this reason, there has been a growing interest in a class of estimators, called robust estima-
tors [25, 22, 38], which do not suffer from this deficiency. Define the breakdown point of an
estimator to be the fraction of outlying data points (up to 50%) that may cause the estimator
to take on an arbitrarily large aberrant value. (See Donoho and Huber [13] and Rousseeuw
and Leroy [38] for exact definitions.) The breakdown point of an estimator is a measure of
its robustness. For example, the (asymptotic) breakdown point of OLS is zero because even
a single outlying data point can have an arbitrarily large effect on the estimator. Examples
of robust line estimators include the following.

Theil-Sen estimator: The slope of the line of fit is taken to be the median! of the set of
(g) slopes that result by passing a line through each pair of distinct points in the data
set [47, 40]. (The intercept is defined analogously, in terms of line intercepts.) In the
plane, the Theil-Sen estimator has a breakdown point of ~ 29.3%.

This problem has been studied under the name of slope-selection in the field of com-
putational geometry. The problem is to determine the slope of any given rank. There
exist asymptotically optimal algorithms for this problem, which run in O(nlogn) time
and O(n) space. These include algorithms by Cole, Salowe, Steiger, and Szemerédi [10],
Katz and Sharir [27], and Bréonnimann and Chazelle [4].

It should be noted that all of the above algorithms rely on fairly complicated techniques.
There are simpler, practical randomized algorithms by Matousek [29] and Dillencourt,
Mount, and Netanyahu [12], and Shafer and Steiger [41]. (These are Las Vegas random-
ized algorithms, meaning that they always produce correct results, and on any input,
the expected running time, when averaged over the random choices made in the algo-
rithm, is O(nlogn). All the randomized algorithms presented here will be of this same
type.)

RM estimator: Siegel’s repeated median (RM) estimator [42] of a set of n distinct points
in the plane {p1,p2,...,pn} is defined as follows. For each point p;, let 6; denote the
median of the n— 1 slopes of the lines passing through p; and each other point of the set.
The RM-slope, 0%, is defined to be the median of the multiset {6;}. The RM-intercept
is defined analogously, in terms of line intercepts. The RM estimator has a breakdown
point of 50%, and the best known algorithm for its computation, due to Matousek,
Mount, and Netanyahu [31], is randomized and runs in O(nlogn) expected time.

LMS estimator: Rousseeuw’s least median of squares (LMS) estimator [37] is defined to
be the line that minimizes the median of the squared residuals. LMS has a breakdown
point of 50%. The best algorithms known for LMS, due to Souvaine and Steele [44] and

IFor the purposes of this paper we define the median of an m element multiset to be an element of rank
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Edelsbrunner and Souvaine [15], run in O(n?) time. (Recently, Mount et al. [34] have
presented a Las Vegas approximation algorithm that runs in O(nlogn) time.)

Mount and Netanyahu [33] showed that it is possible to extend the algorithmic results
for computing Theil-Sen and RM line estimators to higher dimensions. In dimension d, the
problem is to fit a (d — 1)-dimensional hyperplane to the given data points. Specifically, they
showed that d-dimensional Theil-Sen and RM estimators (having breakdown points of 1 —
(1/2)"/? and 50%, respectively) can be computed by randomized algorithms in O(n? ' logn)
expected time and O(n) space, for fixed d > 2.

In this paper we consider a generalization of these estimators to a nonlinear domain
in the plane. In particular, given n data points in the plane, we consider the problems of
robustly fitting either a circular arc or the arc of an aligned ellipse to the points. (An aligned
ellipse is an ellipse whose axes are parallel to the coordinate axes.) In the case of the circular
arc estimator (CAE), we return the center coordinates and radius of the circle. For the
aligned ellipse estimator, we return the center, horizontal radius, and vertical radius of the
aligned ellipse. We have chosen to present two different types of curves as evidence that our
algorithmic methodology is extendible to a wide variety of curves and formulations.

We generalize the definitions of the Theil-Sen and RM line estimators to circular arc
estimation in the following natural way. (The ellipse estimators will be presented later in
Section 4.) Consider a given set of distinct points p; = (x;,¥;), for 1 < i < n, which
are hypothesized to lie on a circular arc. It will simplify the presentation significantly to
assume that the points are in general position. For example, we assume that no three points
are collinear and no four points are cocircular. (These assumptions can be overcome at
the expense of a great number of special cases, which would need to be considered.) The
result of the estimator is a triplet (a, b, 7), containing the coefficients of the circle equation

(@—a)+(y—b) =2

Theil-Sen circular arc estimator: For each triplet (i,7,k), 1 < i < j < k < n, consider
the circle passing through the three points p;, p;, and pr. Let a; i, bij i, and ;.
denote the parameters of this circle. The estimate is given by the median values, over
all (g) triples of points, of each of the above parameters:

a = medai’jjk, b = med bi,j,ka and 7 = medrm,k.

RM circular arc estimator: As before, associate parameters a; jx, bijx, and r;;, with
each triplet (7, j, k), such that i # j # k. The center’s estimated coordinates are given
by

a = med medmed a; ; x, b = med med medb; ; .,
i A k#Fg 7 i A k#Fig T

and the estimated radius is given by

7 = medmed med7; ;5.
i g# k#FG T

Somewhat more intuitively, each parameter of the Theil-Sen CAE is defined by consider-
ing all triples of points, computing the circle passing through the points of each triple, and



then selecting the median value of the corresponding parameter over all these circles. For
the repeated median CAE, each triplet (i, j, k) determines a single circle, and hence a unique
parameter value. For each pair, (i,7j), we take the median parameter over all n — 2 choices
of the third point. For each singleton, 7, we consider the median over all n — 1 choices of
a second point, and so on. Incidentally, the choice of median plays no significant role in
the design of our algorithms or their efficiency. Elements of any fixed rank could be used
anywhere that medians are mentioned.

Observe that generalizing the above definitions of the estimators to other types of curves
and other choices of parameterizations is straightforward, provided that, for some k, each
k-tuple of points uniquely defines an object of the desired class. These estimators are non-
hierarchical, meaning that the parameters are defined independently of one another (as
opposed to deriving the parameters sequentially, and using the values of known parameters
to reduce the search dimension for the other parameters).

It follows from standard arguments [38] that, because they are based on triples of obser-
vations, the breakdown points of the Theil-Sen and RM CAE’s are 1 — {/1/2 ~ 21% and
50%, respectively. Figure 1(a) depicts the Theil-Sen and RM circular arc estimators (versus

a least squares fit) obtained for a data set having 20% outliers. Figure 1(b) shows the same
estimators obtained with 40% outlying data.

Recently Stein and Werman [45] have independently introduced similar robust estimators
for fitting general 2-D conic sections. Their estimators have the nice property of being
rotationally equivariant, meaning that rotating the points through some angle and then
computing the estimator is equivalent to computing the estimator of the original point set
and then rotating it through the same angle. Our radius estimator is rotationally equivariant,
but our estimators for the center coordinates of the circle are not (because they depend on
the choice of a coordinate system). Unfortunately, we know of no methods for computing
their estimators other than brute force.

Before stating our results, we digress momentarily to consider an issue which is central
to nonlinear curve fitting. It is well-known that there is a simple method of reducing the
problem of fitting algebraic curves to the linear problem of fitting hyperplanes in higher
dimensions, through a process called linearization (see, e.g., [3]). For example, fitting a
circle of the form (z — a)? + (y — b)? = r? to a set of data points (z;,y;) in the plane, can
be reduced to the problem of fitting a plane in 3-D space. This is done by first writing the
circle formula in a form that is linear in the parameters X = x, Y =y, and Z = 2% + 4?2, i.e.,

(2 +y?) = 2azx+2by+ (r* —a® —b?),
Z = 2aX +2bY + (r* —a® — b?).

Then a plane of the form Z = AX +BY +C is fitted to the points (X;,Y;, Z;) = (x;, yi, v +y?)
in 3-D space. Finally, the original parameters are extracted from the transformed parameters.
(The corresponding transformation for aligned ellipses produces a linear problem in 4-D.)

The problem with linearization is that it computes estimators for the “transformed”
parameters, and not the parameters that were supplied as part of the user’s original formu-
lation. Thus, it is doubtful that the statistical properties of the derived parameters would
be the same as those that would result from the above definitions. In fact, it was noted by
many that estimators based on linearization often yield biased results. See, e.g., Joesph [26],
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Figure 1: Theil-Sen and RM CAE’s, and an OLS fit, for data sets having (a) 20% outliers,
and (b) 40% outliers.



Cabrera and Meer [5], and Netanyahu et al. [35]. Also, Rosin [36] observed empirically that
applying linearization to a robust ellipse estimator of a similar type to the ones considered
in this paper leads to inaccurate results. Thus, it seems desirable that fitting be applied to
the original parameters of the circle or (aligned) ellipse.

The problem of fitting circular arcs to a given set of points in the plane has been studied
extensively in the fields of pattern recognition and computer vison. Several representative
examples include the papers by Landau [28], Takiyama and Ono [46], Thomas and Chan
[48], Chaudhuri [6], Chaudhuri and Kundu [7], Joseph [26], Yi et al. [53], Wu et al. [51], and
Yuen and Feng [52]. Unfortunately, most of these methods — even if posed in (geometric)
terms that lead to less biased results — are either based on a least squares approach or make
simplistic assumptions with regards to noise. Thus, they are likely to be sensitive to outlying
data. Amir [2] has introduced an alternative technique, the “cord (sic.)” method, which is
presumably more robust. His “Hough-like” [24, 14] technique is applicable, primarily, to edge
data from an image. In general, however, the method is likely to be sensitive to quantization
effects due to discretization of the parameter space. More recently, Rosin [36] proposed a
robust method, based on a 5-D Theil-Sen variant, for the more general case of ellipse fit-
ting. His method assumes that the data are preordered according to some criterion, and
that it suffices to consider merely O(n?) 5-tuples (selected in a specific manner) to achieve
good estimation. However, Rosin’s heuristic may not always return the correct computa-
tional result (by definition of the Theil-Sen ellipse estimator). Another alternative approach
would be to compute Theil-Sen and RM (circular arc and ellipse) estimators in a brute-force
manner with respect to a (relatively) small random sample of the given data points. While
such Monte-Carlo-like algorithms would run considerably faster, the estimates they return
could differ substantially from the exact values (computed by definition). In principle, these
estimates vary according to some probability density function, so one could bound the prob-
ability that an estimate deviates (from its exact value) by less than a pre-specified amount.
In the presence of outliers, however, with finite probability the resulting estimates could
deviate arbitrarily with respect to their exact values. In other words, the above probablistic
approach provides, essentially, no guarantee of accuracy. All of the above remarks suggest,
therefore, that deriving computationally efficient algorithms for ezact median-based circular
arc and ellipse estimators is a valid goal to pursue.

The Theil-Sen and RM circular arc estimators can be computed by a brute-force im-
plementation of their definitions. This would require O(n?) time for each, since this is the
number of triples that would have to be computed. Moreover, the brute-force algorithm for
the Theil-Sen estimator would require O(n?) space. For the case of aligned ellipses, these
running times grow to O(n?) because of the extra degree of freedom. In this paper we
present conceptually simple randomized algorithms to compute the above estimators. For
the circular arc case, the algorithms run in O(n?log n) expected time. For the aligned ellipse
case, the algorithms run in O(n®logn) expected time. In all cases the algorithms use opti-
mal O(n) storage in the worst case. (Note that solving the problems by linearization would
result in algorithms that are no more efficient than these.) The algorithms always terminate
and return the exact results (relative to the precision used in the underlying arithmetic). As
mentioned earlier, randomization does not affect the accuracy of the results, only the running
time. However, the stated expected running times hold with high probability. Furthermore,
variations in running time are completely independent of input data point distribution, and



depend only on the random choices made by the algorithm. (Removal of randomization is
possible, but would make the algorithms significantly more complex.)

The paper is organized as follows. In Section 2 we give an overview of our algorithmic
methodology for computing the circular arc estimators. The general framework is similar to
the interval contraction scheme described in earlier papers. (See, for example, [12] and [31].)
In Section 3 we provide a more detailed discussion concerning generalizations of the various
“building blocks” needed for the nonlinear estimators considered. These include intersection
counting in arrangements of pseudolines, intersection sampling, and range searching. Sec-
tion 4 demonstrates how to extend our algorithmic methodology to aligned ellipse fitting,
and Section 5 contains concluding remarks.

2 The Algorithmic Framework

We begin by presenting algorithms for computing the Theil-Sen and RM estimators for the
circular arc case. The general approach applies to both the circular and elliptical cases, and
is based on a generalization of the randomized algorithms for the line estimators presented by
Dillencourt, Mount, and Netanyahu [12] and Matousek, Mount, and Netanyahu [31]. First,
the problems are mapped onto a dual setting, which allows us to identify circles in primal
space with points in dual space. Instead of considering circles passing through triples of
points in the primal plane, we visualize the problem in one of n dual planes. In the ¢th dual
plane, a point with coordinates (a, b) is associated with the unique circle in the primal plane,
that passes through p;, and has center (a,b). We will show that the set of circles in the
primal plane that pass through p; and any two other data points are in 1-1 correspondence
with the O(n?) vertices (intersection points) of an arrangement of n — 1 lines in the dual
plane. (In particular, it will be shown that the line arrangement of the ith dual plane is
formed of the n — 1 perpendicular bisectors of the segments p;p;, for all j # i.) The value
of each estimatimated parameter will be realized by one of the vertices in one of the above
arrangements. Our algorithms will employ techniques for searching arrangements to locate
the intersection point of interest in a dual plane, that is, the circle of interest in the primal
plane. Subsections 2.1 and 2.2 will describe the relationship between the line arrangements
and the required estimators.

To determine the intersection points of interest, we generalize the techinque introduced
in [12] and [31] to a region contraction scheme. Intuitively, we identify a region of the
dual plane that contains the intersection point of interest. Through random sampling of
intersection points, we can identify a subregion which will contain, with high probability,
the desired intersection point. Using methods to count the intersection points lying within
a given region of an arrangement, we verify our choice of the contracted subregion. Based
on the results of this verification, we recurse either on this subregion or on some other
subregion. Algorithmic techniques for sampling and counting intersections will be explained
in Section 3. We will show that in the expected case, after a constant number of contraction
stages, the algorithm locates the desired intersection point. A high-level illustration of the
basic elements of the algorithm is shown in Figure 2.

Before presenting the algorithmic details, we present the basic probability theoretic result
on which the region contraction technique relies. The lemma below follows from Lemmas
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Figure 2: Overview of the algorithms. Circles in primal space are associated with intersection
points of line arrangements in dual space. Locating the desired intersection point is carried
out through iterative region contraction.

3.1 and 3.2 in [12], and is outlined here for the sake of completeness. Intuitively, it states
that given a set of n numbers from which we can sample at random, we can compute a
small confidence interval for the kth smallest member of the set in time that is essentially
independent of n. There is a tradeoff between the running time, the degree of confidence,
and the size of the confidence interval (measured as the number of elements of the set that
lie within the interval).

Lemma 2.1 Given a set of numbers X = {x1,x9,...,2,}, given k (1 < k < n), and
given m > 0, in O(m) time we can compute an interval [\, Tni], such that with probability
1 — 1/Q(y/m), the kth smallest element of X lies within this interval. Furthermore, with
this same probability, the number of elements in X that lie within the interval is at most

n/Q(v/m).

Proof: Sample (with replacement) m of the elements of X, and select the elements x), and
Tp; from this sample of respective ranks

b — max (1, {m_’f _ @D |
n 2

ky = min <m, {m_k + @l> )
n 2

This can be done in O(m) time using any fast (possibly randomized) selection algorithm
(see, e.g., [20, 19, 11]).

The kth smallest element is less than x), if and only if fewer than ki, sampled elements
are less than the kth smallest element. Since the probability that a given element is less
than or equal to the kth smallest is k/n, it follows that in m samples, the number of
sampled values that are less than the kth smallest is a binomial random variable with mean
mk/n and standard deviation not greater than /m/2. The probability that fewer than k,
sampled elements are less than zj is essentially the probability that this random variable is
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at least three standard deviations below its mean value. By applying Chernoff’s bounds (see,
e.g., [9, 17]) and Chebyshev’s inequality [18], it follows that this probability is 1/Q(y/m).
See Lemmas 3.1 and 3.2 in [12] for complete details. A similar argument applies for ky;.
The probability that the kth smallest element does lie within the interval is, therefore,
1—1/Q(vm).

Since a fraction of the sample of size O(y/m)/m lies within the interval (by definition)
it follows that the expected fraction of X that lies within the interval is nO(y/m)/m =
n/Q(y/m). Again, Chernoff’s bounds can be invoked to show that this occurs with at least
the stated probability. O

2.1 Theil-Sen Circular Arc Estimator

In this subsection we present a high-level description of our algorithm for computing the
Theil-Sen circular arc estimator. We focus on the computation of the estimated radius, 7,
since the algorithms for the center’s estimated coordinates, a and l;, are simpler variants of
this case. Recall that the radius estimator corresponds to the median over all radii, 7; ; z,
of circles passing through p;, p;, and pg, where 1 < ¢ < j < k < n. As mentioned earlier,
it is assumed that the points are in general position. In particular, no three points are
collinear (so that each triple defines a circle) and no four points are cocircular (so the circles
determined by different triples are distinct).

We begin by introducing the dual transformation, which identifies circles in the primal
plane with points in a dual plane. For 1 < i < n — 2, consider a fixed data point p;. Let
R; denote the multiset of radii of circles passing through p; and two other data points of
increasing indices. (We order the triples by increasing index so that each circle is associated
with a unique ordered triple.) Clearly the Theil-Sen radius estimator is just the median of
the multiset U?_?R;. For each j > 4, consider the centers of all circles passing through p;
and p;. This locus is clearly the perpendicular bisector, b; ;, of the two points. Thus, the
circles passing through p; and p; in the primal plane are in 1-1 correspondence with the
points of b; ; (in the ith dual plane) that are associated with p;. In particular, let B; denote
the line arrangement in the ith dual plane defined by the set of n — 4 bisectors {b; ;,j > i}.
For any k > j, the intersection of lines b; ; and b, , is the center of the circle passing through
Di, pj, and pi. Thus, the vertices of this line arrangement are in 1-1 correspondence with
the centers of the circles determined by p; and any two other points of higher index. For
the purposes of computing the Theil-Sen radius, each vertex in this arrangement can be
associated with the radius of the corresponding circle. (The radius is simply the Euclidean
distance from the vertex to p;.)

Thus we have reduced the task of computing the Theil-Sen radius estimator, 7, to the
following problem. Given a set of n — 2 line arrangements (that correspond to n — 2 dual
planes), where a vertex of each arrangement is associated with a radius (its distance to a fixed
point in the plane), determine the median radius over all the vertices in these arrangements.
We do not compute these arrangements explicitly, but they provide a convenient perspective
from which to view the computation.

As mentioned before, we compute 7 by a region contraction scheme. We maintain an



interval (7, rp;|, which contains 7. The initial interval is (0,+oc]. (This is analogous to
the convention adopted in [12], namely that an interval is treated as half-open half-closed.)
The interval is contracted through a series of stages. We will argue that each stage runs in
O(n?logn) expected time and requires O(n) space, and that the number of stages in the
expected case is O(1).

Let us describe the operations performed during a typical stage in greater detail. Let
(710, rni] be the current interval, and assume that 7 € (r),, 7). We consider separately the
line arrangement associated with each p;, 1 <7 <n — 2. In the ith dual plane, the locus of
the centers of circles that pass through p; and whose radius lies in this half-open half-closed)
interval is an annulus centered at p; with radii ry, and ry,;. Let A;(ry,, ;) denote this annulus.
(Note that for 1, = 0, the annulus is a disk with its center removed, and for r,; = 400, the
outer disk of the annulus spans the entire plane.) We will maintain three counts: I;, W;, and
O; which denote, respectively, the number of intersections inside the circle r = ry, within
the annulus A;(7,, i), and outside the circle r = ry;. Let I, W, O, denote, respectively,
the sums of I;, W;, and O; over i. (In terms of the primal plane, the count W is equal to
the number of circles that pass through three data points and whose radius lies within the
interval (ry,, ;). The counts I and O have similar interpretation but for radii less than (or
equal to) 7, and greater than ry;, respectively.) Since we assume that 7 lies within (1o, 7],

it follows that
1< {@

We are searching for the median intersection, that is, the intersection of rank k£ =
Kg) / 2} — [ from the current annulus. If there are only a small number of intersection
points within the annulus, we can simply enumerate them and select the element of the
desired rank by brute force. Otherwise, we will apply Lemma 2.1 to find a contracted con-
fidence interval for the desired radius. Since we do not have ready access to the various
arrangements, we need a method to randomly sample intersection points from the these ar-
rangements in an efficient manner. This procedure will be presented later in Subsection 3.2.
Assuming that we can sample intersection points, we apply Lemma 2.1 to the sample to
determine a contracted confidence interval (r],,rf;] for the desired radius. However, since
we cannot be sure that the desired radius is in this interval, we partition the original inter-
val (71, rpi] into three subintervals, and then count the number of intersections within each
subinterval to determine which one contains the median radius. This counting procedure
will be presented later in Subsection 3.1. Once the counts are known, we can contract to one
of the three subintervals (expecting it to be (r],,71,]), and proceed to the next stage. The
detailed procedure for the Theil-Sen radius estimator can now be given.

<I+W

Algorithm 1 (Theil-Sen Circular Arc Radius Estimator)
(1) Set the initial interval to (ri, = 0,7y = +00|. Initialize / := O :=0, and W := (’;)

(2) Repeat the following steps until W = 1 (or more practically, until W = O(n), after
which brute-force enumeration followed by a standard fast selection procedure can be
used.



(2a) For each 1 < i < n — 2, consider the set of the intersection points of arrangement
B; that lie in annulus A;(70, 7). Consider the union of this set of intersection
points. Using the methods to be described in Subsection 3.2, randomly sample
(with replacement) m = n elements from this union.

(2b) For each sampled intersection point, compute its radius with respect to the corre-
sponding point, p;. These radii will all lie in the interval (7, rp;].

(2¢) Let k := Kg) /2} — I. (That is, k is the rank of 7 in the set of radii that remain

under consideration.) Applying Lemma 2.1, let

o e |3

W 2
: mk  3y/m
ky = min <r, {W + ?—D .

Employ any fast selection algorithm to determine the elements 7], and 7, of the
respective ranks kj, and ky; from the set of sampled radii. (We expect the median
radius to lie in the interval (r{,, r1,].)

(2d) Partition the interval (r},, 7] into three disjoint subintervals (ry, r1.], (71,, 7], and
(ris,mhi)-  (Recall, we treat each annulus/interval as if it is open on the left and
closed on the right, so that no intersection lies in more than one annulus/interval.)
Using the method to be described in Subsection 3.1, for 1 < ¢ < n — 2, count the
number of intersections lying in each of the associated annuli A;(r10,71,), Ai(7]s, Thi)s
and A;(r];,mi). (Note that, for each i, only two annuli need to be counted, since
the third count can be inferred from the other two.)

(2e) Based on these counts, determine which of the three subintervals contains the
median radius. Make this the new interval, and update the counts I, W, and O,
accordingly.

Note that other than the counting and sampling subtasks (Section 3 below), the algorithm
makes no assumptions about the geometric structure of the arrangements. This is important,
since the same procedure can be used for the other circular parameters, as well as for the
ellipse parameters to be discussed in Section 4.

To derive the running time of the above algorithm, first consider the number of stages
required until the algorithm terminates. According to Lemma 2.1, with probability at least
1—1/Q(y/n), the median radius is contained within the annulus associated with the interval
(1155 T1i), and the count W will be reduced by a factor of 1/Q(y/n) for the next stage. If we
repeat this process ¢ times, the magnitude of W decreases by a factor of 1/€(n*/?). Since
we began with a count of (g) intersections, it is expected that within a constant number
of stages (t = 6), we will have satisfied, with high probability, the termination condition of
step (2).

It is easy to verify that each of the steps of the algorithm can be performed in O(n) time,
except for the intersection counting and sampling subtasks. Later we will show that these
tasks can be performed in O(nlogn) time and O(n) space for each arrangement, and hence
take O(n?logn) time in total. Therefore, the total expected running time over the constant
number of contraction stages is O(n*logn).

10



The algorithms for a and b are similar, but the corresponding regions are different. Recall
that for 7, the annulus, A;(70,7hi), is the locus of the centers of circles passing through p;
and whose radius lies within the interval (ry,, r,;]. For a, the analogous region is the set of
centers of circles the z-coordinate of which lies within some interval (ay,, ap;]. Clearly this is
just the vertical strip, aj, < x < ay;, in the dual plane. Similarly, for l;, we have a horizontal
strip. Subject to the missing subtasks we have the following result.

Theorem 2.1 The non-hierarchical Theil-Sen circular arc estimator can be computed in
O(n*logn) expected time and O(n) space.

2.2 Repeated Median Circular Arc Estimator

In this subsection we present a randomized algorithm for the RM circular arc estimator.
Again, we only present the computation of the most illustrative case, namely the radius
parameter, 7. (The modifications needed to compute the other parameters, ¢ and l;, are
largely the same as those mentioned in the previous subsection.)

Recall that r; ; is the radius of the circle passing through data points p;, p;, and pi. To
compute the RM radius, 7, we first define

LA

A= modmed i
Intuitively, 7; is the radius estimator associated with a fixed point p;. The algorithm we
present computes 7; in expected O(nlogn) time for each 7, 1 < i < n. Any fast selection
algorithm may then be applied to compute 7 = med; 7;. Thus, the total running time of the
algorithm will be O(n?logn).

Fixing 7, 1 < ¢ < n, we focus on the computation of 7;. By definition, this estimate
corresponds to a 2-D RM computation over all radii, r;;z, of circles passing through p;
and two other distinct points p; and p, (j # ¢, k # i,j). As before, let b; ; denote the
perpendicular bisector of the segment joining p; and p;, and let B; = {b;;,j # i} denote
the planar line arrangement of these n — 1 bisectors in the ¢th dual plane. (Note that the
index ordering used in the Theil-Sen case is not used here.) Recall that the intersection
point of the lines b; ; and b; , in this arrangement is the center of the circle passing through
Di, Pj, and pg, and hence the vertices of the arrangement are in 1-1 correspondence with the
circles determined by p; and any two other distinct points. Specifically, each vertex of the
arrangement is associated with the radius of such a circle. For each bisector, b; ;, the median
among the radius values of all the intersection points on this bisector is called the median
radius for the bisector. In terms of the primal plane, this is the median radius among all
circles passing through both p; and p;. Thus, we have reduced the problem of computing 7;
to that of determining the median of the n — 1 median radii.

To compute 7;, we apply the same interval contraction technique presented in the ran-
domized algorithms for the RM line estimator [31]. We maintain an interval (ry,, rp;] which
contains 7;. The initial interval is (0, +oc]. The interval is contracted through a series of
stages. We will argue that each stage runs in O(nlogn) expected time and requires O(n)
space, and that the number of stages in the expected case is O(1).

11



Let us describe the operations performed during a typical stage in greater detail. Let
(710, ni] be the current interval, and assume that 7; € (ry, ). Recall from the previous
subsection that in the ith dual plane, the locus of the centers of circles that pass through p;
and whose radius lies in this interval is the annulus, A;(ry,, 7). For each bisector, b; ;, in the
arrangement, we will maintain three counts: I;, W;, and O; which denote, respectively, the
number of intersection points on the bisector, b; ;, that lie inside the circle r = ry,, within the
annulus A;(7,, i), and outside the circle 7 = ry;. (In terms of the primal plane, these counts
correspond to the number of circles that pass through p;, p;, and one other data point, and
whose radius is smaller than (or equal to) rlo, contained in the interval, and greater than
mhi-) Depending on the relationship between I;, I; + W;, and the median index [(n — 2)/2],
we can determine whether the median radius for b;; is less than (or equal to) ry,, within
the interval (7)o, 7], or greater than 7. The bisectors of the arrangement are partitioned
accordingly into three subsets Z, W, and O, respectively. (These sets will be represented as
sets of indices of points.) Let I, W, and O denote the respective cardinalities of these sets.
Since we assume that 7; lies within W, it follows that I < [(n —1)/2] < I+W. A bisector is
a candidate to provide the RM radius, 7;, if it lies in W. In particular, the candidate whose
median radius is of rank [(n — 1)/2] — I yields the desired radius.

As in the Theil-Sen algorithm, we are searching for an element of a given rank in a set,
W, but the task is complicated by the fact that the elements of these sets are themselves
medians of other sets. We do not have time to compute all of these sets explicitly, but we
will show that it is possible to compute median radii implicitly. Later in Subsection 3.3 we
discuss how this is done. Assuming for now that this can be solved, we present an overview
of the algorithm.

For some suitably chosen constant 3 < 1 (whose value will be derived in Subsection 3.3),
we randomly sample O(n?) elements from the set W. For each sampled element j (rep-
resenting the point p; in the primal plane or the bisector, b;;, in the dual arrangement),
we determine the median radius of the bisector. Using the median radii of these sampled
bisectors, we can apply Lemma 2.1 to construct a contracted confidence interval (r,, ri;] for
7;. However, since we cannot be sure that the desired radius is in this interval, we partition
the original interval (r},, ;] into three subintervals (one of which is the newly contracted
interval), and then count the number of median radii falling within each subinterval. From
these counts we can determine which subinterval contains the RM radius (expecting it to be
(115, 1:]). We then continue searching in this subinterval.

We note that instead of computing the median radius for each of the n” sampled bisectors
(step (2b) below), one could compute estimates of these median radii, analogously to the
description in [31]. (The main modification would require sampling of intersections points
from each sampled bisector, after which an individual median estimate would be arrived
at for each bisector. Otherwise, the algorithm would remain intact.) Although the latter is
theoretically less efficient (by an additional logn factor [31]), it is likely to be more attractive
from a practical standpoint, as it avoids dealing with the sophisticated data structures that
are required for the (theoretically) improved version. (See Subsection 3.3, for specific details.)
In any case, the detailed procedure for the ith RM radius estimate 7; can now be given.

Algorithm 2 (RM Circular Arc Radius Estimator for p;)
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(1) Set the initial interval to (r, = 0,7y = 400|. Initialize counts I; := O, := 0, W; :=
n — 2, for all j # 4. Initialize sets Z := O := 0, and W := {j,j # ¢}. Initialize counts
I'=0:=0and W:=n—-1.

(2) Repeat the following steps until W = 1 (or more practically, until 3=;c, W; = O(n),
after which brute-force enumeration can be used).

(2a)

Let 3 be a constant (0 < 8 < 1), whose value will be given later in Subsection 3.3.

Set m = [(n — 1)51, and sample m bisectors b; ; from ¥V randomly, with replace-
ment.

Using the method described in Subsection 3.3 for each sampled bisector, compute
its median radius with respect to p;. These radii will all lie in the interval (710, 74

Let k:= [(n —1)/2] — I, that is, k is the rank of 7; among the median radii of the
elements of W. Applying Lemma 2.1, let

oo o[- 42)

%% 2
ky; = min <T, {ka + @}) )

Employ any fast selection algorithm to determine the elements r{, and 7, of the
respective ranks ky, and ky; from the sampled median radii. (We expect the median
radius to lie in the interval (r{,, r1,].)

Partition the interval (7)., 7] into three disjoint subintervals (ry,, r1.], (1., 1], and
(7hi, mni]- (As in the Theil-Sen case, we treat each annulus/interval as if it is open
on the left and closed on the right, so that no intersection lies in more than one
annulus/interval.) Using the method to be described in Subsection 3.1, for each
bisector j € W, count the numbers of intersections on b;; lying in each of the
associated annuli A;(ry,,7],), Ai(r],, 1), and A;(rf;, mhi). (As noted in the Theil-
Sen case, only two of these counts need be computed, since the third count can be
inferred from the other two.) Based on these counts and the value of I;, determine,
for each j € W, whether its median radius lies within the first, second, or third
subinterval.

JFrom this information, determine which of the three subintervals contains the
median radius. Make this the new interval. Update the counts I;, W;, and O, for
each 7 € W, and update the sets Z, W, O, and their respective cardinalities I, W,
and O accordingly.

To derive the running time of the above algorithm we first consider the number of stages
required until the algorithm terminates. According to Lemma 2.1, with probability 1 —
1/Q(n?/?), the repeated median is contained within the interval (r],, 7], and so W is reduced
by a factor of 1/Q(n%/?). If we repeat this process ¢ times, the number of candidate lines
decreases by a factor of 1/Q(n'%/?). Since we began with n — 1 candidates, after a constant
number of stages, t € O(2/3), we will have satisfied, with high probability, the termination
condition given in step (2).

It is easy to verify that each of the steps of the algorithm can be performed in O(n)
time, except for the subtasks of intersection counting (and sampling) and computing median
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radii. We will show later that each of these tasks can be performed in O(nlogn) time and
O(n) space. Combining this with the fact that the expected number of stages is a constant,
in O(nlogn) expected time we can compute 7; for a given i. Thus, in total O(n?logn)
expected time (together with an additional O(n) time to compute the medians of the 7;), we
can compute the RM radius. As mentioned before, the minor modifications for computing
a and b can be performed within the same time and space bounds. Therefore, we have the
following result.

Theorem 2.2 The non-hierarchical RM circular arc estimator can be computed in O(n?logn)
expected time and O(n) space.

3 Building Blocks

The algorithms presented in the last two sections assumed the existence of routines for
performing the basic counting and sampling subtasks, as well as finding median radii, which
were omitted from the descriptions of the algorithms. In this subsection we present these
basic building blocks. Our presentation will be somewhat more general than needed, in order
to accommodate the requirements of the ellipse estimator (to be presented in Section 4) and
possibly other curve estimators.

3.1 Intersection Counting

Recall that one of the principal building blocks in the algorithms presented earlier was
that of counting the number of intersection points of a line arrangement lying within a
given annulus. This problem is a variation of the problem (considered, for example, in
[12] and [31]) of counting the number of intersection points of a line arrangement lying
within a vertical strip. We present a simple solution to a generalization of this problem. In
particular, we assume that we are given an arrangement of pseudolines, that is a system of
planar curves satisfying the properties that any pair of curves intersects in at most one point,
and that curves intersect transversally (that is, the curves cross one another as opposed to
intersecting tangentially). To simplify the presentation, we make the assumption that curves
are in general position, so that no three curves intersect in a single point. We show that
given n pseudolines and a closed region of the plane with a connected boundary, it is possible
to compute the intersections on each pseudoline that occur within the region in O(nlogn)
time, provided that the following boundary intersection properties hold:

(i) Each pseudoline intersects the boundary of this region an even number of times,

(ii) the number of intersections between a pseudoline and the boundary is bounded above
by some constant, and

(iii) the intersections of pseudolines along the region’s boundary can be cyclically sorted in
O(nlogn) time (see Figure 3(a)).

If the region’s boundary is not connected but consists of a constant number of connected
components (as is the case with an annulus), one or more pseudoline segments can be added
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to form a channel connecting the parts of the boundary (as shown in Figure 3(b)). Note
that an O(n?) solution would be trivial, since this is the maximum number of pairwise
intersections possible.

2 6
(@ (b)

Figure 3: (a) Generalized intersection/inversion counting using the modified stack mecha-
nism described below (24+2+1+1 = 6 pseudoline intersections are reported); (b) its appli-
cation to CAE by introducing a “channel”, so as to transform the annulus to a connected,
bounded region.

The solution is quite simple, and is based on a generalization of inversion counting (see
[12] and [31]). First, for each pseudoline we determine its intersections with the boundary
of the region. If a pseudoline’s intersection with a region is not connected, then we break
the pseudoline into a collection of connected pseudosegments (or just segments for short).
The intersections between segments will be counted individually for each segment and later
added together. We sort the O(n) endpoints of the segments cyclically along the boundary
of the region. Each segment has two entries in this list, one for each endpoint. Let us assume
that the segments have been indexed according to the appearance of their first endpoint in
this order.

We first describe a procedure which counts for each segment the number of intersections
with segments of higher index. We maintain a type of stack into which we can insert elements
only at the top, but we can remove elements from any position. Initially the stack is empty.
We process the elements of the list in the following manner. When a segment endpoint is
encountered in the list, if this is the first endpoint encountered for this segment, then it is
pushed onto the top of the stack. Otherwise, if this is the second endpoint, we locate the
entry for this segment in the stack, count the number of entries lying above it on the stack,
and remove this segment from the stack. The count associated with each segment is the
desired number of intersections.

To see the correctness of this procedure, observe that when a segment s; is removed
from the stack, the stack entries on top of this segment correspond to segments s;, j > 1,
whose first intersection with the boundary was encountered between the two occurrences of
s;’s endpoints, but whose second endpoint has yet to be encountered. Thus the order of
intersections of these segments along the boundary alternates as follows

e Spe S5 8 S
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Because pseudoline segments start and end on the boundary, it follows that s; and s; intersect
at least once (and hence exactly once) within the region. Furthermore, from the properties
of pseudolines it is easy to see that all intersections will be counted in this manner.

Recall that we have only counted intersections with segments of higher index. For the
Theil-Sen estimator, where we need a total count of all pseudoline intersections occurring
within the region, the above procedure suffices, since each intersection is counted exactly
once (by the segment of lower index). For the purpose of the repeated median estimator,
it is important to compute intersection counts individually for each segment. By running
the procedure twice, first counterclockwise and then clockwise around the boundary, and
then summing the two counts for each segment, we will have counted all of the segment’s
intersections.

The stack can be implemented by a simple modification of virtually any type of a balanced
binary search tree, for example, a red-black tree (see, e.g., [21] or [11] (Chapters 14, 15)).
The tree is modified for the purposes of counting in the following manner. The segments
that are currently on the stack are stored in the leaves of the tree. They are ordered so
that the top/bottom of the stack is the leftmost/rightmost leaf of the tree. Unlike a normal
binary search tree, where elements are accessed in a top-down manner using key values, each
segment is associated with a finger pointer to the leaf of the tree containing this segment. If
the segment does not appear in the tree, the finger pointer is null. The tree is augmented with
parent links so that the path from each leaf to its ancestors can be traversed in a bottom-up
manner. Each internal node has an additional field containing the number of leaves in the left
subtree rooted at this node. It is a simple programming exercise to augment the procedures
for virtually any type of balanced binary tree to maintain this additional information.

Pushing a segment s; onto the stack is performed by first finding the top of the stack,
that is, the leftmost leaf in the tree, and then inserting s; as the new leftmost leaf in the tree
and rebalancing the tree as necessary.

To delete a segment s; from the stack, the finger pointer for this segment is accessed to
locate the corresponding leaf in the tree. To count the number of elements lying above of
s; in the stack (that is, to the left of s; in the tree), the path from this leaf to the root is
traversed. Whenever this path travels to a parent node from its right child, the leaf count
for the left child is added to the count. It is easy to see that this will count all leaves lying to
the left of s;. The leaf containing s; is then deleted from the tree, and the tree is rebalanced.

For example, in Figure 3(a), suppose we start the traversal in counterclockwise order
starting at the right-most endpoint of segment 1. The algorithm pushes, in turn, 1, 2, 3,
and 4. On encountering the second endpoint of 4 no intersections are reported, since 4 is
already on top of the stack. Segment 4 is then removed from the stack. On seeing the second
endpoint of segment 1, the leaves of the tree are (from left to right) 3, 2, 1. The removal of
leaf 1 counts its two intersections with segments 3 and 2. After this, 5 is pushed onto the
stack, and then 2 is removed. At the time of the removal of 2, the leaves of the tree are 5,
3, 2, and the removal of 2 counts its two intersections with 5 and 3 (the intersection with 1
was already counted). The algorithm continues in this fashion, and returns a total count of
6 intersections.

Both insertion and deletion can be performed in O(logn) time, from standard results on
(balanced) binary trees. Since a total of O(n) segment endpoints are processed, we have the
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following result.

Lemma 3.1 Consider a set of n pseudolines in the plane, and a closed planar region sat-
isfying the boundary intersection properties given above. Then in O(nlogn) time and O(n)
space, it is possible to compute, for each pseudoline, the number of intersections between it
and the other pseudolines that occur within this region.

3.2 Intersection Sampling

The intersection sampling problem is that of randomly sampling (with replacement), say,
m intersection points of an arrangement of pseudolines that lie within a given region of the
plane. (Recall, this procedure is required for step (2a) of Algorithm 1, and may be required
for step (2b) of Algorithm 2, should median radii be estimated rather than computed.) In
the previous subsection we have already discussed how to count these intersection points.
We use a standard trick to transform the procedure described for counting into a sampling
routine. This trick is generally applicable to a situation where the cardinality of some finite
set is arrived at by accumulating a number of positive counts, and where an efficient method
exists for associating elements of the set with each increment of the count. Although this
method was described in [12], we reintroduce it here in terms of the more general intersection
counting algorithm presented in the previous subsection.

It follows from this procedure that the number of intersection points is broken down into
a number of cumulative O(n) counts. Let C| ¢; denote, respectively, the total count and the
incremental count associated with segment s;. According to the previous subsection, each
count, ¢;, is the number of entries lying above s; in the stack, or equivalently, the number of
leaves lying to the left of a given leaf s; in the balanced tree. For each of the leaves s; (that
account for ¢;), there is a corresponding intersection point between s; and s; that lies within
the region. Furthermore, for any k, 1 < k < ¢;, in O(logn) time we can determine the kth
leaf (from the left) in this tree, using a simple tree search based on the leaf counts stored in
the nodes of the tree.

To sample an arbitrary set of m intersection points, we first generate a random sample
of m integers in the range from 1 to C'. (To determine C, we apply the counting procedure
first.) We sort these integers, letting £ = (e; < e3 < ... < e,,) denote the sorted indices
to be sampled. Intuitively, for each e;, when the intersection counter is incremented to a
value > e;, we sample the corresponding intersection. In particular, we reapply the counting
procedure, but with the following modification. As the counter is incremented from, say, C’
to C" + ¢;, we determine all the elements e; € E, such that C' < e; < C" 4 ¢;. (This can
be done easily by maintaining the index of the most recently accessed element of S.) For
each element e;, we select (from the left) the leaf of rank e; — C” in the tree, and determine
the corresponding intersection point as explained in the previous paragraph. Since each of
the m samples can be computed in O(logn) time, and since the counting procedure takes
O(nlogn) time, the entire procedure runs in O((n + m)logn) time.

Lemma 3.2 Given the same hypotheses of Lemma 3.1, a sample of m intersection points
can be computed in O((n +m)logn) time.
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Since the number of sampled elements m is at most n (in both invocations of this proce-
dure, in the RM case), it follows that the total time to perform sampling is O(nlogn).

3.3 Finding Median Radii

In this subsection we describe how to determine the median radius for the sampled bisectors
in the arrangement (as needed for step (2b) of the RM algorithm). Recall that there is
a fixed point p;, and an arrangement of n — 1 bisectors b;; for each j # i, and that each
intersection point in this arrangement is the center of a circle passing through p; and two
other data points. The radius of this circle is associated with each intersection point. We
want to compute the median radius of a bisector b; ;, which is defined to be the median radius
value among intersection points on this bisector. It will be somewhat easier to describe this
problem in terms of the primal plane. The corresponding problem is as follows. Given a set
of n — 2 circles passing through two fixed points p; and p; and any third data point, return
the median radius over this set.

Recall that we need to solve this problem for a given a set of [(n - 1)/31 bisectors (where
the value § < 1 was left unspecified). Using recent results from the theory of range searching
[49, 16, 23, 8, 30], we will show that there exists v < 1 (depending on the complexity of the
range searching algorithms), such that, after O(nlogn) preprocessing (which will be common
to all of the bisectors), the median radius for each bisector can be computed in O(n” logn)
expected time. Thus the total expected running time will be O(nlogn +n’n”logn). We set
B =1—1, so the total expected running time will be O(nlogn).

Our algorithm is a modification of the randomized binary search presented in [31], where
each probe of the binary search will require O(n”) time. Consider the circles passing through
p; and p;. We maintain an interval (ry,, ;) which will bound the median radius at all times.
(This interval is independent of the radius interval used in the repeated median algorithm.)
The initial radius is (0,4o00]. The search implicitly partitions the set of circles into three
subsets: those whose radius is less than (or equal to) 71, whose radius lies within the interval,
and those whose radius is greater than r;. Three counts are maintained, one for each subset.
Let us assume for now that given any radius interval, it is possible to count the number of
circles whose radius value lies within the interval, and furthermore, that it is possible to
return a random element from this set. (These will be explained later.) Each probe of the
randomized binary search begins by sampling a random circle whose radius value r;q lies
within the interval. We then partition the interval (7)., 73] into two subintervals (rio, rmid]
and (Tmiq, ;). Finally, we count the number of circles associated with each interval. (It is
sufficient to count within one interval, since the other count can be derived from the latter.)
Using these counts, and based on the number of radius values that are smaller than (or
equal to) 7,, we can we can determine which subinterval contains the median radius, update
the counts, and then recurse on the right subinterval. The algorithm terminates when the
interval is associated with a single circle.

Since each circle is chosen at random from among the circles whose radius value lies
within the current interval, it follows from a simple probabilistic argument that at least 1/4
of the remaining intersection points are expected to be eliminated with each probe. Thus,
based on properties of a Bernoulli trial, it can be shown that the expected number of probes
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that will take the search to terminate is O(logn). All that remains is to describe how to
perform counting and sampling (in the primal domain). We show that these tasks can be
reduced to the problem of a range counting query in the plane. This is illustrated in Figure 4.

Sampled data point
for binary search.

Figure 4: The set of circles that pass through p; and p; and whose radius is contained in the
interval (7, ry;] lie within the shaded region.

Lemma 3.3 Given two data points p; and p;, and an interval (ri,, Twi], the circles passing
through these two data points and any other third data point, and whose radius is in the
interval, are in 1-1 correspondence with the set of data points lying within the union of two
regions of the plane, each being the symmetric difference of two circular disks.

Proof: Clearly, the centers of circles passing through p; and p; lie on the bisector, b; ;, and
can be viewed as elements of a linearly ordered set. Associated with each element of this set
(i.e., with each center point on the bisector) is a unique radius. As a center point travels
along the bisector, it is easy to see that the radius of the corresponding circle is a unimodal
function, attaining its minimum at the midpoint between p; and p; (denoted by m,;), and
growing monotonically to +oo toward either extreme. Thus, for a given radius interval,
(710, Thi, any circle passing through p; and p; and whose radius lies within this interval has
its center lying within one of two segments on the bisector b; ;, each residing on opposite
sides of m; j. (These segments are shown as thick lines in Figure 4.) If 7, is less than half
the distance between p; and p;, then these two segments share a common endpoint at m; ;.

Associated with the endpoints of these two segments are four closed circular disks D, 1,
Dyiy and Dioo, Dyig, where D, ; has radius r, and Dy;,; has radius ry; (i = 1,2). Let S
denote the union of the symmetric differences of Dy,; and Dy, for i = 1,2. (Observe that
p; and p; are not in S, since they belong to both disks, for ¢ = 1,2.) It is an easy geometric
exercise to verify that for any circle passing through p; and pj, if its radius lies within the
interval (7o, 71, then its boundary lies entirely within S (except at p; and p;). Otherwise,
its boundary is entirely disjoint from S. It follows immediately that the data points lying
within S are in 1-1 correspondence with the circles passing through p;, p;, and one other
data point. O
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This lemma provides us with a way to reduce the task(s) of counting (sampling) circles
that pass through p; and p; to a range counting query over the set of data points, where
the range can be described in terms of a constant number of Boolean operations on circles.
Agarwal and Matousek [1] have shown that there exists v < 1, such that, these queries can
be solved in O(n?) time and O(n) space after O(nlogn) preprocessing. Because the result
of the range query can be identified as the disjoint union of O(n?) leaves in a balanced tree,
it follows that it is possible to apply the methods of the previous subsection to sample one
such leaf at random. Note that preprocessing need only be applied once to the set of data
points.

The modifications needed for the other circle parameters, namely a and 13, are quite
simple. In particular, it is easy to show that the circles passing through p;, p;, and any other
third data point have their center lying within a given vertical or horizontal strip. Thus,
finding the median values of these parameters can be reduced to a range query over a single
symmetric difference of two circular disks.

4 An Extension to Fitting Aligned Ellipses

In this section we consider the more general problem of robust fitting of an ellipse whose
axes are aligned with the coordinate axes to a set of points in the plane. We call such an
ellipse an aligned ellipse. We assume that the ellipse is presented in the form

(z—a)*  (y—0)?
2 T pe

The point (a,b) is the center of the ellipse, and the values A and B are the horizontal
and vertical radii of the ellipse, respectively. Aligned ellipses are of interest, for example,
in applications such as automated document processing, where they are frequently used in
charts and diagrams. One of the reasons for considering aligned ellipses is that they have
fewer degrees of freedom than general ellipses (4 versus 5), which leads to a reduction in the
asymptotic complexity of computing the corresponding estimators.

=1.

The higher level structure of the randomized algorithms for circular arc fitting presented
in Subsections 2.1 and 2.2 can be generalized readily to the ellipse problem. Most of this
section is devoted to establishing the lower level geometric details involved with the dual
transformation, intersection counting and sampling in arrangements, and range searching.
The main difficulty in extending the method from circles to ellipses is that the intuitive
geometric arguments, which sufficed in the case of circles, lead to significantly longer and
more technical algebraic arguments in the case of the ellipse. Furthermore, because of
the larger number of degenerate and special cases of points, it will greatly simplify the
presentation to make the following general position assumptions throughout this section.

(i) No two points share the same z-coordinate or same y-coordinate,
(ii) No three points are collinear.
(iii) There is at most one aligned ellipse passing through any four points, and
)

iv) No four points determine an ellipse whose center is the midpoint of two of the four
p p p
points.
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First, let us consider the generalizations of the Theil-Sen and repeated median estimators
to the case of aligned ellipses. In contrast to the circular case, where three points uniquely
determine a circle, four points are generally needed to determine a unique aligned ellipse.
However, not all quadruples of points define an aligned ellipse (e.g., if the points are not in
convex position). A quadruple (i, j, k1), 1 <i# j # k #1 < n, is feasible if there exists an
aligned ellipse passing through the corresponding points. From Assumption (iii) it follows
that every quadruple of data points determines at most one aligned ellipse. A k-tuple of
points, for k < 4, is feasible if there is an extension to a feasible quadruple. Given a feasible
quadruple of points, define a; j x.1, b; j ki, Aijki, and B, j,; to be the parameters of the aligned
ellipse passing through these points. Our estimators return the center coordinates and
horizontal and vertical radii of the ellipse, that is, the quadruple (a, b, A, E) corresponding
to the coefficients of the above ellipse equation. Generalizing the linear and circular cases,
aligned ellipse estimators can be defined formally as follows.

Theil-Sen aligned ellipse estimator: Computes for each feasible quadruple (3, j,k,1),
1 < i< j < k<l < n, the parameters of the corresponding ellipse. The estima-
tor is given by the median values, over (up to) (Z) elements, of each of the above sets,
ie.,

a = meda;;p,;, b = med bi k.l

and
A = Il’ledAi’j,kvl, B = medBi?j,k,l.

RM aligned ellipse estimator: Computes for each feasible quadruple (i, j, k,1), 1 < i #
j # k # 1 < n, the parameters of the corresponding ellipse. The center’s estimated
coordinates are given by

a = med med med med a; ; 1, b = med med med med b; ; 1,
i A k#Fg lFgkE T i A k#Fg lFgk T

and the estimated radii are given by

A= med med med med A, ; 1, B = med med med med B; j ;.
i gF kFLg IFLg R T i g# kg lEGgkE T
This definition is understood to involve only singletons, pairs, and triples that are
feasible.

Somewhat more intuitively, each parameter of the Theil-Sen (aligned) ellipse estimator
is defined by considering all feasible quadruples of points, computing the ellipse passing
through each quadruple, and then selecting the median value of the corresponding parameter
over all these ellipses. For the repeated median estimator, each feasible quadruple (i, j, k, )
determines a single ellipse, and hence a unique parameter value. For each triplet (i, j, k),
we take the median parameter over all n — 1 choices of the fourth point. For each pair,
(i,7), we consider the median over all n — 2 choices of a third point, and so on. It follows
from standard arguments [38] that because they are based on quadruples of observations, the

breakdown points of the Theil-Sen and RM (aligned) ellipse estimators are 1 — {/1/2 ~ 16%
and 50%, respectively.
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The Theil-Sen and the RM aligned ellipse estimators can be computed by a brute-force
implementation of their definitions in O(n*) time. The Theil-Sen estimator requires O(n?)
space, whereas the RM requires linear space. We show that both can be computed by
randomized algorithms running in O(n?logn) expected time and O(n) space. Perhaps more
importantly, we indicate the necessary steps in generalizing the methodology presented in
the previous sections to other classes of curves. We focus primarily on the most illustrative
case, the RM horizontal radius estimator, A. (The basic building blocks for the Theil-Sen
case are a subset of those needed for the RM. Regarding the other RM parameters, the
vertical radius, B , is symmetric to fl, and the center coordinates @ and b are algebraically
simpler.)

The general structure of the algorithm is the same as that presented in Section 2. The
principal elements that need to be modified are the geometric components used in comput-
ing the RM estimator for circles: (1) the bisector arrangement in the dual plane, (2) the
annular regions used in region contraction, and (3) the ranges used in the computation of
median radii. The remainder of this section is organized as follows. First we transform the
problem of computing the RM horizontal radius to a somewhat simpler form for the pur-
poses of presentation. In Subsection 4.1 we provide some technical results on the algebraic
structure of aligned ellipses, which will be needed later. In Subsection 4.2 we show that
the bisector arrangement in the circular case generalizes to an arrangement of axis-aligned
hyperbolas in the ellipse case. In Subsection 4.3 we provide a generalization of the annular
regions which were used in the circular case, and show that the arrangement of hyperbo-
las satisfies the boundary intersection properties of Subsection 3.1 required for intersection
point counting and sampling. Finally, in Subsection 4.4 we show how the ranges used in
the circular case for finding median radii, can be generalized to ranges based on the sym-
metric differences of ellipses. Although some of the algebraic derivations presented in this
section are rather tedious, they are relatively straightforward and help illuminate a number

of interesting properties of this important class of conics?.

We begin by transforming the RM horizontal radius problem into a somewhat simpler
form. Recall that in the circular case, three points are needed to determine a circle. We fixed
one point, p;, and reduced the problem to a repeated median calculation over O(n?) possible
remaining pairs. Analogously, in the case of aligned ellipses where four points are needed,
we fix two points, p; and p;, and reduce the problem to a repeated median calculation over
the O(n?) remaining pairs. We first define

Aus = et ed A
fli,j can be interpreted as a horizontal radius estimator for two fixed points, p;, p;. (It plays,
essentially, the analogous role of 7; in Subsection 2.2.) In the remainder of the section, we
argue that A, ; can be computed in expected O(nlogn) time and O(n) space. Thus, using
standard algorithms for computing medians in O(n) time, this leads immediately to an
algorithm, for computing fl, whose expected running time is O(n®logn) and which requires
O(n) space.

2Some of the longer derivations presented here have been verified with the help of the Mathematica
software system [50]. Copies of the Mathematica scripts containing these derivations are available from the
authors.
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Since the points p; and p; will be fixed for the remainder of the discussion, let us denote
them simply by p1 = (21,y1) and ps = (22,92). It will simplify subsequent derivations to
apply an affine transformation that maps these points to (—1,—1) and (1, 1), respectively,
and which preserves aligned ellipses. (We hasten to mention that, unlike linearization, we
will be able to extract the true values of the estimators as defined earlier.) We first apply a
translation to the plane, so that the midpoint of these two points is mapped to the origin.
Next, by general position assumption (iii), we know that no two data points share the same
x- or y-coordinates, and so we may apply scaling independently to the x- and y-axes by
1/(xe — 1) and 1/(y2 — v1), respectively. Clearly, this maps p; and ps to (—1,—1) and
(1,1), respectively. Both translation and scaling of coordinates preserve aligned ellipses.
Furthermore, the transformation either preserves or (if we scale by a negative quantity)
entirely reverses the order relationships among ellipse parameters. Therefore, the various
parameter medians can be easily extracted from the transformed representations. (For the
center coordinates this is done by an inverse translation, and for the horizontal and vertical
radii this is done by multiplying by the reciprocal of the scale factor.)

4.1 Some Technical Results on Aligned Ellipses

We begin with the following technical result, which describes some of the relationships be-
tween the parameters of an aligned ellipse passing through the points p; and ps.

Lemma 4.1 Consider an ellipse

(x—a)* (y—0b)?
e o b

which passes through p; = (—=1,—1) and py = (1,1). Then
(i) A,B>1,
(ii) bA* = —(1 —ab)(a —b), and aB* = (1 — ab)(a — b), and

(iii) if the center of the ellipse does not coincide with the origin, then the ellipse is uniquely
determined from its center.

Proof: Fact (i) is immediate from the observations that the ellipse passes through two
points (p; and p,) which are separated by horizontal and vertical distances of 2. Hence, the
ellipse’s horizontal and vertical diameters must be at least this large.

Fact (ii) is proved by a straightforward substitution of the values of p; = (—1,—1) and
pe = (1,1) into the ellipse equation, yielding

((l-af | (-1-b? _

(1—a)*  (1-0?
A2 B2 + N

A? B?

1, L,

and then solving these two equations for A? and B? as a function of a and b. In particular,
since A2, B # 0, through simple manipulations we have the two equations

B2A2— (1+a)?) = AX(1+b)?,  BXA*—(1-a)?) = A*(1—b)
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Eliminating B%/A? these yield
(A? — (1 +a)*)(1 = b)* = (A* = (1 —a)*)(1 +b)*,
and after some expansion and simplification
4bA? = —4(1 — ab)(a — b).

One part of the result follows immediately. The other part follows from the symmetry of a

with b and of A with B.

To establish (iii), it is easy to verify that if one of the center’s coordinates is zero, then
the other must also be zero. If both center coordinates are nonzero, then the values of A and
B are determined from these constraints, and hence the ellipse is uniquely determined. O

Notice that when the center coincides with the origin, there are an infinite number of
ellipses passing through p; and ps, and a third point is needed to uniquely determine the
ellipse. This is why general position assumption (iv) was introduced.

Next, we consider properties of aligned ellipses passing through pq, po, and any other third
data point pg, k # 1, 2. Excluding degenerate cases, four points are needed to uniquely define
an ellipse, so these three points define a 1-dimensional family of aligned ellipses. The most
convenient method to describe this family of ellipses will be to introduce a parameterization
based on the ratio of the height to width of these ellipses.

Let p be a any positive real, and let T[p] denote the linear transformation,

Tlpl(x,y) = (px,y),

which scales the x axis by a factor of p. There is a unique circle passing through the
transformed points T'[p](p1), T[p](p2), and T[p](px). Applying the inverse transformation
T[1/p] to this circle produces a unique aligned ellipse E[p]. See Figure 5. The ratio of
the height to width of the resulting ellipse is clearly p. The following fundamental lemma
provides a parametric description of each of the ellipse parameters as a function of p.

T[2](R)

Figure 5: Ellipse parameterization, where the horizontal axis has been scaled by a factor of
p =2

Lemma 4.2 Consider points p; = (—1,—1), po = (1,1), and py = (s,t). The points (z,y)
on the ellipse E|p| passing through these points satisfy

(x—alp])*  (y—b[p])?
AZp] T By

=1,
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where

pPPL—s?) + (1—t7) pPPL—s)+ (1t

a[p] = _M<p 82§)2(8 _ t) ) b[p] = M(p 3(158)_ t) )
A?[p] 74[)4(3’_’ ek B*p] = s 1) (S’_’ e
and where

M(p,s,t) = (14 p*)(p*(1 = 5)" + (L= 1)*)(p°(1 + 5)° + (1 +1)?).

Proof: Substituting the values a[p], b[p], A%[p], and B?[p], into the ellipse equation, and
then applying straightforward simplifications yields

M(p,s,t) = (20p*(s — ) + p(1 — ) + (L = ) + p2(2y(s — £) — p*(1 = &%) — (1 — )"

After a lengthy expansion, we collect common terms in p. The expanded equation has the
form p*N(z,y,s,t) + p*N(y,z,t,s) = 0, where

N(w,y,5,8) = s =)((s = t) = 2*(s = t) —a(1 = 8*) + y(1 = 5)).
After removing common factors and simplifying, we have

Ps=1-2")+ (1 =) y—2)+ (s —t)1-y) + (1 =)y —z)) =0 (1)

The conclusion follows by substituting the coordinates of each of the points p1, po, and p
(in place of x and y) into this equation, to show that these points satisfy the equation,
irrespective of p.

O

An important feature of the family of aligned ellipses passing through three given points is
that all the ellipses in the family share a fourth point in common and exhibit an interesting
manner of nesting. This fact is presented in the following lemma, and is illustrated in
Figure 6.

Lemma 4.3 Consider the set of aligned ellipses Elp], p > 0, that pass through the three
noncollinear points py = (—1,—1), po = (1,1), and py = (s,1).

(i) All these ellipses share a common fourth point g, = (S,T), where

2 -9 2 -9
S:% and T _Ltst=2

s—1 s—t

(ii) Define an elliptical disk to be the closed 2-D region bounded by an ellipse. Given 0 <
p < p', for each p > 0, if p < p < p’ then (except at the four common points of
intersection) the ellipse E[p] lies entirely within the symmetric difference of the elliptical
disks defined by E[p'] and E[p"], and is otherwise entirely disjoint from of this region.
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Figure 6: Aligned ellipses passing through three points share a common fourth point.

Proof: The proof of (i) is by substitution of the point (S,7") as (z,y) into Eq. (1), followed
by straightforward manipulations to show that the equation holds, irrespective of p.

To prove (ii), we know from Lemma 4.2 that as p varies continuously from p’ to p”,
the corresponding family of ellipses E|[p| sweeps continuously over some region of the plane,
starting with E[p/] and ending at F[p”]. By simple continuity and connectivity of these
curves, it follows that the locus of points encountered by the sweep contains the symmetric
difference of the corresponding elliptical regions.

We claim that (other than the four common points) no point outside the symmetric
difference can be encountered by the sweep. First note that distinct p values generate
distinct ellipses. From the intermediate value theorem, visiting a point outside the symmetric
difference would imply that for some p € (p/, p”) there is an intersection between E[p| and
either E[p'] or E[p"] (in addition to the four common points). However, all of the ellipses in
this family are distinct polynomial curves of order 2. Hence by Bézout’s Theorem [39], there
can be no more than four intersection points between any two of them.

O

4.2 The Dual Arrangement of Hyperbolas

Recall that in the circular case, we considered a dual transformation in which each point
in the dual plane was associated with the center of a unique circle. In the elliptical case
we can define an analogous dual plane associated with the points p; and py, such that, an
ellipse can be uniquely identified with each point contained in a subset of points in this
plane. In particular, given the coordinates (a, b) of a center point (other than the origin), we
know from Lemma 4.1(iii) that there is at most one ellipse passing through p; and p, having
these center coordinates. Unlike the circular case, not all points of the dual plane will be
centers of aligned ellipses, because the values of A% and B? as determined from Lemma 4.1(ii)
must both be positive. However, our algorithm will never encounter such “infeasible” center
points.

26



Since four points are generally needed to define an ellipse, if we consider three distinct
data points p1, p2, and pg, there is a 1-dimensional family of ellipses that pass through these
three points. We claim that the centers of these ellipses form a branch of a hyperbola,
denoted by Hj. (This is the analogue of the bisector b;; introduced earlier in Section 2.)
This hyperbola is shown as a dashed curve in Figure 6. This observation is a special case of
the more general lemma, which states that the locus of the centers of 2-D conics that pass
through four fixed points is a 2-D conic whose asymptotes are parallel to the axes of the two
parabolas through the four points. (For a proof, see, e.g., [43], pp. 292-293.)

Lemma 4.4 Given distinct points py = (—1,—1), po = (1,1), and py = (s,t), the locus Hy,
of the centers of ellipses that pass through these three points is one branch of a hyperbola
with horizontal and vertical asymptotes. In particular,

Hy € {(a,b) | (a —ao)(b—bo) = K7},

where a 2) (1-
— — S —
— )/ =~ 7/ d K = agby.
Qo 2s — 1)’ 0 2(s — 1)’ an QoY

The asymptotes of the hyperbola are x = ag and y = by.

Proof: First we show that the set of centers satisfies the hyperbola equation presented
above. Observe that the hyperbola equation above can be rewritten as

2ab(s — t) — a(l —t*) + b(1 — s?) = 0.

The result follows by substituting the ellipse coefficients a[p] and b[p] (presented in Lemma 4.2)
for a and b, respectively, into the hyperbola equation, and then verifying that the rewritten
equation holds, irrespective of p.

To show that Hj, consists of only one branch of the hyperbola, recall the transformation
Tp| introduced earlier. It suffices to show that as p varies continuously from 0 to oo, the
centers of the respective ellipses E[p] trace out one branch of the hyperbola. As p — 0 it is
easy to verify from Lemma 4.2(i) that the a-coordinate of the ellipse, a[p], approaches either
+00 or —oo, and as p — oo, the b-coordinate of the center, b[p|, approaches either +o0o
or —oo. For all values between these extremes the center varies continuously in the plane,
implying that exactly one branch is traced out.

O

Observe that the hyperbola described in the previous lemma passes through the origin.
In general, the branch of interest may or may not pass through the origin. This branch can
be determined easily from the values of the coordinates of py, relative to those of p; and p».

Since Hj, denotes the locus of the centers of ellipses that pass through pq, ps, and py, if we
consider k = 3,4, ...,n, we have an arrangement of n — 2 curves in the plane. Observe that
if two such curves Hj, and H,* intersect at some point (other than the origin), then from

3H, denotes the locus of the centers of ellipses that pass through p;, ps, and p,.

27



Lemma 4.1(iii) there is a unique aligned ellipse whose center coincides with these points,
and hence this ellipse passes through all four points, p1, po, pr and p,. This center cannot
coincide with the origin, because from general position assumption (iv), the midpoint of
p1 and po cannot be the center of any ellipse. Conversely, if there is an (aligned) ellipse
that passes through four data points, then the hyperbolas H, and H, must intersect at
the ellipse’s center. From general position assumption (iii), there is only one such ellipse.
This implies that the arrangement of hyperbolas is a pseudoline arrangement analogous to
the arrangement of bisectors in the circular arc case. This is illustrated in Figure 7, and
presented in the following lemma.

P30
B 20
He 1
H i p, 10
\ T la
20 -0 P,

-10 -

Figure 7: Hyperbola intersections and ellipse centers.

Lemma 4.5 Given points p1 and ps, the arrangement of hyperbolas Hy, 3 < k < n, is a
pseudoline arrangement whose vertices, other than the origin, are in 1-1 correspondence with
the centers of aligned ellipses that pass through py, ps, and any two other data points.

4.3 Region Contraction for the Ellipse Estimator

Each vertex in the arrangement of hyperbolas is associated with a unique aligned ellipse,
and hence is associated with the four coefficients defining this ellipse. For a given curve
Hy, define its median horizontal radius to be the median horizontal radius among the O(n)
arrangement vertices lying on this curve. (In the primal plane, this is the median horizontal
radius among the O(n) aligned ellipses that pass through py, pa, pr and any other fourth data
point.) Thus, for the quantity of interest, 1211,2, the problem has been reduced to computing
the median over the O(n) median horizontal radii.

To compute 1211,2, we employ a similar region contraction scheme as the annulus contrac-
tion which was described in the circular case. From Lemma 4.1(ii) it follows that each point
in the dual plane, which is the center of some ellipse passing through p; and p,, can be
associated with a unique horizontal radius,

Aa,b) = ¢-(1 —a[l)))(a—b).
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(Points (a, b) for which this quantity is undefined are not centers of aligned ellipses. This will
not be a problem because our algorithm will only evaluate the above expression for vertices
of the hyperbola arrangement, and all of these points are centers of ellipses.)

For 0 < Aj, < Api, we can associate any (half-open, half-closed) interval, (A, Ay}, with
a region R(Aj, Ay;) of the plane, such that, for all points (a,b) in this region, A(a,b) is
defined and lies within the interval. (In the circular arc case, the corresponding region was
an annulus.) As in the circular case, the algorithm maintains an interval that contains ALQ.
(The initial interval is (0,4o0c].) We contract the interval through a series of stages. In
this subsection we establish a representation of the region that corresponds to the interval
(Ao, Api] which, together with the hyperbola arrangement, satisfies the boundary intersection
properties presented in Subsection 3.1. From this it will follow that the building blocks of
Subsections 3.1 and 3.2, i.e., intersection point counting and sampling, can be applied.

Consider a fixed horizontal radius value, A > 1, and let C'(A) denote the locus of centers
of ellipses that pass through p; and p, and whose horizontal radius is A. We call this an
A-contour. (Figure 8(a) provides an example of two such curves, one for A), = 5, and the
other for Ay; = 10. The figure also shows two ellipses in dashed lines, centered on these
contours, one of horizontal radius 5 and the other of radius 10.) Our next result provides an
analysis of this curve’s structure.

- 30
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Figure 8: (a) An example of two A-contours in the dual plane, and (b) the corresponding
A-region.

Lemma 4.6 Given any A > 1, C(A) is a connected curve in the dual plane consisting of
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the points (a(b),b), which, for b # 0, satisfies

B2+ 1— /(b — 1)2 + (2bA)?
)= 20 ‘

a(b

This curve satisfies the following properties.

(i) It passes through and is symmetric with respect to the origin,
(i) It is monotone with respect to the b-axis, and
(iii) limy_ a(b) = 0.

Proof: To establish (i), recall from Lemma 4.1(ii) that bA* = —(1 — ab)(a — b). First
observe that the point (a,b) = (0,0) is a solution to this equation (irrespective of A), so the
resulting curve passes through the origin of the dual plane. If (a,b) satisfies the equation,
then so does (—a, —b), implying its symmetry with respect to the origin.

By symmetry, it suffices to consider the case b > 0. Expanding the above equation and
collecting common terms for a yields a?b — a(b* + 1) + b(1 — A%) = 0. The solution of this
quadratic equation in a is

1+ 0+ VA
a(b) = ————,
2b
where the discriminant is A = (b* — 1)2 + (204)2.

Observe that the discriminant is always positive, so two distinct real roots exist for each
value of b # 0. We claim that only one root, namely the one that arises by subtracting
VA, yields the center of an aligned ellipse. To see this, consider the other root. From
Lemma 4.1(ii), we have

A2 b)) B 1402 —1)2+ (26A) .

[ 2 R 207 =
which is impossible. Since there is only one solution for each value of b, we have established
(ii).

To prove (iii), we first divide the numerator and denominator of a(b) by b?, obtaining

L+ 572 — /(1= b-2)2 + 4422
B 251 '
Computing the limit of this quantity is complicated by the square root term. As b approaches
infinity, b=2 approaches 0. If we let f(x) = \/ (1 — )2 + 4A%z, we can substitute a Taylor’s

expansion of f(b=?) about 0 in place of the square root term. It is easy to verify that a
Taylor’s expansion of f(z) about 0 is

f(z) =1+ (242 — 1)z + O(2?).

a(b

Thus,
1+b72— f(b2
o) = 1F 2b_lf( )
L1422 -1+ 007Y)  (1-4?) 1
B 2b-1 = ¢ (b_3) '
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Thus, lim,_.., a(b) = 0.
O

The region, R(Aj, Api), which corresponds to the interval (A),, Ay;], can be seen as the
region of the dual plane lying between two A-contours. (Figure 8(b) illustrates such a region
obtained for A, = 5 and Ay; = 10. It also shows two hyperbolas, H; and H,, associated
with the points px and py, respectively. Since their intersection lies within this region, it is
the center of an ellipse of horizontal radius between 5 and 10.)

To apply analogous intersection counting and sampling routines, which were presented
in Subsections 3.1 and 3.2, we need to present the boundary of this region in a way that
allows us to sort intersections with the hyperbolas of the pseudoline arrangement in cyclic
order around the boundary. This is easy to do. First orient C), = C(Aj) from bottom to
top and orient Cl; = C(Ay;) from top to bottom. Next, break each contour into two pieces,
the portion above the origin and the portion below the origin. Joining both pieces above the
origin, and then joining both pieces below the origin provides us with the boundary of two
disjoint, closed (but unbounded) regions of the dual plane. We can apply the intersection
counting and sampling procedures individually to each piece, and then combine the two
results.

It is easy to see that each of the resulting boundaries satisfies the boundary intersection
properties presented in Subsection 3.1. Property (i) follows from the fact that the region
is closed, (ii) follows from the fact that the limit points of each hyperbolic arc lie outside
the region (this is in part a consequence of general position assumption (i)), and (iii) follows
from the fact that hyperbolas and A-contours are algebraic curves of bounded degree (and
so their intersections can be determined either through numeric or symbolic means), and
boundary sorting can be performed by the monotonicity of the A-contours.

As a practical consideration, it should be noted that the equation derived in Lemma 4.6
has a singularity at the origin, and before applying a numerical procedure for computing
intersections in this neighborhood, an alternative formulation of the equation as a function
of a rather than b should be derived. Because the underlying equation is quadratic in b, this
can be done symbolically.

4.4 Median Radii and Range Queries

To be able to apply the repeated median computation, we have one remaining task, namely
to establish the corresponding ranges used in finding the median horizontal radius for each
curve Hy in the arrangement of hyperbolas. Recall from Subsection 3.3, that in the circular
case the problem (in primal form) is, given a fixed data point p; and any other data point p;,
determine the median radius among the n — 2 circles passing through these two points and
any other third data point. We showed that this could be reduced to a randomized binary
search in which each probe was solved by applying a range query over the set of data points.
Each range was the union of two regions, each of which was the symmetric difference of two
circles.

In the case of aligned ellipses, this task is generalized as follows. We have three fixed
points, py, pe, and pr. Among the n — 3 aligned ellipses passing through these three points
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and any other fourth data point, determine the median horizontal radius. In the dual plane,
this is equivalent to finding the intersection point on Hj, in the arrangement of hyperbolas,
which corresponds to the center of the aligned ellipse having the median horizontal radius
value.

The randomized binary search is exactly the same as that described in Subsection 3.3.
The only significant difference is that the type of ranges are different. The main result of this
subsection, which is the analogue to Lemma 3.3, states that the corresponding range is the
union of a constant number of symmetric differences of aligned ellipses. This is illustrated
in Figure 9.

Figure 9: Searching for the median horizontal radius: (a) the set of aligned ellipses that
pass through py, po, pr, and a fourth point gi; (b) the subset of the above ellipses whose
horizontal radius is contained in the interval (A),, Ap; lies within the shaded region.

Lemma 4.7 Given three data points py, pa, and py and an interval (A, Ay, the aligned
ellipses passing through these three data points and any other fourth data point, and whose
horizontal radii are in the interval, are in 1-1 correspondence with the set of data points
lying within the union of a constant number of regions of the plane, each being the symmetric
difference of two elliptical disks.

Proof: The centers of aligned ellipses passing through the three given points lie on the hy-
perbola Hj, in the dual plane. Hence, the locus of centers of those ellipses whose horizontal
radius lies within (A, Ay;] is the intersection of Hj, with R(Aj, Ayi), i.e., the dual region
associated with the given interval. Thus this intersection consists of some number of con-
nected segments of Hy. From Lemma 4.6 we know that the boundaries of this region consist
of two algebraic curves of bounded degree. Since Hy, too, is an algebraic curve of bounded
degree, the number of connected segments is some constant. These segments are shown as
thick lines in Figure 9. (A more detailed analysis would reveal that the horizontal radius is
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a unimodal function along Hy, and hence it can be shown that the number of segments is at
most two, as it was in the circular case.)

Associated with the endpoints of these segments are a constant number ¢ of closed ellip-
tical disks, Eo;, Eni, for 1 <i <c. (Again, a more careful analysis would show that ¢ = 2.)
E\,; has horizontal radius Aj,, and Ey;; has horizontal radius Ap;. Let S denote the union
of the symmetric differences of E,; and Ey;;, for 1 <i < c. (Observe that py, ps, and py are
not in S, since they belong to both disks.) Because p varies monotonically along Hy, we can
apply Lemma 4.3(ii) (where p’ and p” take on the parameter values at the endpoints of each
interval). It follows that for any other data point p,, the horizontal radius of the ellipse that
passes through py, pa, px, and p, (if it exists) is within the interval (Ao, Ay if and only if py
lies within S. (From the proof of Lemma 4.3(ii) it also follows that if p, lies within 5, then
such an ellipse exists.) It follows immediately, that the data points lying within S are in 1-1
correspondence with the circles passing through py, ps, pr, and one other data point. O

Thus, the task of counting the number of aligned ellipses passing through the points
p1, p2, and pg, and whose horizontal radii lie within a given interval, can be reduced to
performing a range counting query over ranges defined by a constant number of Boolean
operations on sets of bounded algebraic complexity. Hence, the results for range searching of
Agarwal and MatouSek [1] can be applied in this case, as well. That is, counting the number
of data points in this type of range can be performed in O(n?) time, for some v < 1, after
O(nlogn) preprocessing and with linear space. (Note that the value of ~ is different from
the one used in Subsection 3.3, and this affects the value of 5 = 1 —+ used in the algorithm.)

Therefore, we can apply the randomized binary search to compute the median horizontal
radius for each of the sampled points in O(nlogn) expected time, as in Subsection 3.3.
Combining this with the intersection counting and sampling building blocks, which were
established in the previous section, we have all the building blocks needed to generalize the
repeated median algorithm to finding the horizontal radius estimate, /1, for aligned ellipses.
(Computing B is carried out similarly.) To compute @ (b), note that the associated value
of an intersection point in the hyperbola arrangement is just the a- (b-) coordinate of the
point. Thus, the a-contours and b-contours are vertical and horizontal lines, respectively,
and the associated regions to be contracted, are just horizontal and vertical strips. Finally,
the regions used for range queries are essentially the same, but each region will consist of
the symmetric difference of a single pair of ellipses. This follows because the hyperbola
H,, intersects each vertical or horizontal strip in a single segment. As mentioned before,
the computation of the Theil-Sen estimator is a simpler variant, since only the intersection
counting and sampling steps are needed. Thus, in conclusion, we have the main result of
this section.

Theorem 4.1 The nonlinear, non-hierarchical Theil-Sen and RM aligned ellipse estimators
can be computed in O(n®logn) expected time and O(n) space.
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5 Conclusions

Efficient randomized algorithms for computing robust circular arc and aligned ellipse esti-
mators were presented in this paper. In particular, it was shown that the (non-hierarchical)
Theil-Sen and repeated median circular arc estimators can be computed in O(n?logn) ex-
pected time and O(n) space. It was also shown that the Theil-Sen and repeated median
aligned ellipse estimators can be computed in O(n?logn) expected time and O(n) space.
Both algorithms rely on generalized techniques for intersection counting and sampling, and
range searching.

It is natural to ask whether randomization is necessary in these results. We believe
that randomization can be removed from our algorithms without increasing the asymptotic
running times, but this would likely come at the expense of more complicated algorithmic
techniques.

We conjecture that the methods introduced in this paper can be applied to comput-
ing similar estimators for (general) ellipses and arbitrary 2-D conic sections in O(n*logn)
expected time and O(n) space. In fact, this suggests the general conjecture that for any “rea-
sonable parameterization” of a k-parameter planar algebraic curve, corresponding Theil-Sen
and RM estimators can be computed in O(n*~*logn) time and O(n) space.
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