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Abstract

Let S be a set of n points in IRd and let t � � be a real number� A t�spanner
for S is a directed graph having the points of S as its vertices� such that for any
pair p and q of points there is a path from p to q of length at most t times the
Euclidean distance between p and q� Such a path is called a t�spanner path� The
spanner diameter of such a spanner is de�ned as the smallest integer D such that
for any pair p and q of points there is a t�spanner path from p to q containing at
most D edges�

A randomized algorithm is given for constructing a t�spanner that� with high
probability� contains O�n� edges and has spanner diameter O�logn�� A data struc�
ture of size O�n logd n� is given that maintains this t�spanner in O�logd n log logn�
expected amortized time per insertion and deletion� in the model of random updates�
as introduced by Mulmuley�

Keywords
 Computational geometry� proximity problems� skip lists�
randomization� dynamic data structures�

Preprint submitted to Elsevier Science �� October ����



� Introduction

Given a set S of n points in IRd� where d is a constant� and a real number
t � �� a t�spanner for S is a directed graph on S such that for each pair p and
q of points of S there is a path from p to q having length at most t times the
Euclidean distance between p and q� We call such a path a t�spanner path�

The problem of constructing t�spanners has received great attention� Clark�
son ���� and Keil and Gutwin �	� introduced the 
�graph� which was generalized
by Ruppert and Seidel ���� to any �xed dimension d� These authors proved
that for an appropriate choice of � this graph is a t�spanner with O
n� edges�
Moreover� they gave an O
n logd�� n� time algorithm to construct it�

In Callahan and Kosaraju ���� Salowe ���� and Vaidya ����� optimal algorithms
are given for constructing t�spanners� For any set S of n points in IRd� d � ��
and for any t � �� a t�spanner for S having O
n� edges can be constructed in
O
n log n� time�

There are several interesting quantities related to a t�spanner� First� it is clear
that any spanner must have at least n � � edges� All spanners referred to
above have O
n� edges� which is optimal� Second� the total length of all edges
in a spanner is always at least equal to the length of a minimum spanning
tree for S� We denote the latter by wt
MST �� Das and Narasimhan ��� give
an O
n log� n� time algorithm for constructing a t�spanner with O
n� edges�
Combining their results with those in Das� Narasimhan and Salowe ��� shows
that the total length of the edges of this spanner is bounded by O
wt
MST ���
This result holds for any �xed dimension d�

For constructing bounded degree spanners� the best result is by Arya and
Smid ���� They give an O
n logd n� time algorithm that builds a t�spanner such
that each point has a degree that is bounded by a constant� In fact� a variant
of their algorithm� combined with results of ������ produces a bounded degree
t�spanner such that the total length of all edges is bounded by O
wt
MST ���
This variant also has running time O
n logd n��

All spanners referred to above have a disadvantage in comparison with the
complete Euclidean graph� Although the Euclidean lengths of t�spanner paths
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are within a constant factor of the Euclidean distance between points� the
number of edges in these paths may generally be as large as �
n�� The resulting
ine�ciency of computing spanner paths� storing them� and traversing them is
a signi�cant limitation in their usefulness�

In this paper� we consider the problem of constructing t�spanners with O
n�
edges and small spanner diameter� That is� for each pair p and q of points there
is a t�spanner path from p to q consisting of only a small number of edges�
Moreover� it should be possible to compute such a t�spanner path e�ciently�
To our knowledge� this natural problem has not been considered before�

A second disadvantage of the known spanners is that they are static� That
is� no e�cient algorithms are known for maintaining a t�spanner when points
are inserted and�or deleted in the set S� In the second part of this paper� we
consider the problem of designing dynamic data structures for maintaining a
t�spanner�

��� Summary of results

Intuitively� our results may be viewed as one way of generalizing skip lists to
higher dimensions� Assume that the points of S are one�dimensional� Consider
a skip list ���� for the points of S� By ��attening� the nodes of the skip list
down to the lowest level� we can regard this data structure as a directed graph
on S� This graph has an expected number of O
n� edges� For each pair p and
q of points� there is a path from p to q having length jp � qj and containing
an expected number of O
log n� edges� In fact� even the expected maximum
number of edges on any such path is bounded by O
log n�� 
See ������ As a
result� the skip list is a ��spanner with expected spanner diameter O
log n��
This spanner can be maintained in O
log n� expected time per insertion and
deletion�

In this paper� we generalize this idea to the d�dimensional case� for any �xed
d� by combining the 
�graph of ���	���� with skip lists� For any �xed t � ��
we get a t�spanner� which we call a skip list spanner�

We will show that the skip list spanner has an expected number of O
n� edges�
and its expected spanner diameter is bounded by O
log n�� Also� we will show
that the expected maximum time to construct a t�spanner path from any point
of S to any other point of S is bounded by O
log n�� These bounds even hold
with high probability� Note that hence the existence of a t�spanner having
O
n� edges and O
log n� spanner diameter has been proven�

For a standard skip list it is relatively easy to show that the expected spanner
diameter is bounded by O
log n�� 
See ��������� For d�dimensional skip list

�



spanners� however� the proof turns out to be more di�cult�

Using range trees �������� we can construct the skip list spanner in O
n logd�� n�
expected time and O
n logd�� n� space�

We are not able to give e�cient algorithms for maintaining the skip list spanner
under arbitrary insertions and deletions� In the model of random updates�
as introduced by Mulmuley ����� we do get an algorithm that is fast in the
expected sense� Again using range trees� we design a data structure of size
O
n logd n� that maintains the skip list spanner in O
logd n log log n� expected
amortized time per random insertion and deletion�

The skip list spanner is a randomized data structure� In ���� deterministic algo�
rithms are given for constructing t�spanners having O
n� edges and O
log n�
spanner diameter� At present� however� no e�cient algorithms are known to
update these deterministic spanners�

The rest of this paper is organized as follows� In Section �� we give the ba�
sic de�nitions� introduce the 
�graph� prove some basic results about it� and
show how to construct this graph e�ciently� Our construction uses a logarith�
mic factor less space than that of ����� In Section �� we de�ne the skip list
spanner� give the algorithm to construct a t�spanner path from any point to
any other point� and prove that the expected running time and the expected
spanner diameter are both bounded by O
log n�� Section � considers the prob�
lem of maintaining the skip list spanner in the model of random insertions
and deletions� Finally� in Section �� we give some concluding remarks�

� Spanners� simplicial cones and the 
�graph

Let S be a set of n points in IRd� We consider directed graphs having the points
of S as their vertices� The weight of an edge 
p� q� is de�ned as the Euclidean
distance between p and q� The weight of a path in a graph is de�ned as the
sum of the weights of all edges on the path� If 
p� q� is an edge� then p is called
its source and q is called its sink�

Let t � �� A graph G � 
S�E� is called a t�spanner for S if for any pair p and
q of points of S there is a path in G from p to q having weight at most t times
the Euclidean distance between p and q� Any path satisfying this condition
is called a t�spanner path from p to q� Given a t�spanner for S� we de�ne a
path query to be a pair 
p� q� of points in S� The answer to a path query is a
t�spanner path from p to q� An augmented spanner is a spanner together with
an associated data structure for answering path queries and�or supporting
updates�
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The spanner diameter of a t�spanner is de�ned as the smallest number D
such that for any pair p and q of points there is a t�spanner path from p to
q containing at most D edges� In this paper� we want to construct spanners
with a low spanner diameter�

The Euclidean distance between the points p and q in IRd is denoted by jpqj�

A �simplicial� cone is the intersection of d halfspaces in IRd� The hyperplanes
that bound these halfspaces are assumed to be in general position� in the sense
that their intersection is a point� called the apex of the cone�

Let � be a �xed real number such that � � � � �� Let C be a collection of
cones such that 
i� each cone has its apex at the origin� 
ii� each cone has
angular diameter at most �� and 
iii� all cones cover IRd� In Yao ����� it is
shown how such a collection C� consisting of O

c���d��� cones for a suitable
constant c� can be obtained�

For each cone C � C� let lC be a �xed ray that emanates from the origin and
that is contained in C� Let p be any point in IRd� We de�ne Cp �� C � p ��
fx � p � x � Cg� i�e�� Cp is the cone obtained by translating C such that
its apex is at p� Similarly� we de�ne lC�p �� lC � p� Hence� lC�p is a ray that
emanates from p and that is contained in the translated cone Cp�

In Section �� we will need the following lemma� Its proof is similar to that of
Lemma � in ��� and� therefore� omitted�

Lemma � Let k � � be an integer� let � � ���k� let p and q be any two
distinct points in IRd� and let C be the cone of C such that q � Cp� Let r be
any point in IRd �Cp such that the orthogonal projection of r onto the ray lC�p
is at least as close to p as the orthogonal projection of q onto lC�p� Then

�i� jprj cos � � jpqj� and
�ii� jrqj � jpqj � 
cos � � sin ��jprj�

De�nition � ����	��
�� Let k � � be an integer and let � � ���k� Let S be
a set of points in IRd� The directed graph 

S� k� is de�ned as follows�


i� The vertices of 

S� k� are the points of S�

ii� For each point p of S and each cone C of C such that the translated cone

Cp contains points of S n fpg� there is an edge from p to the point r in
Cp�S nfpg whose orthogonal projection onto lC�p is closest to p� 
If there
are several such points r then we take an arbitrary one��

See Figure � for an illustration in the planar case�

The following lemma was proved in �	� for the case when d � � and in ���� for
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Fig� �� Illustration of the graph ��S� k� for d � ��

the case when d � ��

Lemma 
 ��	��
�� Let k � � be an integer� let � � ���k and let S be a set
of n points in IRd� The graph 

S� k� is a t�spanner for t � ��
cos � � sin ���
It contains O

c���d��n� edges� for some constant c�

Next� we consider the problem of constructing the graph 

S� k�� In �	�� it is
shown how this problem can be solved in O
n log n� time using O
n� space for
the case when d � �� In ����� an algorithm is given that contructs the graph


S� k� in O
n logd�� n� time using O
n logd�� n� space� for any �xed dimen�
sion d � �� We change the latter solution slightly� resulting in an algorithm
having the same running time but using only O
n logd�� n� space�

Before we can give the algorithm� we need to introduce some notation� Let
C be any cone of C� Let h�� h�� � � � � hd be the hyperplanes that bound the
halfspaces de�ning C� and let H��H�� � � � �Hd be lines through the origin such
that Hi is orthogonal to hi� � � i � d� We give the line Hi a direction such
that the cone C lies on the positive side of hi as indicated by the direction of
Hi� Let L be the line that contains the ray lC� We give L the same direction
as lC� 
See Figure � for an illustration in the planar case��

Let p be any point in IRd� We write the coordinates of p with respect to the
standard coordinate axes as p�� p�� � � � � pd� For � � i � d� we denote by p�i the
signed Euclidean distance between the origin and the orthogonal projection
of p onto Hi� where the sign is positive or negative according to whether this
projection is to the �right� or �left� of the origin� Similarly� p�d�� denotes the
signed Euclidean distance between the origin and the orthogonal projection
of p onto L�

In this way� we can write the cone C as C � fx � IRd � x�i � �� � � i � dg�
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Fig� �� The directed lines H�� H� and L� and the translated cone Cp�

For p � IRd� we can write the translated cone Cp with apex p as

Cp � fx � IRd � x�i � p�i� � � i � dg�

We de�ne �Cp �� �C � p �� f�x � p � x � Cg� Then we have

�Cp � fx � IRd � x�i � p�i� � � i � dg�

Let p be a point of S� Computing the edge of 

S� k� with source p and sink
in the cone Cp is equivalent to �nding among all points q � S n fpg such that
q�i � p�i for all � � i � d� a point with minimal q�d���coordinate�

We de�ne a d�layer data structure having the form of a range tree ������� that
will be used to construct the graph 

S� k�� This data structure depends on
the cone C�

There is a balanced binary search tree storing the points of S in its leaves�
sorted by their q���coordinates� For each node v of this tree� let Sv be the subset
of S that is stored in the subtree of v� Then v contains a pointer to the root of
a balanced binary search tree storing the points of Sv in its leaves� sorted by
their q���coordinates� Each node w of this tree contains a pointer to the root
of a balanced binary search tree storing the points of w�s subtree in its leaves�
sorted by their q���coordinates� etc� At the d�th layer� there is a balanced binary
search tree storing a subset of S in its leaves� sorted by their q�d�coordinates�
The binary tree that stores points sorted by their q�i�coordinates is called a
layer�i tree�

With each node u of any layer�d tree� we store the following additional infor�
mation� Consider the subset of S that is stored in the subtree of u� We store
with u the point of this subset whose q�d���coordinate is minimal�

Given this data structure� we can compute the edges 
p� q� of 

S� k� such that
q � Cp� Consider any point p � IRd� We compute a set of O
logd n� canonical
nodes of layer�d trees� such that all subsets stored in the subtrees of these
nodes partition the set of all points of S n fpg that are contained in the cone
Cp� With each of these nodes u� we have stored a point qu such that q�u�d�� is
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minimal in the subtree of u� Let q be a point such that q�u�d�� is minimal over
all canonical nodes u� Then 
p� q� is an edge in 

S� k��

The following lemma gives the complexity of the data structure� The proof
is exactly the same as that for a standard range tree� For details� we refer
the reader to Lueker ����� We remark that the additional information�the
minimal q�d���coordinates stored in the nodes of the layer�d trees�can be

computed in O
n logd�� n� time by a bottom�up procedure�

Lemma � Let S be a set of n points in IRd� and let C be a cone of C� The above
d�layered data structure has size O
n logd�� n� and can be built in O
n logd�� n�
time� We can maintain this data structure in O
logd n� amortized time per
insertion and deletion� Given any point p � IRd� we can compute in O
logd n�
time a point q in Cp � S n fpg for which q�d�� is minimal� or determine that
such a point does not exist�

Hence� we can construct the graph 

S� k� in O
n logd n� time by building the
above data structure for each cone C separately and by querying it with each
point of S� We can save a factor of log n by observing that all query points are
known in advance these are precisely the points of S� Again� we consider each
cone C separately� We sort the points of S by their p���coordinates� Then we
sweep over them in decreasing order� All visited points are maintained in the
data structure of Lemma �� by taking only the �nal d coordinates p��� � � � � p

�

d��

into account� 
That is� we apply Lemma � for dimension d� ���

If the sweep line encounters a new point p� then we query the data structure
and �nd a point q such that q�i � p�i for all � � i � d� and for which q�d�� is
minimal� Since at this moment� the data structure contains exactly all points
r of S having a �rst coordinate r�� which is at least equal to p��� we know that
q is in fact a point of S such that q�i � p�i for all � � i � d� and for which
q�d�� is minimal� Hence� 
p� q� is an edge of 

S� k�� We now insert the point

p��� � � � � p

�

d��� into the data structure and the sweep line moves to the next
point of S�

It is clear that this algorithm correctly constructs the graph 

S� k�� We sum�
marize our result�

Theorem 
 Let k � � be an integer� let � � ���k� and let S be a set of
n points in IRd� The graph 

S� k� is a t�spanner for t � ��
cos � � sin ���
It contains O

c���d��n� edges� for some constant c� Using O

c���d��n �
n logd�� n� space� this graph can be constructed in time O

c���d��n logd�� n��

�




 The skip list spanner

We have seen that the graph 

S� k� is a t�spanner for t � ��
cos � � sin ���
Suppose that all points of S lie on a line� Then� 

S� k� can be seen as a
list containing the points of S in the order in which they occur on this line�
Clearly� this graph has spanner diameter n� ��

In this section� we construct a t�spanner whose spanner diameter is bounded
by O
log n� with high probability� The basic idea is to generalize skip lists �����

Let S be a set of n points in IRd� We construct a sequence of subsets� as follows�
Let S� � S� Let i � � and assume that we already have constructed the subset
Si� For each point of Si� we �ip a fair coin� 
All coin �ips are independent�� The
set Si�� is de�ned as the set of all points of Si whose coin �ip produced heads�
The construction stops if Si�� � �� Let h denote the number of iterations of
this construction� Then we have sets

� � Sh�� � Sh � Sh�� � Sh�� � � � � � S� � S� � S�

De�nition � Let k � � be an integer and let � � ���k� Let S be a set of n
points in IRd� Consider the subsets Si� � � i � h� that are constructed by the
given coin �ipping process� The skip list spanner� SLS 
S� k�� for S is de�ned
as follows�


i� For each � � i � h� there is a list Li storing the points of Si 
in no
particular order�� We say that the points of Si are at level i of the data
structure�


ii� For each � � i � h� there is a graph 

Si� k��

iii� For each � � i � h� there is a reversed graph 
�
Si� k�� which is obtained

from 

Si� k� by reversing the direction of each edge�

iv� For each � � i � h and each p � Si� the occurrence of p in Li contains a

pointer to its occurrence in Li���

v� For each � � i � h and each p � Si��� the occurrence of p in Li contains

a pointer to its occurrence in Li���

Note that if all points of S lie on a line� we get a standard skip list� We will
regard SLS 
S� k� as a directed graph with vertex set S and edge set the union
of the edge sets of the graphs 

Si� k� and 
�
Si� k��

Lemma � Let k � � be an integer� let � � ���k and let S be a set of n
points in IRd� The skip list spanner SLS 
S� k� is a t�spanner for t � ��
cos ��
sin ��� It contains O

c���d��n� edges� for some constant c� Also with high
probability� this graph can be constructed in time O

c���d��n logd�� n� using
O

c���d��n � n logd�� n� space�

	



Proof� The skip list spanner contains 

S� k�� which� by Theorem �� is a t�
spanner� Therefore� SLS 
S� k� is also a t�spanner� Also� by Theorem �� the
number of edges of SLS 
S� k� is bounded by O


Ph
i��
c���

d��jSij�� Using stan�
dard results for skip lists� see ����� this summation is� with high probability�
bounded by O

c���d��n�� If the number of edges is larger� then we repeat the
construction until SLS 
S� k� contains O

c���d��n� edges� The bounds on the
space requirement and the construction time follow in a similar way� �

Now we give the algorithm for solving path queries� That is� given points p
and q of S� we show how to construct a t�spanner path from p to q� Of course�
we can construct such a path by using only edges of 

S� k�� In order to reduce
the number of edges on the path� however� we do the following�

We start in the occurrence of p at level one of the skip list spanner and
construct a path from p towards q� Suppose we have already constructed a
path from p to x� If x � q� then we have reached our destination� Assume that
x 	� q� We check if x occurs at level two� Assume this is not the case� Then
we extend the path as follows� Let C be the cone of C such that q � Cx� Let
x� be the point of Cx � S� such that 
x� x�� is an edge of 

S�� k�� Then x� is
the next point on the path from p towards q� i�e�� we set x �� x�� We keep on
growing this path until x � q or the point x occurs at level two of the skip
list spanner� If x occurs at level two� we start growing a path from q towards
x� Suppose we have already constructed a path from q to y� We stop growing
this path if y is equal to one of the points on the path from p to x� or y occurs
at level two� If y is equal to the point� say� p� on the path from p to x� then we
report the path in 

S�� k� from p to p�� followed by the reverse of the path in


S�� k� from q to p�� 
Note that the latter is a path in 
�
S� k� and� hence�
in SLS 
S� k��� Otherwise� if y occurs at level two� then we move with x and
y to the second level of the skip list spanner and use the same procedure to
construct a path from x to y� The formal algorithm is given in Figure ��

Lemma � Let k � � and � � ���k� For any pair p and q of points in S�
algorithm walk 
p� q� constructs a t�spanner path in SLS 
S� k� from p to q� for
t � ��
cos � � sin ���

Proof� In this proof� we use the notation of the algorithm in Figure �� Consider
the paths p� � p� p�� p�� � � � and q� � q� q�� q�� � � � that are constructed by the
algorithm� First note that if pa 	� qb and pa 	� Si��� then pa�� exists� i�e�� as
long as the two paths do not meet and the last point on the p�path does not
occur at level i � �� the p�path can always move to a next point� A similar
observation shows that the q�path can always be extended�

The proof of the lemma is by induction on the number of levels of the skip list
spanner� To prove the base case� assume that SLS 
S� k� consists of only one
level� Consider what happens during the �rst iteration of the outer while�loop�

��



Algorithm walk 
p� q�


 p and q are points of S the algorithm constructs a t�spanner path in the
skip list spanner SLS 
S� k� from p to q 
�
begin
p� �� p q� �� q a �� � b �� � r �� � s �� � i �� � 


 p� � p� p�� � � � � pr� � � � � pa and q� � q� q�� � � � � qs� � � � � qb are
paths in SLS 
S� k�� r � minfj � pj � Sig� s � minfj � qj � Sig� and
pr� pr��� � � � � pa� qs� qs��� � � � � qb � Si 
�
stop �� false 
while stop � false
do while pa 	� qb and pa 	� Si��

do C �� cone of C such that qb � Cpa 
pa�� �� point of Cpa � Si such that 
pa� pa��� is an edge of 

Si� k� 
a �� a � �

od 


 pa � qb or pa � Si�� 
�
while qb 	� fpr� pr��� � � � � pag and qb 	� Si��

do C �� cone of C such that pa � Cqb 
qb�� �� point of Cqb � Si such that 
qb� qb��� is an edge of 

Si� k� 
b �� b� �

od 


 qb � fpr� pr��� � � � � pag or both pa and qb occur in Si�� 
�
if qb � fpr� pr��� � � � � pag
then l �� index such that qb � pl 

output the path p�� p�� � � � � pl� qb��� qb��� � � � � q� 
stop �� true

else i �� i � � r �� a s �� b
�

od
end

Fig� �� Constructing a t	spanner path from p to q in the skip list spanner�

In the �rst inner while�loop� a path p� � p� p�� p�� � � � is constructed� This inner
while�loop terminates i! the last point on this path is equal to q�

Let a � � and consider the points pa and pa��� Then pa 	� q� Let C be the
cone such that q � Cpa� It follows from the algorithm that 
pa� pa��� is an edge
of the skip list spanner� pa�� � Cpa� and the projection of pa�� onto the ray
lC�pa is at least as close to pa as the projection of q onto lC�pa� Therefore� by
Lemma �� we have

jpa��qj � jpaqj � 
cos � � sin ��jpapa��j � jpaqj� 
��

This proves that during each iteration of the �rst inner while�loop� the dis�
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tance between pa and q becomes strictly smaller� As a result� this while�loop
terminates� Let z be the number of iterations made� Then the algorithm has
constructed a path p� � p� p�� p�� � � � � pz � q� The second inner while�loop does
not make any iterations� Since the points p�� p�� � � � � pz are pairwise distinct�
the variable l in the else�case has value z� Hence� the algorithm reports the
path p� � p� p�� p�� � � � � pz � q and terminates� The weight of this path is
bounded by

z��X
a��

jpapa��j � t
z��X
a��


jpaqj � jpa��qj� � t
jp�qj � jpzqj� � tjpqj�

Hence� the algorithm has constructed a t�spanner path from p to q� This proves
the base case of the induction�

Let h � �� and consider a skip list spanner consisting of h levels� Assume the
lemma holds for all skip list spanners with less than h levels�

Consider again the �rst iteration of the outer while�loop� During the �rst
inner while�loop� a path p� � p� p�� p�� � � � � pz is constructed such that pz � q
or pz � S�� Also� 
�� holds for all � � a � z � ��

If pz � q� then the path p� � p� p�� p�� � � � � pz is reported and the algorithm
terminates� In exactly the same way as above� it follows that this path is a
t�spanner path from p to q�

Assume that pz 	� q� Then pz � S�� Note that the points p�� p�� � � � � pz are
pairwise distinct� During the second inner while�loop� a path q� � q� q�� q�� � � �
is constructed� Using Lemma �� it follows that

jqb��pz j � jqbpzj � 
cos � � sin ��jqbqb��j � jqbpzj� 
��

This second inner while�loop terminates i! the last point on the q�path is
equal to one of the pi�s or occurs at level two of the skip list spanner� Since
during each iteration� the distance between qb and pz becomes strictly smaller�
this while�loop terminates� Let y be the number of iterations made� Then the
algorithm has constructed a path q� � q� q�� q�� � � � � qy� It follows from 
��
that the points on this path are pairwise distinct� Then� it follows from the
termination condition that all points p�� p�� � � � � pz � q�� q�� � � � � qy�� are pairwise
distinct� There are two possible cases�

First assume that qy � fp�� p�� � � � � pzg� Let l be such that qy � pl� Then the
algorithm reports the path p� � p� p�� � � � � pl � qy� qy��� � � � � q� � q� having
weight

l��X
a��

jpapa��j �
y��X
b��

jqbqb��j

��



�
z��X
a��

jpapa��j�
y��X
b��

jqbqb��j

� t
z��X
a��


jpaqj � jpa��qj� � t
y��X
b��


jqbpzj � jqb��pz j�

� t
jp�qj � jpzqj� jq�pz j � jqypzj�

� t
jpqj � jqypzj�

� tjpqj�

Hence� in this case the algorithm has constructed a t�spanner path from p to
q�

Next assume that qy 	� fp�� p�� � � � � pzg� Then qy � S� and the algorithm moves
to level two of the skip list spanner� Note that the rest of the algorithm �takes
place� at levels �� � � � � h� These levels constitute a skip list spanner SLS 
S�� k�
consisting of h� � levels� Therefore� by the induction hypothesis� a t�spanner
path from pz to qy is constructed during the rest of the algorithm� At termi�
nation� the algorithm reports the concatenation of the path p�� p�� � � � � pz� the
t�spanner path from pz to qy� and the path qy� qy��� � � � � q�� The weight of this
path is bounded by

z��X
a��

jpapa��j � tjpzqyj �
y��X
b��

jqbqb��j

� t
z��X
a��


jpaqj � jpa��qj� � tjpzqyj� t
y��X
b��


jqbpzj � jqb��pzj�

� t
jp�qj � jpzqj� jpzqyj � jq�pzj � jqypzj�

� tjpqj�

Hence� also in this case the algorithm has constructed a t�spanner path from
p to q� This completes the proof� �

Remark 	 Consider the t�spanner path p � p�� p�� � � � � pl � qb� qb��� � � � � q� �
q that is computed by algorithm walk 
p� q�� It follows from the proof of
Lemma � that for each �xed i� all p�points and all q�points that are added
during the iteration of the outer while�loop that takes place at level i are
pairwise distinct�

In the rest of this section� we analyze the expected behavior of algorithm walk �
Let p and q be two �xed points of S� Let T and N denote the running time
of algorithm walk 
p� q� and the number of edges on the t�spanner path from
p to q that is constructed by this algorithm� respectively� Note that T and N
are random variables�

For each point pa�� added to the p�path� we have to �nd the cone C such that
qb � Cpa� Similarly� for each point qb�� added to the q�path� we have to �nd
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the cone C � such that pa � C �

qb
� We solve this problem as follows�

Recall that each cone of C is de�ned by d hyperplanes� We store the arrange�
ment of all these m �� djCj hyperplanes in the data structure of ���� With
each face of the arrangement we store the name of one cone that contains this
face� This structure has size O
md� and allows to locate any point in O
logm�
time� Note that m � O

c���d����

To �nd a cone C such that qb � Cpa� we locate the point qb � pa in the
arrangement� The cone that is reported is the one we are looking for�

It follows that T � O
N log
���� �h�� Therefore� E
T � � O
E
N� log
���� �
E
h�� � O
E
N� log
���� � log n�� Hence� it su�ces to estimate the expected
value of N � Note that we use an extra amount of O

c���d�d���� space�

Consider again the paths p� � p� p�� p�� � � � and q� � q� q�� q�� � � � that are
constructed by the algorithm� Let i� � � i � h� be �xed� We estimate the
expected number of points that are added to the paths at level i of the skip
list spanner�

Intuitively� the expected number of points added at level i is bounded by a
constant� During the �rst inner while�loop� the p�path is extended until it
meets the q�path or the last point on it occurs at level i� �� Since each point
of Si occurs at level i� � with probability ���� we expect that�at level i�at
most a constant number of points are added to the p�path� During the second
inner while�loop� the q�path is extended� By a similar argument� we expect
that�at level i�at most a constant number of points are added to this path�

To make this rigorous� we have to show that each point added to one of these
paths indeed occurs at level i� � with probability ���� In particular� we have
to show that it is not the case that the coin �ips that are used to build the
skip list spanner cause the algorithm to visit points at level i for which it is
more likely that they do not occur at level i� ��

Fix the sets S�� S�� � � � � Si� Let r and s be the minimal indices such that pr � Si

and qs � Si� respectively� Note that r and s are completely determined once
p� q and S�� � � � � Si are �xed�

For the sake of analysis� assume that we have not yet �ipped our coin for
determining the set Si��� Consider the path p�r � pr� p

�

r��� p
�

r��� � � � � p
�

m � qs
that the algorithm would have constructed if all points of Si did not occur at
level i � �� 
It follows from the proof of Lemma � that the algorithm indeed
would have constructed a path from pr to qs� Moreover� the points on this path
are pairwise distinct�� Now let z be the number of points that are added�
at level i�to the p�path by the actual algorithm� Note that z is a random
variable�

��



Let l � � and assume that z � l� It is easy to see that p�r � pr� p
�

r�� �
pr��� � � � � p

�

r�l � pr�l� It follows from the actual algorithm that p�a 	� Si�� for
all a� r � a � r � l � �� Therefore�

Pr
z � l� � Pr

�
r�l���
a�r


p�a 	� Si���

�
�

Since the path p�r� p
�

r��� � � � � p
�

m is completely determined by the points p and q
and the sets S�� � � � � Si� each of the points on this path is contained in Si�� with
probability ���� Therefore� using the fact that all coin �ips are independent�
it follows that Pr
z � l� �

Qr�l��
a�r Pr
p�a 	� Si��� � 
����l� That is� the random

variable z has a geometric distribution with parameter ����

Again� for the sake of analysis� consider the following experiment� We assume
that we have not yet �ipped our coin for determining the set Si��� Now we �ip
the coin for the points p�r� p

�

r��� p
�

r��� � � �� in this order� stopping as soon as we
obtain heads or after having obtained m� r times tails� Clearly� the number
of times we obtain tails has the same distribution as the random variable z
above�

Let l� � � l � m � r� be �xed and assume that z � l� If l � m � r� then
the p�path constructed by the actual algorithm has reached point qs and the
algorithm terminates� So assume that l � m � r� Then� at this moment� we
know that p�r� p

�

r��� � � � � p
�

r�l�� do not occur at level i � �� p�r�l occurs at level
i � �� and for all points of S �

i �� Si n fp�r� p
�

r��� � � � � p
�

r�lg we have not yet
�ipped the coin� Let q�s � qs� q

�

s��� q
�

s��� � � � be the path that would have been
constructed during the second inner while�loop if all points of S�

i did not occur
at level i � �� Let y be the number of points of Si that are added�at level
i�to the q�path by the actual algorithm� Then� y is a random variable�

Let t � � and assume that y � t� Then� q�s � qs� q
�

s�� � qs��� � � � � q
�

s�t �
qs�t� By Remark 	� all points p�r� p

�

r��� � � � � p
�

r�l� q
�

s� q
�

s��� � � � � q
�

s�t�� are pairwise
distinct� In particular� q�b � S �

i for all b� s � b � s�t��� As a result� we can say
that in the actual skip list spanner� each q�b occurs at level i�� independently
with probability ���� Since q�b 	� Si�� for all b� s � b � s� t��� it follows that

Pr
y � t� � Pr

�
s�t���
b�s


q�b 	� Si���

�
�

s�t��Y
b�s

Pr
q�b 	� Si��� � 
����t�

To summarize� conditional on �xed subsets S�� S�� � � � � Si and a �xed value of
the random variable z� the random variable y has a geometric distribution
with parameter ���� Since this distribution does not depend on z� y also has
a geometric distribution conditional on S�� � � � � Si only�

Altogether� conditional on �xed subsets S�� S�� � � � � Si� the random variables
that count the number of points that are added�at level i�to the p� and
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q�paths both have a geometric distribution with parameter ���� Since both
distributions do not depend on S�� � � � � Si� this statement also holds uncondi�
tionally�

Now we can analyze the expected behavior of algorithm walk 
p� q� in exactly
the same way as for standard skip lists� 
See e�g� Section ��� in Mulmuley ������
Recall that T and N denote the running time of algorithm walk 
p� q� and the
number of edges on the t�spanner path computed by this algorithm� respec�
tively� We saw already that T � O
N log
���� � h��

For � � i � h� let Mi 
resp� Ni� denote the number of edges that are added
at level i to the p�path 
resp� q�path�� Then N �

Ph
i��
Mi � Ni�� Moreover�

M�� N��M�� N�� � � � �Mh� Nh are random variables� and each one is distributed
according to a geometric distribution with parameter ���� Each of these vari�
ables is independent of the ones that come later in the given enumeration�
Using the Cherno! bound and the fact that h � O
log n� with high proba�
bility� it follows that N � O
log n� with high probability� 
See e�g� ������ This
implies that the running time T is bounded by O
log
���� log n� with high
probability�

These bounds hold for �xed points p and q of S� Since there are only a
quadratic number of such pairs� it follows that the maximum running time
of algorithm walk � and the maximum number of edges on any t�spanner path
computed by this algorithm are bounded by O
log
���� log n� and O
log n��
respectively� both with high probability� 
See Observation ����� on page ��
of ������ That is� with high probability� the skip list spanner has spanner di�
ameter O
log n�� In particular� this proves that there exists a t�spanner for S
having O
n� edges and O
log n� spanner diameter�

Theorem �� Let k � � be an integer� let � � ���k and let S be a set of n
points in IRd�

�i� The skip list spanner SLS 
S� k� is a t�spanner for t � ��
cos �� sin ��� It
contains an expected number of O

c���d��n� edges� for some constant c�

�ii� Using O

c���d��n � n logd�� n� expected space� this graph can be con�
structed in expected time O

c���d��n logd�� n��

�iii� The expected maximum time to construct a t�spanner path from any point
of S to any other point of S is bounded by O
log
���� log n��

�iv� The expected spanner diameter of the skip list spanner is bounded by
O
log n��

�v� In all these bounds� the expectation is taken over all coin �ips that are
used to build the skip list spanner� Moreover� all bounds hold with high
probability�
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� Maintaining the skip list spanner

In this section� we consider the problem of maintaining the skip list spanner
under insertions and deletions of points� Unfortunately� it is not possible�for
our spanner�to achieve polylogarithmic update time for arbitrary insertions
and deletions� Since there may be points in 

S� k� having �
n� in�degree� the
worst�case update time is doomed to be �
n�� We will see� however� that in
the model of random insertions and deletions 
see ������ we can obtain poly�
logarithmic expected update time� We recall the main properties of random
updates� 
For a detailed description� see ������

Consider a set V of n points� and a sequence of insertions and deletions in�
volving only points of V � Let pi denote the point of V that is involved in the
i�th update� let Vi denote the set of points in V that are �present� at the start
of the i�th update� and let ni denote the size of Vi� This sequence is random�
if 
i� each pi is a random point of V � and 
ii� each Vi is a random subset of V
of size ni�

We �rst show how to maintain the graph 

S� k� under insertions and dele�
tions� If we insert a point q into S� then we have to compute all edges in


S � fqg� k� having q as a source or a sink� Also� some edges have to be
removed from the graph� The edges with source q can be found using the data
structure of Lemma �� The following observation indicates how the edges with
sink q can be found�

Claim �� Let q � IRd n S� and let C be a cone of C� Let p be any point of S
such that q � Cp or� equivalently� p � �Cq�

�i� If
�a� there is no edge 
p� r� in 

S� k� such that r � Cp� or
�b� there is an edge 
p� r� in 

S� k� such that r � Cp and the projection

of q onto lC�p is closer to p than the projection of r onto lC�p�
then the graph 

S � fqg� k� contains an edge from p to q�

�ii� If there is an edge 
p� r� in 

S� k� such that r � Cp and the projection of
r onto lC�p is closer to p than the projection of q onto lC�p� then the graph


S � fqg� k� does not contain an edge from p to q�

�iii� If there is an edge 
p� r� in 

S� k� such that r � Cp and the projections
of q and r onto lC�p are at the same distance from p� then there is no need
to add an edge from p to q when q is inserted into S�

Similarly� if we delete a point q from S� then we have to delete all edges having
q as a source or a sink� Deleting the edges with source q does not cause any
problems� For any deleted edge 
p� q��having q as its sink�however� we have
to �nd a new edge 
p� r� such that r � Cp� C being the cone such that q � Cp�
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This discussion suggests the following data structure for maintaining the graph


S� k��


i� We store the graph G � 

S� k�� With each point p of S� we store a
dictionary containing all points q of S� such that 
p� q� is an edge of G�
and a dictionary containing all points r of S such that 
r� p� is an edge
of G� 
The elements in these dictionaries are sorted by any ordering� e�g�
by their names��


ii� For each cone C of C� we store the data structure TC of Lemma � for the
points of S�


iii� For each cone C of C� we store a 
d � ���layer data structure T �

C for the
points of S� which is de�ned as follows� 
See Figure ���

Recall the coordinates p��� p
�

�� � � � � p
�

d�� that we de�ned in Section ��

These coordinates depend on C��

We store the points of S in a 
d � ���layer data structure T �

C� where
each layer�j tree stores points sorted by their p�j �coordinates� � � j � d�
With each node u of each layer�d tree� we store the following additional
information� Let Su be the subset of S that is stored in the subtree of u�
We store with u two layer�
d� �� trees�

a� a balanced binary search tree T u

� storing all points p of Su such
that 

S� k� does not contain an edge with source p and sink in Cp�
These points are stored in the leaves of the tree� sorted by their p�d���
coordinates� 
In fact� any ordering can be taken� because we only use
T u
� as a dictionary��


b� a balanced binary search tree T u
� for the points in the set

frp � Cp � S � p � Su and 

S� k� contains the edge 
p� rp�g�

These points are stored in the leaves of the tree� sorted by their

rp��d���coordinates� Moreover� the leaves are linked by pointers�

Having de�ned the data structure� we can give the update algorithms� We
only give the deletion algorithm� The insertion algorithm is similar and left to
the reader� Suppose we want to delete a point q from S�

Step �� We delete all edges from G having q as its source� 
Note that each
such edge is stored twice� see item � of the de�nition of the data structure��

Step �� For each cone C of C� we do the following�


i� We delete q from TC�

ii� We search for q in the �rst d layers of T �

C� For each node u on the search
path that belongs to a layer�d tree�
" if q is contained in the tree T u

� � then we delete it�
" otherwise� we delete rq from the tree T u

� �
Finally� we delete q from all layer�j trees of T �

C� � � j � d� in which it

��



rqp

u

Su

p q

qp no points of S
rq

Tu
�

Tu
�

Fig� �� Illustration of the �d� ��	layered data structure T �

C for the case d � ��

occurs and� if necessary� rebalance the data structure�

Step 
� We delete all edges from G having q as its sink� For each such edge

p� q�� let C be the cone such that q � Cp� Then we do the following�


i� We use the data structure TC and compute a point q� in Cp � S whose
projection onto lC�p is closest to p� If q� exists� then we insert the edge

p� q�� into G�


ii� We search for p in the �rst d layers of T �

C� For each node v on the search
path that belongs to a layer�d tree�
" if q� does not exist� then we insert p into the tree T v

� and delete q�being
the old point rp�from T v

� �
" if q� exists� then we replace the occurrence of q in T v

� �being the old
point rp�by q��which is the new point rp�

It is not di�cult to see that this algorithm correctly maintains the graph


S� k� and the corresponding data structures TC and T �

C � The complete data

�	



structure has size O

c���d��n logd n��

Let D denote the in�degree of q in the graph 

S� k�� Using Lemma �� and
dynamic fractional cascading ����� it follows that the amortized time of the
deletion algorithm is bounded by

O
��


c���d�� � D
�

logd n log log n
�
�

By a similar argument� the amortized insertion time is bounded by the same
quantity� now D being the in�degree of the new point q in the graph 

S �
fqg� k�� Note that these update times hold for any update� In the worst�case�
the value of D can be n � �� The following lemma shows that for a random
update� the expected value of D is small�

Lemma �� Let V be a set of points in IRd and let S be a random subset of
V of size n� Let q be a random point of V � Then the expected in�degree of q in
the graph 

S � fqg� k� is at most equal to the number of cones in C�

Proof� Let m denote the number of cones and let n� denote the size of S�fqg�
Note that n� is equal to n or n� �� The graph 

S � fqg� k� contains at most
mn� edges� Hence� the average in�degree in this graph is at most m� Since q is
a random point in S � fqg� the claim follows� �

Consider a random sequence of updates� If S is the set of points at the start
of the i�th update operation� then S is a random subset of V � Also� if q is the
point involved in the i�th update� then q is a random point of V � Hence the
expected value of D is at most equal to the number of cones in C� This proves�

Lemma �
 Using a data structure of size O

c���d��n logd n�� we can main�
tain the graph 

S� k� in O

c���d�� logd n log log n� expected amortized time
per random update�

Recall that the skip list spanner� SLS 
S� k�� consists of 
�graphs at levels�
� � i � h� For each level i of SLS 
S� k�� we maintain the data structure
described above for the points of Si� 
By a trivial extension� we do not only
maintain the graph 

Si� k�� but also its reverse 
�
Si� k���

To insert a point q� we �ip our coin and determine the number of levels into
which q has to be inserted� If this number is l� then we use the insertion
algorithm given above to insert q into the augmented 
�graphs corresponding
to the levels �� �� � � � � l�

To delete a point q� we use the deletion algorithm given above to delete q from
all augmented 
�graphs in which it occurs�

To analyze the update time� suppose we update the augmented 
�graph of
level i� Since Si is a random subset of S� which in turn is a random subset of

��



V � Lemma �� also holds for the graph that is stored at level i� Also� note that
during an update� we update a constant expected number of levels� Therefore�
Lemma �� implies that the expected amortized update time of the augmented
skip list spanner is bounded by O

c���d�� logd n log log n� per random update�

We have proved our �nal result�

Theorem �� Let k � � be an integer� let � � ���k and let S be a set of
n points in IRd� Using a data structure of expected size O

c���d��n logd n��
we can maintain the skip list spanner SLS 
S� k� under random insertions and
deletions� in an amount of O

c���d�� logd n log log n� expected amortized time
per random update� Here� the expectation is taken over all coin �ips that are
used to build the skip list spanner and to determine the update sequence�


 Concluding remarks

We have presented randomized algorithms for constructing a t�spanner with
an expected number of O
n� edges and O
log n� expected spanner diameter�
This spanner can be constructed in O
n logd�� n� expected time� For any pair p
and q of points� a t�spanner path from p to q� containing an expected number
of O
log n� edges� can be constructed in O
log n� expected time� All these
bounds hold with high probability�

After augmenting this spanner with a data structure of size O
n logd n�� we can
maintain it in the model of random updates� in O
logd n log log n� expected
amortized time per random insertion and deletion�

In ���� we give a deterministic construction for a t�spanner of O
log n� spanner
diameter that is based on the well�separated pair decompositions of ���� It
is not known� however� how to maintain this spanner under insertions and
deletions�

After the �rst version of this paper was written� Arya et al� ��� gave a deter�
ministic algorithm for constructing a t�spanner with O
n� edges and spanner
diameter O
	
n�� 
the inverse Ackermann function�� Again� it is not known
how to maintain this spanner�

We leave open the problem of providing dynamic spanners that can be e��
ciently updated for arbitrary updates�
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