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INTRODUCTION

Detecting whether two geometric objects intersect and computing the region of
intersection are fundamental problems in computational geometry. Geometric in-
tersection problems arise naturally in a number of applications. Examples include
geometric packing and covering, wire and component layout in VLSI, map overlay
in geographic information systems, motion planning, and collision detection. In
solid modeling, computing the volume of intersection of two shapes is an important
step in defining complex solids. In computer graphics, detecting the objects that
overlap a viewing window is an example of an intersection problem, as is computing
the first intersection of a ray and a collection of geometric solids.

Intersection problems are fundamental to many aspects of geometric comput-
ing. It is beyond the scope of this chapter to completely survey this area. Instead
we illustrate a number of the principal techniques used in efficient intersection
algorithms. This chapter is organized as follows. Section 42.1 discusses intersec-
tion primitives, the low-level issues of computing intersections that are common
to high-level algorithms. Section 42.2 discusses detecting the existence of intersec-
tions. Section 42.3 focuses on issues related to counting the number of intersections
and reporting intersections. Section 42.4 deals with problems related to construct-
ing the actual region of intersection. Section 42.5 considers methods for geometric
intersections based on spatial subdivisions.

42.1 INTERSECTION PREDICATES

GLOSSARY

Geometric predicate: A function that computes a discrete relationship be-
tween basic geometric objects.

Boundary elements: The vertices, edges, and faces of various dimensions that
make up the boundary of an object.

Complex geometric objects are typically constructed from a number of primitive
objects. Intersection algorithms that operate on complex objects often work by
breaking the problem into a series of primitive geometric predicates acting on basic
elements, such as points, lines and curves, that form the boundary of the objects
involved. Examples of geometric predicates include determining whether two line
segments intersect each other or whether a point lies above, below, or on a given line.
Computing these predicates can be reduced to computing the sign of a polynomial,
ideally of low degree. In many instances the polynomial arises as the determinant
of a symbolic matrix.
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Computing geometric predicates in a manner that is efficient, accurate, and
robust can be quite challenging. Floating-point computations are fast but suffer
from round-off errors, which can result in erroneous decisions. These errors in
turn can lead to topological inconsistencies in object representations, and these
inconsistencies can cause the run-time failures. Some of the approaches used to
address robustness in geometric predicates include approximation algorithm that
are robust to floating-point errors [SI94], computing geometric predicates exactly
using adaptive floating-point arithmetic [Cla92, ABD+97], exact arithmetic com-
bined with fast floating-point filters [BKM+95, FW96], and designing algorithms
that are based on a restricted set of geometric predicates [BS00, BV02].

When the points of intersection are themselves used to as inputs in the construc-
tion of other discrete geometric structures, they are typically first rounded to finite
precision. The rounding process needs to be performed with care, for otherwise
topological inconsistencies may result. Snap rounding is a method for converting
an arrangement of line segments in the plane into a fixed-precision representation
by rounding segment intersection points to the vertices of a square grid [Hob99]
(see also [GY86]). Various methods have been proposed and analyzed for imple-
menting this concept (see, e.g., [HP02, BHO07, Her13]). For further information,
see Chapter 28.

We will concentrate on geometric intersections involving flat objects (line seg-
ments, polygons, polyhedra), but there is considerable interest in computing inter-
sections of curves and surfaces (see, e.g., [AKO93, APS93, BO79, CEGS91, JG91,
LP79b]). Predicates for curve and surface intersections are particularly challenging,
because the intersection of surfaces of a given algebraic degree generally results in a
curve of a significantly higher degree. Computing intersection primitives typically
involves solving an algebraic system equations, which can be performed either ex-
actly by algebraic and symbolic methods [Yap93] or approximately by numerical
methods [Hof89, MC91]. See Chapter 45.

42.2 INTERSECTION DETECTION

GLOSSARY

Polygonal chain: A sequence of line segments joined end-to-end.

Self-intersecting: Said of a polygonal chain if any pair of nonadjacent edges
intersects one another.

Bounding box: A rectangular box surrounding an object, usually axis-aligned
(isothetic).

Intersection detection, the easiest of all intersection tasks, requires merely de-
termining the existence of an intersection. Nonetheless, detecting intersections effi-
ciently in the absence of simplifying geometric structure can be challenging. As an
example, consider the following fundamental intersection problem, posed by John
Hopcroft in the early 1980s. Given a set of n points and n lines in the plane, does any
point lie on any line? A series of efforts to solve Hopcroft’s problem culminated
in the best algorithm known for this problem to date, due to Matouŝek [Mat93],
which runs in O(n4/3)2O(log∗ n). There is reason to believe that this may be close
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to optimal; Erickson [Eri96] has shown that, in certain models of computation,
Ω(n4/3) is a lower bound. Agarwal and Sharir [AS90] have shown that, given two
sets of line segments denoted red and blue, it is possible to determine whether there
is any red-blue intersection in O(n4/3+ε) time, for any positive constant ε.

Another example of a detection problem is that of determining whether a set of
line segments intersect using the information-theoretic minimum number of opera-
tions, or close to this. Chan and Lee [CL15] showed that it is possible to determine
whether there are any intersections among a set of n axis-parallel line segments in
the plane with n log2 n+O(n

√
log n).

The types of objects considered in this section are polygons, polyhedra, and
line segments. Let P and Q denote the two objects to be tested for intersec-
tion. Throughout, np and nq denote the combinatorial complexity of P and Q,
respectively, that is, the number of vertices, edges, and faces (for polyhedra). Let
n = np + nq denote the total complexity.

Table 42.2.1 summarizes a number of results on intersection detection, which
will be discussed further in this section. In the table, the terms convex and simple
refer to convex and simple polygons, respectively. The notation (s(n), q(n)) in
the “Time” column means that the solution involves preprocessing, where a data
structure of size O(s(n)) is constructed so that intersection detection queries can
be answered in O(q(n)) time.

TABLE 42.2.1 Intersection detection.

DIM OBJECTS TIME SOURCE

2 convex-convex logn [DK83]

simple-simple n [Cha91]

simple-simple (n, s log2 n) [Mou92]

line segments n logn [SH76]

Hopcroft’s problem n4/32O(log∗ n) [Mat93]

3 convex-convex n [DK85]

convex-convex (n, lognp lognq) [DK90]

INTERSECTION DETECTION OF CONVEX POLYGONS

Perhaps the most easily understood example of how the structure of geometric
objects can be exploited to yield an efficient intersection test is that of detecting the
intersection of two convex polygons. There are a number of solutions to this problem
that run in O(log n) time. We present one due to Dobkin and Kirkpatrick [DK83].

Assume that each polygon is given by an array of vertex coordinates, sorted
in counterclockwise order. The first step of the algorithm is to find the vertices of
each of P and Q with the highest and lowest y-coordinates. This can be done in
O(log n) time by an appropriate modification of binary search and consideration
of the direction of the edges incident to each vertex [O’R94, Section 7.6]. After
these vertices are located, the boundary of each polygon is split into two semi-
infinite convex chains, denoted PL, PR and QL, QR (see Figure 42.2.1(a)). P and
Q intersect if and only if PL and QR intersect, and PR and QL intersect.

Consider the case of PL and QR. The algorithm applies a variant of binary
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FIGURE 42.2.1
Intersection detection for two convex polygons.

search. Consider the median edge ep of PL and the median edge eq of QR (shown
as heavy lines in the figure). By a simple analysis of the relative positions of these
edges and the intersection point of the two lines on which they lie, it is possible
to determine in constant time either that the polygons intersect, or that half of at
least one of the two boundary chains can be eliminated from further consideration.
The cases that arise are illustrated in Figure 42.2.1(b)-(d). The shaded regions
indicate the portion of the boundary that can be eliminated from consideration.

SIMPLE POLYGONS

Without convexity, it is generally not possible to detect intersections in sublinear
time without preprocessing; but efficient tests do exist.

One of the important intersection questions is whether a closed polygonal chain
defines the edges of a simple polygon. The problem reduces to detecting whether the
chain is self-intersecting. This problem can be solved efficiently by supposing that
the polygonal chain is a simple polygon, attempting to triangulate the polygon, and
seeing whether anything goes wrong in the process. Some triangulation algorithms
can be modified to detect self-intersections. In particular, the problem can be solved
in O(n) time by modifying Chazelle’s linear-time triangulation algorithm [Cha91].
See Section 29.2.

Another variation is that of determining the intersection of two simple polygons.
Chazelle observed that this can also be reduced to testing self-intersections in O(n)
time by joining the polygons into a single closed chain by a narrow channel as shown
in Figure 42.2.2.

FIGURE 42.2.2
Intersection detection for two simple polygons.
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DETECTING INTERSECTIONS OF MULTIPLE OBJECTS

In many applications, it is important to know whether any pair of a set of objects
intersects one another. Shamos and Hoey showed that the problem of detecting
whether a set of n line segments in the plane have an intersecting pair can be
solved in O(n log n) time [SH76]. This is done by plane sweep, which will be dis-
cussed below. They also showed that the same can be done for a set of circles.
Reichling showed that this can be generalized to detecting whether any pair of m
convex n-gons intersects in O(m logm log n) time, and whether they all share a
common intersection point in O(m log2 n) time [Rei88]. Hopcroft, Schwartz, and
Sharir [HSS83] showed how to detect the intersection of any pair of n spheres in
3-space in O(n log2 n) time and O(n log n) space by applying a 3D plane sweep.

INTERSECTION DETECTION WITH PREPROCESSING

If preprocessing is allowed, then significant improvements in intersection detection
time may be possible. One of the best-known techniques is to filter complex in-
tersection tests is to compute an axis-aligned bounding box for each object. Two
objects need to be tested for intersection only if their bounding boxes intersect. It
is very easy to test whether two such boxes intersect by comparing their projections
on each coordinate axis. For example, in Figure 42.2.3, of the 15 possible pairs of
object intersections, all but three may be eliminated by the bounding box filter.

FIGURE 42.2.3
Using bounding boxes as an intersection filter.

It is hard to prove good worst-case bounds for the bounding-box filter since
it is possible to create instances of n disjoint objects in which all O(n2) pairs of
bounding boxes intersect. Nonetheless, this popular heuristic tends to perform well
in practice. Suri and others [SHH99, ZS99] provided an explanation for this. They
proved that if the boxes have bounded aspect ratio and the relative object sizes
are within a constant factor each other, then (up to an additive linear term) the
number of intersecting boxes is proportional to the number of intersecting object
pairs. Combining this with Dobkin and Kirkpatrick’s results leads to an algorithm,
which given n convex polytopes in dimension d, reports all k intersecting pairs in
time O(n logd−1 n + k logd−1m), where m is the maximum number of vertices in
any polytope.

Another example is that of ray shooting in a simple polygon. This is a planar
version of a well-known 3D problem in computer graphics. The problem is to
preprocess a simple polygon so that given a query ray, the first intersection of the
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ray with the boundary of the polygon can be determined. After O(n) preprocessing
it is possible to answer ray-shooting queries in O(log n) time. A particularly elegant
solution was given by Hershberger and Suri [HS95]. The polygon is triangulated
in a special way, called a geodesic triangulation, so that any line segment that
does not intersect the boundary of the polygon crosses at most O(log n) triangles.
Ray-shooting queries are answered by locating the triangle that contains the origin
of the ray, and “walking” the ray through the triangulation. See also Section 31.2.

Mount showed how the geodesic triangulation can be used to generalize the
bounding box test for the intersection of simple polygons. Each polygon is prepro-
cessed by computing a geodesic triangulation of its exterior. From this it is possible
to determine whether they intersect in O(s log2 n) time, where s is the minimum
number of edges in a polygonal chain that separates the two polygons [Mou92].
Separation sensitive intersections of polygons has been studied in the context of
kinetic algorithms for collision detection. See Chapter 50.

CONVEX POLYHEDRA IN HIGHER DIMENSIONS

Extending a problem from the plane to 3-space and higher often involves in a signifi-
cant increase in difficulty. Computing the intersection of convex polyhedra is among
the first problems studied in the field of computational geometry [MP78]. Dobkin
and Kirkpatrick showed that detecting the intersection of convex polyhedra can be
performed efficiently by adapting Kirkpatrick’s hierarchical decomposition of planar
triangulations. Consider convex polyhedra P and Q in 3-space having combinato-
rial boundary complexities np and nq, respectively. They showed that each can be
preprocessed in linear time and space so that it is possible to determine the inter-
section of any translation and rotation of the two in time O(log np · log nq) [DK90].

DOBKIN-KIRKPATRICK DECOMPOSITION

Before describing the intersection algorithm, let us discuss the hierarchical repre-
sentation. Let P = P0 be the initial polyhedron. Assume that P ’s faces have
been triangulated. The vertices, edges, and faces of P ’s boundary define a planar
graph with triangular faces. Let n denote the number of vertices in this graph.
An important fact is that every planar graph has an independent set (a subset
of pairwise nonadjacent vertices) that contains a constant fraction of the vertices
formed entirely from vertices of bounded degree. Such an independent set is com-
puted and is removed along with any incident edges and faces from P . Then any
resulting “holes” in the boundary of P are filled in with triangles, resulting in a
convex polyhedron with fewer vertices (cf. Section 38.3).

These holes can be triangulated independently of one another, each in constant
time. The resulting convex polyhedron is denoted P1. The process is repeated
until reaching a polyhedron having a constant number of vertices. The result is
a sequence of polyhedra, 〈P0, P1, . . . , Pk〉, called the Dobkin-Kirkpatrick hier-
archy. Because a constant fraction of vertices are eliminated at each stage, the
depth k of the hierarchy is O(log n). The hierarchical decomposition is illustrated
in Figure 42.2.4. The vertices that are eliminated at each stage, which form an
independent set, are highlighted in the figure.
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FIGURE 42.2.4
Dobkin-Kirkpatrick decomposition of a convex polyhedron.

INTERSECTION DETECTION ALGORITHM

Suppose that the hierarchical representations of P and Q have already been com-
puted. The intersection detection algorithm actually computes the separation, that
is, the minimum distance between the two polyhedra. First consider the task of
determining the separation between P and a triangle T in 3-space. We start with
the top of the hierarchy, Pk. Because Pk and T are both of constant complexity,
the separation between Pk and T can be computed in constant time. Given the
separation between Pi and T , it is possible to determine the separation between
Pi−1 and T in constant time. This is done by a consideration of the newly added
boundary elements of Pi−1 that lie in the neighborhood of the two closest points.

Given the hierarchical decompositions of two polyhedra P and Q, the Dobkin-
Kirkpatrick intersection algorithm begins by computing the separation at the high-
est common level of the two hierarchies (so that at least one of the decomposed
polyhedra is of bounded complexity). They show that in O(log np + log nq) time it
is possible to determine the separation of the polyhedra at the next lower level of
the hierarchies. This leads to a total running time of O(log np · log nq).

IMPROVEMENTS AND HIGHER DIMENSIONS

Barba and Langerman revisited this problem over 30 years after Dobkin and Kirk-
patrick’s first result, both improving and extending it. Given convex polyhedra
P and Q in d-dimensional space, for any fixed constant d, let np and nq denote
their respective combinatorial complexities, that is, the total number of faces of all
dimensions on their respective boundaries. They show that it is possible to pre-
process such polyhedra such that after any translation and rotation, it is possible
to determine whether they intersect in time O(log np + log nq) [BL15]. In 3-space,
the preprocessing time and space are linear in the combinatorial complexity. In
general in d-dimensional space the preprocessing time and space are of the form

O(n
bd/2c+ε
p ), for any ε > 0. Their improvement arises by considering intersection

detection from both a primal and polar perspective and applying ε-nets for sam-
pling.
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SUBLINEAR INTERSECTION DETECTION

The aforementioned approaches assume that the input polyhedra have been prepro-
cessed into a data structure. Without such preprocessing, it would seem impossible
to detect the presence of an intersection in time that is sublinear in the input size.
Remarkably, Chazelle, Liu and Magen [CLM05] showed that there exists a random-
ized algorithm that, without any preprocessing, detects whether two 3-dimensional
n-vertex convex polyhedra intersect in O(

√
n) expected time. Algorithms like this

whose running time is sublinear in the input size are called sublinear algorithms.
It is assumed that each polyhedron is presented in memory using any stan-

dard boundary representation, such as a DCEL or winged-edge data structure (see
Chapter 67.2.3), and that it is possible to access a random edge or vertex of the
polyhedron in constant time. The algorithm randomly samples O(

√
n) vertices from

each polyhedron and applies low-dimensional linear programming to test whether
the convex hulls of the two sampled sets intersect. If so, the original polyhedra in-
tersect. If they do not intersect, the region of possible intersection can be localized
to a portion of the boundary of expected size O(

√
n). An efficient algorithm for

identifying and searching this region is presented.

42.3 INTERSECTION COUNTING AND REPORTING

GLOSSARY

Plane sweep: An algorithm paradigm based on simulating the left-to-right
sweep of the plane with a vertical sweepline. See Figure 42.3.1.

Bichromatic intersection: Segment intersection between segments of two col-
ors, where only intersections between segments of different colors are to be re-
ported (also called red-blue intersection).

In many applications, geometric intersections can be viewed as a discrete set of
entities to be counted or reported. The problems of intersection counting and re-
porting have been heavily studied in computational geometry from the perspective
of intersection searching, employing preprocessing and subsequent queries (Chap-
ter 40). We limit our discussion here to batch problems, where the geometric
objects are all given at once. In many instances, the best algorithms known for
batch counting and reporting reduce the problem to intersection searching.

Table 42.3.1 summarizes a number of results on intersection counting and re-
porting. The quantity n denotes the combinatorial complexity of the objects, d
denotes the dimension of the space, and k denotes the number of intersections.
Because every pair of elements might intersect, the number of intersections k may
generally be as large as O(n2), but it is frequently much smaller.

Computing the intersection of line segments is among the most fundamental
problems in computational geometry [Cha86]. It is often an initial step in comput-
ing the intersection of more complex objects. In such cases particular properties of
the class of objects involved may influence the algorithm used for computing the
underlying intersections. For example, if it is known that the objects involved are
fat or if only certain faces of the resulting arrangement are of interest, then more
efficient approaches may be possible (see, e.g., [AMS98, MPS+94, Vig03]).
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TABLE 42.3.1 Intersection counting and reporting.

PROBLEM DIM OBJECTS TIME SOURCE

Reporting 2 line segments n logn+ k [CE92][Bal95]

2 bichromatic segments (general) n4/3 logO(1) n+ k [Aga90][Cha93]

2 bichromatic segments (disjoint) n+ k [FH95]

d orthogonal segments n logd−1 n+ k [EM81]

Counting 2 line segments n4/3 logO(1) n [Aga90][Cha93]

2 bichromatic segments (general) n4/3 logO(1) n [Aga90][Cha93]

2 bichromatic segments (disjoint) n logn [CEGS94]

d orthogonal segments n logd−1 n [EM81, Cha88]

A related problem is that of computing properties of the set of intersection
points of a collection of objects. Atallah showed that it is possible to compute the
convex hull of the (quadratic sized) set of intersection points of a collection of n
lines in the plane in time O(n log n) [?]. Arkin et al. [AMS08] showed that it is
possible to achieve the same running time for the more general case of intersection
points of line segments in the plane.

REPORTING LINE SEGMENT INTERSECTIONS

Consider the problem of reporting the intersections of n line segments in the plane.
This problem is an excellent vehicle for introducing the powerful technique of plane
sweep (Figure 42.3.1). The plane-sweep algorithm maintains an active list of seg-
ments that intersect the current sweepline, sorted from bottom to top by inter-
section point. If two line segments intersect, then at some point prior to this
intersection they must be consecutive in the sweep list. Thus, we need only test
consecutive pairs in this list for intersection, rather than testing all O(n2) pairs.

At each step the algorithm advances the sweepline to the next event: a line
segment endpoint or an intersection point between two segments. Events are stored
in a priority queue by their x-coordinates. After advancing the sweepline to the
next event point, the algorithm updates the contents of the active list, tests new
consecutive pairs for intersection, and inserts any newly-discovered events in the
priority queue. For example, in Figure 42.3.1 the locations of the sweepline are
shown with dashed lines.

FIGURE 42.3.1
Plane sweep for line segment intersection.
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Bentley and Ottmann [BO79] showed that by using plane sweep it is possible
to report all k intersecting pairs of n line segments in O((n+ k) log n) time. If the
number of intersections k is much less than the O(n2) worst-case bound, then this
is great savings over a brute-force test of all pairs.

For many years the question of whether this could be improved to O(n log n+k)
was open, until Edelsbrunner and Chazelle presented such an algorithm [CE92].
This algorithm is optimal with respect to running time because at least Ω(k) time
is needed to report the result, and it can be shown that Ω(n log n) time is needed
to detect whether there is any intersection at all. However, their algorithm uses
O(n + k) space. Balaban [Bal95] showed how to achieve the same running time
using only O(n) space. Vahrenhold [Vah07] further improved the space bound by
showing that there is an in-place algorithm that runs in time O(n log2 n + k).
This means that the input is assumed to be stored in an array of size n so that
random access is possible and only O(1) additional working space is needed.

Clarkson and Shor [CS89] and later Mulmuley [Mul91] presented simple, ran-
domized algorithms that achieve running time O(n log n + k) with O(n) space.
Mulmuley’s algorithm is particularly elegant. It involves maintaining a trape-
zoidal decomposition , a subdivision which results by shooting a vertical ray up
and down from each segment endpoint and intersection point until it hits another
segment. The algorithm inserts the segments one by one in random order by “walk-
ing” each segment through the subdivision and updating the decomposition as it
goes. (This is shown in Figure 42.3.2, where the broken horizontal line on the left
is being inserted and the shaded regions on the right are the newly created trape-
zoids.) Chan and Chen [CC10] improved Vahrenhold’s result by showing there is a
randomized in-place algorithm for line-segment intersection that achieves a running
time of O(n log n+ k).

FIGURE 42.3.2
Incremental construction of a trapezoidal decomposition.

BICHROMATIC INTERSECTION PROBLEMS

Among the numerous variations of the segment intersection problem, the most
widely studied is the problem of computing intersections that arise between two
sets of segments, say red and blue, whose total size is n. The goal is to compute all
bichromatic intersections, that is, intersections that arise when a red segment
intersects a blue segments. Let k denote the number of such intersections.

The case where there are no monochromatic (blue-blue or red-red) intersections
is particularly important. It arises, for example, when two planar subdivisions are
overlaid, called the map overlay problem in GIS applications, as well as in many
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intersection algorithms based on divide-and-conquer. (See Figure 42.3.3.) In this
case the problem can be solved by in O(n log n+k) time by any optimal monochro-
matic line-segment intersection algorithm. This problem seems to be somewhat
simpler than the monochromatic case, because Mairson and Stolfi [MS88] showed
the existence of an O(n log n + k) algorithm prior to the discovery of these opti-
mal monochromatic algorithms. Chazelle et al. [CEGS94] presented an algorithm
based on a simple but powerful data structure, called the hereditary segment tree.
Chan [Cha94] presented a practical approach based on a plane sweep of the trape-
zoidal decomposition of the two sets. Mantler and Snoeyink [MS01] presented an
algorithm that is not only optimal with respect to running time but is also optimal
with respect to the arithmetic precision needed.

Guibas and Seidel [GS87] showed that, if the segments form a simple connected
convex subdivision of the plane, the problem can be solved more efficiently in
O(n + k) time. This was extended to simply connected subdivisions that are not
necessarily convex by Finke and Hinrichs [FH95].

FIGURE 42.3.3
Overlaying planar subdivisions.

The problem is considerably more difficult if monochromatic intersections exist.
This is because there may be quadratically many monochromatic intersections, even
if there are no bichromatic intersections. Agarwal [Aga90] and Chazelle [Cha93]

showed that the k bichromatic intersections can be reported in O(n4/3 logO(1) n +
k) time through the use of a partitioning technique called cuttings. Basch et
al. [BGR96] showed that if the set of red segments forms a connected set and
the blue set does as well, then it is possible to report all bichromatic intersections
in O((n + k) logO(1) n) time. Agarwal et al. [ABH+02] and Gupta et al. [GJS99]
considered a multi-chromatic variant in which the input consists of m convex poly-
gons and the objective is to report all intersections between pairs of polygons. They
show that many of the same techniques can be applied to this problem and present
algorithms with similar running times.

COUNTING LINE-SEGMENT INTERSECTIONS

Efficient intersection counting often requires quite different techniques from report-
ing because it is not possible to rely on the lower bound of k needed to report the
results. Nonetheless, a number of the efficient intersection reporting algorithms
can be modified to count intersections efficiently. For example, methods based on
cuttings [Aga90, Cha93] can be used to count the number of intersections among
n planar line segments and bichromatic intersections between n red and blue seg-
ments in O(n4/3 logO(1) n) time. If there are no monochromatic intersections then
the hereditary segment tree [CEGS94] can be used to count the number bichro-
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matic intersections in O(n log n) time. Chan and Wilkinson showed that in the
word RAM computational model it is possible to count bichromatic intersections
even faster in O(n

√
log n) time [CW11].

Many of the algorithms for performing segment intersection exploit the observa-
tion that if the line segments span a closed region, it is possible to infer the number
of segment intersections within the region simply by knowing the order in which
the lines intersect the boundary of the region. Consider, for example, the problem
of counting the number of line intersections that occur within a vertical strip in
the plane. This problem can be solved in O(n log n) time by sorting the points ac-
cording to their intersections on the left side of the strip, computing the associated
permutation of indices on the right side, and then counting the number inversions
in the resulting sequence [DMN92, Mat91]. An inversion is any pair of values that
are not in sorted order. See Figure. 42.3.4. Inversion counting can be performed by
a simple modification of the Mergesort algorithm. It is possible to generalization
this idea to regions whose boundary is not simply connected [Asa94, MN01].

1
2

3

4
5

1

2

3

4

5

FIGURE 42.3.4
Intersections and inversion counting.

Intersection counting of other varieties have also been considered. Pellegrini
[Pel97] considered an offline variant of simplicial range searching where, given a set
of points and a set of triangles, the objective is to count the number of points lying
within each of the triangles. Ezra and Sharir [ES05] solved an open problem posed
in Pellegrini’s paper, in which the input consists of triangles in 3-space, and the
problem is to report all triples of intersecting triangles. Their algorithm runs in
nearly quadratic time. They show that the (potentially cubic-sized) output can be
expressed concisely as the disjoint union of complete tripartite hypergraphs.

INTERSECTION SEARCHING AND RANGE SEARCHING

Range and intersection searching are powerful tools that can be applied to more
complex intersection counting and reporting problems. This fact was first observed
by Dobkin and Edelsbrunner [DE87], and has been applied to many other intersec-
tion searching problems since.

As an illustration, consider the problem of counting all intersecting pairs from
a set of n rectangles. Edelsbrunner and Maurer [EM81] observed that intersec-
tions among orthogonal objects can be broken down to a set of orthogonal search
queries (see Figure 42.3.5). For each rectangle x we can count all the intersecting
rectangles of the set satisfying each of these conditions and sum them. Each of
these counting queries can be answered in O(log n) time after O(n log n) prepro-
cessing time [Cha88], leading to an overall O(n log n) time algorithm. This counts
every intersection twice and counts self-intersections, but these are easy to factor
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out from the final result. Generalizations to hyperrectangle intersection counting
in higher dimensions are straightforward, with an additional factor of log n in time
and space for each increase in dimension. We refer the reader to Chapter 40 for
more information on intersection searching and its relationship to range searching.

x

y

x
x

y
y

y

x

FIGURE 42.3.5
Types of intersections between rectangles x and y.

42.4 INTERSECTION CONSTRUCTION

GLOSSARY

Regularization: Discarding measure-zero parts of the result of an operation by
taking the closure of the interior.

Clipping: Computing the intersection of each of many polygons with an axis-
aligned rectangular viewing window.

Kernel of a polygon: The set of points that can see every point of the polygon.
(See Section 30.1.)

Intersection construction involves determining the region of intersection be-
tween geometric objects. Many of the same techniques that are used for computing
geometric intersections are used for computing Boolean operations in general (e.g.,
union and difference). Many of the results presented here can be applied to these
other problems as well. Typically intersection construction reduces to the following
tasks: (1) compute the intersection between the boundaries of the objects; (2) if the
boundaries do not intersect then determine whether one object is nested within the
other; and (3) if the boundaries do intersect then classify the resulting boundary
fragments and piece together the final intersection region.

(a) (b) (c)

Q
P

FIGURE 42.4.1
Regularized intersection: (a) Polygons P and Q; (b) P ∩Q; (c) P ∩∗ Q.

When Boolean operations are computed on solid geometric objects, it is pos-
sible that lower-dimensional “dangling” components may result. It is common to
eliminate these lower-dimensional components by a process called regularization
[RV85] (see Section 57.1.1). The regularized intersection of P and Q, denoted
P ∩∗ Q, is defined formally to be the closure of the interior of the standard inter-
section P ∩Q (see Figure 42.4.1).
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Some results on intersection construction are summarized in Table 42.4.1, where
n is the total complexity of the objects being intersected, and k is the number of
pairs of intersecting edges.

TABLE 42.4.1 Intersection construction.

DIM OBJECTS TIME SOURCE

2 convex-convex n [SH76, OCON82]

2 simple-simple n logn+ k [CE92]

2 kernel n [LP79]

3 convex-convex n [Cha92]

CONVEX POLYGONS

Determining the intersection of two convex polygons is illustrative of many intersec-
tion construction algorithms. Observe that the intersection of two convex polygons
having a total of n edges is either empty or a convex polygon with at most n edges.
O’Rourke et al. present an O(n) time algorithm, which given two convex polygons
P and Q determines their intersection [OCON82].

The algorithm can be viewed as a geometric generalization of merging two
sorted lists. It performs a counterclockwise traversal of the boundaries of the two
polygons. The algorithm maintains a pair of edges, one from each polygon. From
a consideration of the relative positions of these edges the algorithm advances one
of them to the next edge in counterclockwise order around its polygon. Intuitively,
this is done in such a way that these two edges effectively “chase” each other around
the boundary of the intersection polygon (see Figure 42.4.2(a)-(i)).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
FIGURE 42.4.2
Convex polygon intersection construction.

OPEN PROBLEM

Reichling has shown that it is possible to detect whether m convex n-gons share a
common point in O(m log2 n) time [Rei88]. Is there an output-sensitive algorithm
of similar complexity for constructing the intersection region?
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SIMPLE POLYGONS AND CLIPPING

As with convex polygons, computing the intersection of two simple polygons re-
duces to first computing the points at which the two boundaries intersect and then
classifying the resulting edge fragments. Computing the edge intersections and edge
fragments can be performed by any algorithm for reporting line segment intersec-
tions. Classifying the edge fragments is a simple task. Margalit and Knott describe
a method for edge classification that works not only for intersection, but for any
Boolean operation on the polygons [MK89].

Clipping a set of polygons to a rectangular window is a special case of sim-
ple polygon intersection that is particularly important in computer graphics (see
Section 52.3). One popular algorithm for this problem is the Sutherland-Hodgman
algorithm [FDFH90]. It works by intersecting each polygon with each of the four
halfplanes that bound the clipping window. The algorithm traverses the bound-
ary of the polygon, and classifies each edge as lying either entirely inside, entirely
outside, or crossing each such halfplane.

An elegant feature of the algorithm is that it effectively “pipelines” the clipping
process by clipping each edge against one of the window’s four sides and then passing
the clipped edge, if it is nonempty, to the next side to be clipped. This makes the
algorithm easy to implement in hardware. An unusual consequence, however, is that
if a polygon’s intersection with the window has multiple connected components (as
can happen with a nonconvex polygon), then the resulting clipped polygon consists
of a single component connected by one or more “invisible” channels that run along
the boundary of the window (see Figure 42.4.3).

FIGURE 42.4.3
Clipping using the Sutherland-Hodgman algorithm.

INTERSECTION CONSTRUCTION IN HIGHER DIMENSIONS

Intersection construction in higher dimensions, and particularly in dimension 3,
is important to many applications such as solid modeling. The basic paradigm
of computing boundary intersections and classifying boundary fragments applies
here as well. Muller and Preparata gave an O(n log n) algorithm that computes
the intersection of two convex polyhedra in 3-space (see [PS85]). The existence of
a linear-time algorithm remained open for years until Chazelle discovered such an
algorithm [Cha92]. He showed that the Dobkin-Kirkpatrick hierarchical representa-
tion of polyhedra can be applied to the problem. A particularly interesting element
of his algorithm is the use of the hierarchy for representing the interior of each poly-
hedron, and a dual hierarchy for representing the exterior of each polyhedron. Many
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years later Chan presented a significantly simpler algorithm, which also uses the
Dobkin-Kirkpatrick hierarchy [Cha16]. Dobrindt, Mehlhorn, and Yvinec [DMY93]
presented an output-sensitive algorithm for intersecting two polyhedra, one of which
is convex.

Another class of problems can be solved efficiently are those involving polyhedral
terrains, that is, a polyhedral surface that intersects every vertical line in at most
one point. Chazelle et al. [CEGS94] show that the hereditary segment tree can be
applied to compute the smallest vertical distance between two polyhedral terrains in
roughly O(n4/3) time. They also show that the upper envelope of two polyhedral
terrains can be computed in O(n3/2+ε + k log2 n) time, where ε is an arbitrary
constant and k is the number of edges in the upper envelope.

KERNELS AND THE INTERSECTION OF HALFSPACES

Because of the highly structured nature of convex polygons, algorithms for convex
polygons can often avoid additional O(log n) factors that seem to be necessary
when dealing with less structured objects. An example of this structure arises in
computing the kernel of a simple polygon: the (possibly empty) locus of points that
can see every point in the polygon (the shaded region of Figure 42.4.4). Put another
way, the kernel is the intersection of inner halfplanes defined by all the sides of P .
The kernel of P is a convex polygon having at most n sides. Lee and Preparata gave
an O(n) time algorithm for constructing it [LP79] (see also Table 30.3.1). Their
algorithm operates by traversing the boundary of the polygon, and incrementally
updating the boundary of the kernel as each new edge is encountered.

FIGURE 42.4.4
The kernel of a simple polygon.

The general problem of computing the intersection of halfplanes, when the
halfplanes do not necessarily arise from the sides of a simple polygon, requires
Ω(n log n) time. See Chapter 26 for more information on this problem.

42.5 METHODS BASED ON SPATIAL SUBDIVISIONS

So far we have considered methods with proven worst-case asymptotic efficiency.
However, there are numerous approaches to intersection problems for which worst-
case efficiency is hard to establish, but that practical experience has shown to be
quite efficient on the types of inputs that often arise in practice. Most of these
methods are based on subdividing space into disjoint regions, or cells. Intersec-
tions can be computed by determining which objects overlap each cell, and then
performing primitive intersection tests between objects that overlap the same cell.
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GRIDS

Perhaps the simplest spatial subdivision is based on “bucketing” with square grids.
Space is subdivided into a regular grid of squares (or generally hypercubes) of
equal side length. The side length is typically chosen so that either the total
number of cells is bounded, or the expected number of objects overlapping each
cell is bounded. Edahiro et al. [ETHA89] showed that this method is competitive
with and often performs much better than more sophisticated data structures for
reporting intersections between randomly generated line segments in the plane.
Conventional wisdom is that grids perform well as long as the objects are small on
average and their distribution is roughly uniform.

HIERARCHICAL SUBDIVISIONS

The principle shortcoming of grids is their inability to deal with nonuniformly
distributed objects. Hierarchical subdivisions of space are designed to overcome this
weakness. There is quite a variety of different data structures based on hierarchical
subdivisions, but almost all are based on the principal of recursively subdividing
space into successively smaller regions, until each region is sufficiently simple in the
sense that it overlaps only a small number of objects. When a region is subdivided,
the resulting subregions are its children in the hierarchy. Well-known examples
of hierarchical subdivisions for storing geometric objects include quadtrees and k-d
trees, R-trees, and binary space partition (BSP) trees. See [Sam90b] for a discussion
of all of these.

Intersection construction with hierarchical subdivisions can be performed by
a process of merging the two hierarchical spatial subdivisions. This method is
described by Samet for quadtrees [Sam90a] and Naylor et al. [NAT90] for BSP trees.
To illustrate the idea on a simple example, consider a quadtree representation of
two black-and-white images. The problem is to compute the intersection of the
two black regions. For example, in Figure 42.5.1 the two images on the left are
intersected, resulting in the image on the right.

FIGURE 42.5.1
Intersection of images using quadtrees.

The algorithm recursively considers two overlapping square regions from each
quadtree. A region of the quadtree is black if the entire region is black, white if the
entire region is white, and gray otherwise. If either region is white, then the result
is white. If either region is black, then the result is the other region. Otherwise
both regions are gray, and we apply the procedure recursively to each of the four
pairs of overlapping children.
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42.6 SOURCES

Geometric intersections and related topics are covered in general sources on compu-
tational geometry [BCKO00, O’R94, Mul93, Ede87, PS85, Meh84]. A good source
of information on the complexity of the lower envelopes and faces in arrangements
are the books by Agarwal [Aga91] and Sharir and Agarwal [SA95]. Intersections
of convex objects are discussed in the paper by Chazelle and Dobkin [CD87].
For information on data structures useful for geometric intersections see Samet’s
books [Sam90a, Sam90b, Sam06]. Sources on computing intersection primitives in-
clude O’Rourke’s book on computational geometry [O’R94], Yap’s book [Yap93] on
algebraic algorithms, and most texts on computer graphics, for example [FDFH90].
For 3D surface intersections, consult books on solid modeling, including those by
Hoffmann [Hof89] and Mäntylä [Män88]. The Graphics Gems series (e.g., [Pae95])
contains a number of excellent tips and techniques for computing geometric oper-
ations including intersection primitives.
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