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This paper solves the problem of  subdividing a unit square into p rectangles of area 1/p in such 
a way that the maximal perimeter of  a rectangle is as small as possible. The correctness of  the 

solution is proved using the well-known theorems of Menger and Dilworth. 

Square decomposition 

In this work we consider the following geometric decomposition problem. 

Square decomposition. Given a unit square D and a positive integer p, subdivide 
D into p rectangles of area 1/p (all having edges parallel to those of D)  in such a 
way that the maximum of their perimeters is minimized. 

The square decomposition problem has applications in a number of areas such 
as bin packing of flexible objects of  fixed area and circuit layout with minimum 
communication requirements. Our interest in the square decomposition problem 
arises from the following problem in parallel computation [1]. One wishes to com- 
pute a table of  all values of a binary function f on the Cartesian product S x T, 
where IS I = ] T I = m. The computation is to be performed in parallel on p process- 
ing units. The function values are computed as follows. The i-th processor computes 
the values of f on some subset W/of  S x T. The sets W/, 1 _< i<_p, partition S x T. 
To minimize computation time, each processor is assigned an approximately equal 
number of function values to compute. Each processor has a small amount of local 
memory used for storing its operands. The objective is to minimize this storage. The 
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amount of storage used by the i-th processor is equal to the sum of the projections 
of W~ onto the coordinate axes. When p ~ m  2 a good heuristic for this problem 
consists of solving the square decomposition problem (on a square of size m by m) 
and then approximating this decomposition on an m × m integer lattice. 

We describe a simple procedure for the square decomposition problem and prove 
its correctness by giving a bound on the length of the longest and shortest sides of  
any rectangle in such a decomposition. Alon and Kleitman [2] consider a similar 
problem where there is no constraint on the areas of the rectangles, however they 
establish the exactness of their bound only when p = n(n + 1) or p = n 2 for some in- 
teger n. 

The perimeter of a rectangle of given area A (in our case A = 1/p) is a strictly in- 
creasing (strictly decreasing) function of the length of its longest (shortest) side, 
because (vrA +h)+A/(x/-A +h) is a strictly increasing function of h _ 0 .  One im- 
mediate consequence is that if p is the square of a positive integer n then the square 
decomposition problem is solved by subdividing D into squares of side-length 1/n 
in the obvious way. 

Now suppose n 2 < p <  (n + 1) 2 for some positive integer n. If  p<_ n(n + 1), then let 
r = n ( n + l ) - p  and let s = p ' n 2 ;  if p > n ( n + l ) ,  then let r = ( n + l ) 2 - p  and let 
s = p  - n(n + 1). Then r and s are nonnegative and rn + s(n + 1) =p .  We claim that the 
square decomposition problem can be solved by subdividing D into r rows each con- 
sisting of n rectangles with side-lengths ( l /n ,  n/p),  followed by s rows each con- 
sisting of n + 1 rectangles with side-lengths (1/(n + 1), (n + 1)/p) (see Fig. 1). 

Plainly, 1/n is the longer side of the (1 /n ,n /p )  rectangles, and 1/(n+ 1) is the 
shorter side of the (1/(n + 1), (n + 1)/p) rectangles. So, to prove that our suggested 
decomposition does indeed minimize the maximal perimeter, it suffices to show that 
any subdivision of  D into rectangles must include a rectangle whose longest side has 
length at least l / n ,  and a rectangle whose shortest side has length at most 1/(n + I). 
Our proof of this makes essential use of the well-known graph theoretic results of  
Dilworth and Menger. 

Theorem 1 (Dilworth). I f  (S, <) is a partially-ordered set and m is any positive in- 

teger, then either S is a union o f  m chains or S contains a subset o f  m + 1 elements 

no two o f  which are comparable. 

Fig. 1. Decomposi t ion  into p = 18 regions (n = 4, r = s  = 2). 
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Theorem 2 (Menger). I f  s and t are distinct vertices o f  a graph G and m is any 
posit ive integer, then either there exist m paths  f r o m  s to t no two o f  which have 
a vertex in c o m m o n  (other than s and t) or there exists a set S o f  m - 1 vertices (not 
containing s or t) such that every path f r o m  s to t passes through a vertex in S. 

Theorem 2 is in fact equivalent to the celebrated 'Max-flow, Min-cut Theorem' .  
See [3] for a p roof  of  this equivalence and direct proofs of  Theorems 1 and 2. As 
we observed above, the following proposit ions imply the correctness of  our solution 
to the square decomposit ion problem. 

Proposition 1. Let  D be the unit square { (x, y) l O < x <<_ 1, O <_ y ~ 1}, and let n and p 
be positive integers such that n2<p .  Let  {Ril 1 <_i<_p} be a collection o f  closed 
rectangles contained in D whose sides are parallel to the axes and whose interiors 
are pairwise disjoint. Then there is some  rectangle R i whose shortest side has length 
at mos t  1/(n + 1). 

Proof. For 1 _< i<_p let Pi denote the project ion of  Ri on the y-axis. Define a strict 

partial  order < on {R i I 1 <_ i <_ p}  by g i <~ g j  if  and only if u < o for all u in Pi and 
o in Pj. By Theorem 1, either {R i l l  <_i<_p} is a union of  n chains or there exists 
a set B of  n + 1 rectangles Ri no two of  which are comparable. In the first case one 
of  the n chains, C say, contains at least n + 1 rectangles, since n 2 < p .  The projec- 

t ions of  any two rectangles in a chain are closed intervals on the y-axis over [0, 1] 
that  are disjoint except possibly at their endpoints.  So since the chain C contains 
at least n + 1 rectangles there must be a rectangle in C of  height at most 1/(n + 1). 
In the second case the projections of  any two rectangles in B on the x-axis must be 

closed intervals over [0, 1] that  are disjoint except possibly at their endpoints. So one 
of  the n +  1 rectangles in B has width at most 1 / (n+  1). [] 

Proposition 2. Let  D be the unit square { (x, y) I 0 <_ x <_ 1, 0__ y _  1 }, and let n and p 
be positive integers such that p < ( n  + 1) 2. Let  {Ril 1 <i<_p} be a collection o f  
closed rectangles whose sides are parallel to the axes and whose union is D. Then 
there is some rectangle Ri whose longest side has length at least 1In. 

Proof. We associate a graph G with {Ril l < i < p }  so that  there is a 1-1 cor- 
respondence between the vertices of  G and the rectangles Ri, and two vertices of  G 
are joined by an edge of  G if and only if  the boundaries of  the rectangles correspond- 
ing to the vertices meet each other.  Let el and e2 be the sides of  D that lie on the 

line x = 0 and the line x = 1 respectively. Add two vertices s and t to G, join s to all 
vertices in G that  correspond to rectangles whose boundry meets el,  and join t to 
all vertices in G that  correspond to rectangles whose boundary meets e2. Call the 
resulting graph G'. 

By Theorem 2, either there exist n + 1 paths in G'  from s to t no two of which 
have a vertex in common (other than s and t), or there exists a set S of n vertices 
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in G such that  every path in G'  from s to t passes through some vertex in S. In the 

first case one of  the n + 1 paths, P say, contains no more than n vertices in G, since 
(n + l) 2 > p .  A path in G'  from s to t corresponds to a sequence of  contiguous rec- 
tangles, in which the first member is in contact  with e 1 and the last member is in 
contact  with e2. Since there are at most n rectangles in the sequence corresponding 
to P one of  the rectangles in the sequence has width at least 1/n. In the second case 
the n rectangles corresponding to the vertices in S must separate eL f rom e2, so at 

least one of  them has height 1/n or greater. [] 

There are natural  ways of  generalizing the square decomposition problem: 
(i) Replace D by an arbitrary rectangle. 

(ii) Consider subdivisions of  a cube into p cuboids of volume 1/p with the objec- 

tive of  making the maximum of the surface-areas of  the cuboids as small as possible; 
generalizations to higher dimensions are obvious. 

(iii) Consider a collection of  measurable sets {Si[ l<i<_p} whose union is a 
square (or rectangle); the objective is to make the maximum (over i) of  the sum of 

the horizontal  and vertical projections of  Si as small as possible. 
Regarding (ii), we observe that  it is a straightforward matter to generalize Pro- 

positions 1 and 2 to higher dimensions. 

Proposition 1'. Let  D be a unit k-dimensional hypercube, and let n and p be positive 

integers such that nk < p. Let {Ri l l  < i<_p} be a collection o f  closed k-dimensional 
"hypercuboids" contained in D whose sides are parallel to the sides o f  D and whose 
interiors are pairwise disjoint. Then there is some R i whose shortest edge has length 
at most 1 / (n+  1). 

Proposition 2'. Let D be a unit k-dimensional hypercube, and let n and p be positive 
integers such that p <  (n + 1) k. Let {Ri l 1 <_ i< p}  be a collection o f  k-dimensional 
"hypercuboids" whose sides are parallel to the edges o f  D and whose union is D. 
Then there is some R i whose longest edge has length at least 1/n. 

Proposit ions 1' and 2' are proved by induction on the number of  dimensions k. 
The induction step is established by arguments analogous to the proofs of  Proposi- 
t ions 1 and 2, the main difference being that  we apply Theorems 1 and 2 with 
m = n k- ~ and m = (n + 1) k- l respectively. Unfor tunate ly  Proposit ions 1' and 2' do 

not  yield a solution to (ii), since the surface area of  a cuboid of  given volume is not 
determined by the length of  its longest or shortest edge. 

Note that  Proposi t ion 2 and its p roof  remain valid even if we allow each Ri to 

be any set whose projection on the x-axis is connected (i.e., Ri need not  be rec- 
tangular).  By symmetry, Proposi t ion 2 remains valid if each Ri is a set whose pro- 
ject ion on the y-axis is connected. In Proposi t ion 2' we can allow each Ri to be a 
set whose projections on k -  1 of  the coordinate axes are connected (the same k -  1 
axes for every Ri). Of course, 'longest edge' must be generalized to ' longest projec- 
t ion on an axis'. 
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Similarly, we can generalize Proposit ions 1 and 1'. In Proposi t ion 1, each R i c a n  

be any Cartesian product Xi  x li where Ii is any vertical interval and Xi  is any set. 
Symmetrically,  each R i c a n  be any set of  form Ii x Yi- In Proposi t ion 1' each R i c a n  

be any product  of intervals on k -  1 of  the coordinate axes with an arbitrary subset 
of  the remaining axis (the same k -  1 axes for every Ri) .  'Shortest edge' must be 
generalized to 'shortest projection on an axis'. 
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