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Abstract Given an n-element point set in R?, the range searching problem involves
preprocessing these points so that the total weight, or for our purposes the semigroup
sum, of the points lying within a given query range 1 can be determined quickly. In
e-approximate range searching we assume that 7 is bounded, and the sum is required
to include all the points that lie within n and may additionally include any of the
points lying within distance ¢ - diam(#) of ’s boundary.

In this paper we contrast the complexity of approximate range searching based on
properties of the semigroup and range space. A semigroup (S, +) is idempotent if
x +x =uxforall x € §, and it is integral if for all k > 2, the k-fold sum x + --- + x
is not equal to x. Recent research has shown that the computational complexity of
approximate spherical range searching is significantly lower for idempotent semi-
groups than it is for integral semigroups in terms of the dependencies on ¢. In this
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paper we consider whether these results can be generalized to other sorts of ranges.
We show that, as with integrality, allowing sharp corners on ranges has an adverse ef-
fect on the complexity of the problem. In particular, we establish lower bounds on the
worst-case complexity of approximate range searching in the semigroup arithmetic
model for ranges consisting of d-dimensional unit hypercubes under rigid motions.
We show that for arbitrary (including idempotent) semigroups and linear space, the
query time is at least .Q(l/ed_z‘/z). In the case of integral semigroups we prove a
tighter lower bound of §2(1/¢4~%). These lower bounds nearly match existing upper
bounds for arbitrary semigroups.

In contrast, we show that the improvements offered by idempotence do ap-
ply to smooth convex ranges. We say that a range is smooth if at every bound-
ary point there is an incident Euclidean sphere that lies entirely within the range
whose radius is proportional to the range’s diameter. We show that for smooth
ranges and idempotent semigroups, e-approximate range queries can be answered
in O(logn + (1/e)@=D/2 log(1/¢)) time using O(n/e) space. We show that this is
nearly tight by presenting a lower bound of £2(logn + (1/¢)“~1/2). This bound is
in the decision-tree model and holds irrespective of space.

Keywords Range searching - Approximation algorithms - Computational
complexity - Idempotence

1 Introduction

Answering range queries is a problem of fundamental importance in spatial infor-
mation retrieval and computational geometry. We assume that we are given a set of
n points P in R?, where each point is associated with a weight from some com-
mutative semigroup, and the objective is to preprocess these points so that, for any
shape n from a given range space, it is possible to compute the semigroup sum of
the points of P N n efficiently. Range searching is among the most well-studied prob-
lems in computational geometry. Excellent surveys have been written by Agarwal
and Erickson [1] and Matousek [22]. For many formulations of this problem, nearly
matching asymptotic upper and lower bounds are known. For example, Matousek
[21] has shown that using m units of storage, where n <m < n4, halfspace range
counting queries can be answered in O (n/m'/¢) time. Bronnimann, Chazelle, and
Pach [12] provided nearly matching lower bounds for halfspace range searching of
the form Q(nl_l/d+@(l/d2)/m1/d).

Because of the high complexity of answering queries, it is natural to consider
approximation. In e-approximate range searching we are given ¢ > 0 and a bounded
range n of diameter diam(n), and the sum is required to include all the points of P
that lie within 1 and may additionally include any of the points of P that lie within a
distance of ¢ - diam(n) of n’s boundary. Arya and Mount [2] showed that for fixed d,
approximate range queries over convex ranges can be answered in O (logn +1/g471)
time with O (n) space. The dependency on ¢ is significant, since as the dimension
increases, the 1 /ed’1 term dominates the query time in practice. Chazelle, Liu, and
Magen [15] considered approximate halfspace and Euclidean ball range searching
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in the high-dimensional context. Ignoring polylogarithmic factors, they showed that
it is possible to answer queries in O(d/€?) time and O(dno(l/ez)) space. In fixed
dimensions, in contrast, a natural goal is to achieve O(logn) query time and O (n)
space, while minimizing the e-dependencies. Throughout, we treat both n and ¢ as
asymptotic quantities and assume that n > e~

As mentioned above, we are interested in computing some function of the weights
of the points lying within a range. We assume that this function is the sum from a com-
mutative faithful semigroup. (See Sect. 2.) Our broad goal is to understand how range
and semigroup properties affect the computational complexity of approximate range
searching. A semigroup is idempotent if x + x = x for all semigroup elements x. It
is integral if for all nonzero semigroup elements x and all natural numbers k > 2, the
k-fold sum x + - - - 4+ x is not equal to x [17]. For example, (R, min) and ({0, 1}, Vv)
are both idempotent, and (N, +) is integral. Idempotence is relevant because of the
way that most range searching algorithms work. At preprocessing time the algorithm
implicitly computes the semigroup sum of a number of suitably chosen subsets of P,
which we call generators. To answer a query 5, the algorithm determines an (ideally
small) subset of generators whose union is equal to P N n and then returns their to-
tal sum. If the semigroup is idempotent, these subsets may overlap, but for integral
semigroups, they must be disjoint.

Because of the constraint of disjointness, one would expect that range searching
over integral semigroups would be harder than for idempotent semigroups. It is sur-
prising, therefore, that this does not seem to be the case for exact range searching.
For example, the lower bounds in the semigroup arithmetic model for exact half-
space range searching for idempotent semigroups [12] and integral semigroups [6]
are both quite similar to the upper bound complexity [21]. Further, the difference
in complexity decreases as dimension increases. This changes in the context of ap-
proximate range searching. In [6] we showed that the complexity of approximate
range searching for Euclidean balls is much lower for idempotent semigroups than
for integral semigroups. Assuming roughly linear space and ignoring polylogarithmic
factors, our results there imply nearly matching asymptotic upper and lower bounds
of O(1/e479W) for range searching over integral semigroups and O (1/g4/>~0M)
for idempotent semigroups. Thus, the exponent in the ¢ dependency is reduced by
roughly half when the semigroup is idempotent.

This raises the question of whether other aspects of the problem formulation have
similarly dramatic impacts on the computational complexity of e-approximate range
searching. The upper bounds of [6] made critical use of two properties of Euclidean
balls: smoothness and rotational symmetry. In this paper we consider two alterna-
tive formulations that arise from relaxing these properties. The first involves ranges
with sharp corners, and the second involves arbitrary smooth convex ranges. In both
instances the aforementioned upper bounds of O(logn + 1/¢9~!) query time with
O (n) space apply [2]. We consider whether idempotence helps reduce query times
for these two classes.

For the case of ranges with sharp corners, we consider the simple case of d-
dimensional unit hypercube ranges under rigid motions, or rotated unit hypercubes.
We show that the worst-case complexity of approximate range searching for these
ranges is not significantly better, even in the idempotent case. Assuming linear
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space, we show that the worst-case query time in the semigroup arithmetic model is

221/ 8"’2‘/‘7). For integral semigroups, we show that the lower bound can be tight-
ened to £2(1/&?72). As in [6], our analysis of the integral case requires the assump-
tion of convex generators, which states that the convex hull of each generator subset
contains no other points of P.

In contrast, we show that the improvements offered by idempotence do apply to
convex ranges that are sufficiently smooth. For « > 1, we say that a range 7 is k-
smooth if at any point x on the boundary of n, it is possible to place a Euclidean ball
inside 7 that touches x and has radius at least diam(#n)/(2«). Note that a Euclidean
ball is 1-smooth, and a convex polytope is not x-smooth for any finite x. We show
that for any fixed « and any idempotent semigroup, e-approximate range queries for
k-smooth ranges can be answered from a data structure of space O(n/¢) in time

O(logn + (1/¢) o ). Further, we show that this query time is optimal by presenting

a lower bound of £2(logn 4+ (1/¢) %) on the complexity of range searching over the
space of all k-smooth convex ranges. This is proved in the decision-tree model, and
so it holds irrespective of the amount of space used.

We consider space-time tradeoffs in some of our results. Rather than expressing
our space and time tradeoffs in the conventional manner of query time as a function of
space and data size, we adopt a notation that more clearly illustrates the incremental
benefits of increased space [6]. Recall that n denotes the size of the point set, and let
m denote the space of the data structure. Let p = m/n, which we call the expansion
ratio, be the ratio of space to data size. Clearly p > 1, but the requirements of any
particular data structure may imply other lower and upper bounds on p. (For example,
one of our results assumes that space is at least n/¢, implying that p > 1/¢.) We ex-
press query time as a fraction, where the numerator gives the running time assuming
linear space (p = 1) and the denominator gives the tradeoff rate, which can be inter-
preted as the rate with which query time decreases as a function of a multiplicative
increase in space. For example, for exact halfspace range queries, the convention-
ally expressed asymptotic query time of n/m'/¢ would instead be expressed in our
notation as n!~1/4/pl/d

Here is a more detailed summary of our results:

e We present a lower bound for answering e-approximate range queries for d-
dimensional rotated unit hypercubes over arbitrary semigroups (and hence over

2
idempotent semigroups). We show that for any ¢ > 0, given m = O(n(l/s)wT)
2

units of storage, that is, p = 0((1/8)%), the query time in the semigroup arith-

metic model is at least
1 d—2«/3 1 [
«((z) /()
£ £

See Theorem 3.1(i) for details.
e We extend the above results to the case of integral semigroups. We show that under
the assumption of convex generators the query time is at least

2((2) /()
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Table 1 Query times (ignoring logarithmic and 1/ £9M factors) for n points either linear or roughly
linear space

Idempotent Integral
d
Euclidean balls Lower bound 1/e2 [6] 1/ ed [6]
d
Upper bound 1/e2 [6] l/sd [5]
Rotated unit hypercubes Lower bound 1/ 8,172\/3 (new) 1/ ¢4 (new)
Upper bound 1/ e 2] 1/ e 2]
d
k-Smooth convex bodies Lower bound 1/e2 (new) 1/ ed [6]
d
(unit-cost test) Upper bound 1/e2 (new) 1 /sd 2]

See Theorem 3.1(ii) for details.

e We present a lower bound for answering e-approximate range queries over k-
smooth convex ranges and over any faithful semigroup. We show that, irrespective
of space, the query time in the decision-tree model is at least £2(logn + (1/¢) %).
See Theorem 4.1 for details.

e We show that an existing data structure for approximate spherical range searching
[5] can be generalized to answer €-approximate range queries for x -smooth convex
ranges over any idempotent semigroup. We show that, for any fixed «, queries can

be answered from a data structure of space O(n/¢) in time O (logn + (1 /8)%).
See Theorem 4.2 for details. As in [2] we assume that ranges satisfy the unit-cost
test assumption, which implies that the primitive operations involving ranges can
be computed in constant time. In light of the previous result, this is optimal up to
the factor of O (1/¢) in the space. See Sect. 4.2 for a formal definition.

Table 1 summarizes both our results and recent results on the complexity of ap-
proximate range searching for Euclidean balls, k-smooth, and rotated unit hypercube
ranges in dimension d, assuming n points. To simplify and clarify the e-dependencies
with dimension, we have explicitly omitted factors involving logn and e-factors that
are independent of d. For the sake of comparison, we also provide known bounds
for Euclidean balls and general convex ranges from [5, 6], and [2]. All these results
assume either O (n) or O (n/¢) space, except the lower bound for x-smooth ranges in
the idempotent case, which holds independent of space.

The table shows that in the case of roughly linear space, approximate range search-
ing can be performed most efficiently for Euclidean balls and smooth convex ranges
over idempotent semigroups. It is not hard to see intuitively why this is to be ex-
pected. Approximate range searching in the semigroup arithmetic model is similar
to a shape approximation problem, where the objective is to approximately cover a
shape with a small number of precomputed canonical shapes (corresponding to the
generator subsets). It is possible to approximately cover smooth ranges and Euclid-
ean balls with O (1/e“~D/2) overlapping large Euclidean balls. This is not possible
(within the given space bounds) when the range has sharp corners or when the semi-
group is integral.

@ Springer



Discrete Comput Geom (2009) 41: 398—443 403

Converting this intuition into lower bound proofs involves considerable work.
Our lower bound proofs for rotated unit hypercubes are based on the general frame-
work developed by Chazelle [14] for exact simplex range searching and Bronnimann,
Chazelle, and Pach [12] for exact halfspace range searching. Both papers are based on
a number of geometric tools, such as the isoperimetric inequality, the slicing lemma,
and Macbeath regions, which were tailored to these particular problems. In our case,
these tools need to be adapted and generalized to our new setting. We believe that
these generalizations, especially the generalizations of Macbeath regions, may be of
independent interest. Our lower bound for «-smooth ranges is based on an entirely
different decision-tree approach.

The remainder of the paper is organized as follows. In Sect. 2 we present prelimi-
nary definitions, which will be used throughout the paper. In Sect. 3 we give our main
result, namely lower bounds on the complexity of approximate range searching for
rotated unit hypercubes for both idempotent and integral semigroups. In Sect. 4 we
present lower and upper bounds on the complexity of range searching for «-smooth
convex ranges over idempotent semigroups. Concluding remarks are given in Sect. 5.

2 Preliminaries

Before presenting our results we begin with some general definitions and assump-
tions. Throughout we assume that the dimension d is a fixed constant greater than 1,
and treat n and ¢ as asymptotic quantities. Unless otherwise stated, we will use the
term “constant” to refer to any fixed quantity, which may depend on d but not on n
or ¢. To avoid specifying the many real-valued constants that arise in our construc-
tions and analyses, we will often hide them using asymptotic notation. For positive
real x, we use the notation O(x) (resp. £2(x)) to mean a quantity whose value is at
most (resp. at least) cx for an appropriately chosen constant c.

Let (S, 4+) be a commutative semigroup. We will assume that each element of S
can be stored in unit space and that for any two elements x, y € S, their semigroup
sum x + y can be computed in constant time. Let P be a set of n points in R?, and let
w : P — S be a function that assigns a semigroup value in S to each point in P. For
any subset G of P, we define its weight w(G) =) peG w(p), where the summation
is taken over the semigroup. Let Q denote the set of query ranges in the range space.
Recall that in the exact range searching problem, we are required to preprocess P so
that for any query range n € Q, we can efficiently compute w(P N 7). Let n* denote
the expanded range, consisting of all the points that lie within distance ¢ - diam(7)
of 1. A valid answer to an approximate range query is w(P’), where P’ is any subset
of P satisfying PNn C P'C PNnpt.

Let us recall some of the basic elements of the semigroup arithmetic model
for exact range searching [19, 23]. Given a commutative semigroup (S, +) and a
set {x1,...,x,} of n variables over S, a generator G(x1,...,x,) is a linear form
>, aix;, where the values «; are nonnegative integers, not all zero. A semigroup
is faithful if for any two identically equal linear forms (that is, equal for all assign-
ments of semigroup values to variables), they share the same set of variables with
nonzero coefficients [14]. For example, (N, +), (R, min), and ({0, 1}, V) are faithful,

@ Springer



404 Discrete Comput Geom (2009) 41: 398443

but ({0, 1}, + mod 2) is not. Lower bounds in this model assume that the semigroup
is faithful. A storage scheme is a set of generators {G1, ..., G, } satisfying the fol-
lowing property. For any query range n € Q, there exists a set [, C{l,...,m}and a
set of labeled nonnegative integers {8; : i € I;)} such that

w(Pm) =Y BiGi(w(p1),....,w(pa)) (1

i€l

for any weight function w. The query time for n is defined to be the size of the small-
est such set /). In this model the space is the number of generators in the storage
scheme. Intuitively, the generators correspond to partial sums that have been precom-
puted in the data structure. The query time in the semigroup arithmetic model counts
the minimum number of semigroup operations on these generators needed to answer
a query. The time for auxiliary operations, such as determining which generators to
use, is ignored.

Under the assumptions that we have a faithful semigroup and the above definition
of query time, there is nothing to be gained by using multiplicities greater than one
either in the choice of generators or the weights §; used in answering a query. Hence,
without loss of generality, we may assume that the values «; will be either O or 1,
which means that we may identify each generator with a subset of the points P.

Given an idempotent semigroup, the time to answer an exact range query 7 in this
context is the smallest set of generators (subsets of P) whose union is P N n. More
formally, let G be any storage scheme consisting of m generators. For any range
n € Q, define A, € G to be the smallest subset of generators of G such that
Uge 4, G = P Nn. The worst-case query time for a storage scheme § is the max-
imum of |A,| over all ranges 1 € Q. Given a space bound m, the worst-case query
time complexity in the semigroup arithmetic model is the minimum worst-case query
time over all storage schemes G of size m [14].

Now let us consider how to modify these notions in the context of approximate
range searching. For idempotent semigroups, we define A, C G to be the smallest
set such that the union of the corresponding generators, ;. Ay G, contains all the

points of P lying within 1 and none of the points lying outside of 7. We can adapt
this to integral semigroups by simply adding the restriction that when taking unions
in answering a query, the generators, viewed as subsets of P, are pairwise disjoint.

Let us define some other terms that will be used throughout the presentation. Let
U4 =10, 1]¢ denote the unit hypercube in R?, and given a body K in R?, let ju(K)
denote its Lebesgue measure. Let O denote the origin of the coordinate system. Given
a point p € R?, let b(p,r) denote the closed Euclidean ball of radius r centered
at p. Consider a compact (closed and bounded) convex body K in R, and let u be a
nonzero vector in R¢. The width of K in the direction u is defined to be the orthogonal
distance between the two supporting hyperplanes for K that are orthogonal to u. We
denote this by wid(K, u). (See Fig. 1(a).) The closed region bounded by two parallel
(d — 1)-dimensional hyperplanes in R¢ is called a slab, and its width is the orthogonal
distance between these hyperplanes.

Any hyperplane J that does not pass through the origin defines two closed half-
spaces, one that contains the origin and one that does not. We refer to the first as
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Fig. 1 Widths and caps

Fig. 2 The quad [J;, defined by J1 J1
L = (J1, J2) (a) and the .
expanded quad (b) 1/2 € dzam(l]\L) \
I 1/2 I /
(@] 7, 0 i

(a) (b)

the inner halfspace, denoted J=, and the second as the outer halfspace, denoted J=.
Given a halfspace H, let d H denote its bounding hyperplane. We say that two half-
spaces are parallel if their bounding hyperplanes are parallel, and they both lie on the
same sides of their respective bounding hyperplanes.

Consider a compact, convex body K and a halfspace H that has a nonempty inter-
section with K. Let u be a vector orthogonal to d H. (See Fig. 1(b).) The intersection
C = K N H is called the cap of K generated by H. The width of a cap, denoted
wid(C), is defined to be the width of C along its defining direction u. Given such a
cap C of width w and a real A > 0, we define the A-expansion of C, denoted C* to
be the cap of K of width min(Aw, wid(K, u)) generated by an appropriate transla-
tion of H. (See Fig. 1(c).) If Aw exceeds the width of K in the direction u, then the
expansion is simply equal to K itself.

The query ranges used in our lower bound analysis will consist of translates and
rotations of a hypercube of side length 1/2, which we will call quads. Our proof
focuses on the portion of each quad that lies near one of its k-dimensional faces for
a suitably chosen k. To make this more precise, given an integer r, where 1 <r <d,
define an r-corner to be a sequence of r hyperplanes that are all mutually orthogonal
and none of which passes through the origin. Given a d-corner L = (J1, Ja, ..., J4),
define the corresponding quad, denoted [y, to be the unique hypercube of side length
1/2 that has a vertex at the intersection of the hyperplanes of L and which lies in the
intersection of the corresponding inner halfspaces, (1); J;=. (See Fig. 2(a).) Note that
such a hypercube is generally not axis-aligned. Given a quad [y, let Dzr denote the
e-expanded range consisting of all the points of [, and all the points that lie within
distance ¢ - diam([J;) of its boundary. (See Fig. 2(b).)
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Let Q denote the set of all quads, which will form the ranges of our range space.
Given n points and any storage scheme for Q consisting of m generators, let ¢ (n, m)
denote the worst-case query time in the arithmetic model, that is, the minimum num-
ber of generators needed to answer any query of Q. The objective of the next section
is to establish a lower bound on # (n, m).

3 Lower Bound for Rotated Unit Hypercubes

In this section we prove the following theorem establishing a lower bound in the
semigroup arithmetic model on the complexity of approximate range searching for
unit hypercubes over any faithful semigroup.

Theorem 3.1 Let d > 2 be a fixed dimension, and let ¢ > 0 be a fixed parameter.

Consider e-approximate range searching for n points over the range space of d-

dimensional unit hypercubes for a weight function over any faithful semigroup, with
2

2
m= O(n(l/s)wT) units of storage, that is, p = 0((1/8)%). Then for all sufficiently
small ¢ and sufficiently large n, we have the following.

(i) For arbitrary (and hence idempotent) semigroups, the worst-case query time in
the semigroup arithmetic model is at least

(7))

(i1) If the semigroup is integral, then under the assumption of convex generators, the

query time is at least
o((z) /()
£ €

Before giving the proof, let us consider some important special cases. When ¢ =0
and the semigroup is idempotent, this implies that with O (n) space the query time is
at least £2(1 /sd’z‘/‘_l). For the integral case, the corresponding bound is §2(1/£972).
In order to bring the query time down to something approaching the §2(1/¢@/2=0(1)
lower bound for Euclidean balls over idempotent semigroups, we consider ¢ =d /2.
This leads to a query time of at least £2(1/g/ 2)_2‘/3). However, in this case the
space increases dramatically to 0(n(l/a)d2/16), which is O(n(l/s)g(‘lz)). Thus, ro-
tated unit hypercubes are significantly harder than Euclidean balls. This stands in
stark contrast to exact range searching, where the two problems have very similar
complexities as dimension increases.

Our lower bound is based on the general framework presented by Bronnimann,
Chazelle, and Pach [12] (referred to henceforth as BCP) for establishing a lower
bound on the complexity of halfspace range searching in the semigroup arithmetic
model. Before presenting our methods, we begin with a high-level overview of this
framework. The data point instance used in the proof consists of a set of uniformly
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distributed points in U?. This makes it possible to relate the volume of a convex
subset of U¢ to the number of data points it contains.

The principal source of complexity in range searching is handling points that are
close to the range’s boundary. The BCP framework begins by defining a suitable set
of query ranges and a suitable region of interest for each query range. For halfspace
range searching, the region of interest is naturally defined to be a thin slab close to
the halfspace’s bounding hyperplane. Recall that the goal in the semigroup arithmetic
model is to relate the space (number of generators) to the query time (maximum num-
ber of generators needed to answer any query). In order to guarantee a given query
time, we need generators that cover a suitably large number of points. A probability
distribution is defined on the set of query ranges, and the lower bound is established
by showing that, if a generator covers a large number of points in the region of in-
terest for some query range, then it cannot be useful in this manner for many query
ranges.

Given a query range, the usefulness of a generator (relative to this range) is defined
to be a function of the number of points it covers within the region of interest. The
core of the BCP proof framework can be viewed intuitively as bounding the average
usefulness of a generator over an appropriate probability measure on ranges. This
involves two geometric tools. The first is an isoperimetric inequality, which bounds
the probability that a fixed convex body is contained within a random slab. In the BCP
context this slab is the region of interest for a random query. The second tool is called
the slicing lemma. Intuitively, it states that any convex body K can be decomposed
into a small number of convex bodies such that any halfspace that has a sufficiently
large volume of intersection with K contains at least one of these bodies, and the
volume of this body is proportional to the volume of intersection.

Our lower bound proof employs this same framework. As in [6], we need to adapt
the approach to the context of approximate range searching, and in addition we need
to modify the aforementioned geometric tools to the context of rotated hypercubes.
The proof structure is relatively lengthy, but because it is difficult to isolate the mod-
ified elements, we will need to repeat much of the BCP narrative that appears in [12].
We define our region of interest to be the intersection of r slabs associated with the
facets of the hypercube, where r is a parameter between 1 and d, which is chosen to
achieve the best bound. We adapt BCP’s isoperimetric inequality to this context in or-
der to bound the probability that a fixed convex body is contained within a randomly
generated intersection of slabs. This is presented in Sect. 3.1. In addition, the slicing
lemma needs to be adapted from dealing with a single halfspace to dealing with the
intersection of r mutually orthogonal halfspaces. The key elements are presented in
Sect. 3.2, and mathematical technicalities upon which the method relies are formally
established later in Sect. 3.5. Once we have established the appropriate generaliza-
tions of the BCP techniques to our context, we then proceed with the main part of the
analysis of the idempotent case, which we present in Sect. 3.3.

Finally, in Sect. 3.4 we explain how to modify this analysis to obtain a lower bound
for the integral case. Recall that in the integral case, the generators used to answer
a query must be disjoint. We employ an idea, which was first observed in [6], that
involves an alternate definition of usefulness. This definition is tailored to exploit the
disjointness of generators.
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3.1 Generalized Isoperimetric Inequality

An important tool in our analysis is an appropriate generalization of Chazelle’s
isoperimetric inequality [12, 14] to the context of r-corners. In this section we present
this result.

Let O denote the origin of the coordinate frame in R?. For any hyperplane H not
passing through O, let ¢ = (x1, ..., x4) denote the point on H such that the segment
Ogq is orthogonal to H. As in [14], define the measure of any set X of hyperplanes

as follows:
dxiN---ANd
/ dH = / s Lo
HeX llgll

The choice of this measure is based on the fact that it is invariant under rigid motions
of R [14]. We will be applying this measure to the set of hyperplanes that pass
through some bounded region of R?. It is well known that the total measure of such
a set of hyperplanes is bounded [14], and therefore we can interpret the measure as a
probability density by dividing it by the total measure of the region. We shall say that
a hyperplane is random over a set X’ of hyperplanes in R of bounded measure if it
is selected with the probability density associated with d H.

Throughout, unless otherwise specified, we will use the term hyperplane to denote
a (d — 1)-dimensional affine subspace in RY. When dealing with affine subspaces
of arbitrary dimension k, for 0 < k <d — 1, we will often use the term k-flat. Let
H' denote an arbitrary k-flat in R?. By using any rigid transformation ¢ that maps
R¥ to H', we can naturally transform the above measure on (k — 1)-dimensional
hyperplanes in R¥ to a measure on (k — 1)-flats that lie on H’. Thus we can define
the notion of a random (k — 1)-flat on H’. Observe that the resulting measure will
be invariant under rigid motions of R¢ that fix H'. Because the measure in R¥ is
invariant under rigid motions, the choice of ¢ is unimportant. But for the sake of
concreteness, let us assume that it maps the origin of R to the point O’ of H’ that is
closest to the origin of R¥.

Recall that an r-corner is a sequence of r mutually orthogonal hyperplanes. Ob-
serve that an r-corner can be specified recursively by giving a sequence of flats
(f1, f2, ..., fr), where for 1 <i <r, the flat f; is a (d — i)-flat that lies on f;_1, and
fo is the full d-dimensional space R4, The associated r-corner L, = (J1,J2, ..., Jp)
is defined by setting Ji to f1, then fori =2, 3, ..., r, we define J; to be the unique
hyperplane that passes through f; and is orthogonal to J; for 1 < j <i — 1. (See
Fig. 3.)

In order to define a random r-corner, consider the following random process,
which generates a sequence of nested flats (f1, f>,..., f4). Recall that fo = R?.
For i > 1, assume inductively that ( fy, f1,..., fi—1) have already been generated.
Let O]_, be the closest point of f;_i to the origin. Consider the set of (d — i)-

dimensional flats on f;_; that intersect the ball of radius Vd centered at 0; _,- From
this set select f; randomly with the probability density associated with d H. We say
that the r-corner associated with this sequence of flats { fi, f,..., f) is random.
Since we only consider flats that lie within some fixed distance of the origin, the
resulting set is of bounded measure. Let dL, denote the corresponding probability
density, and let dL =dLg.
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Fig. 3 The 3-corner determined
by a sequence of flats

Before presenting our generalization of the isoperimetric inequality, let us review
Chazelle’s original isoperimetric inequality. Let o > O be a real parameter. Given any
hyperplane J, let S*(J) denote the slab consisting of points in R? whose distance
from J is at most «. This slab has width 2ar. Recall that U? denotes the unit hypercube
in dimension d.

Lemma 3.1 (Chazelle [14]) Given any compact convex body K < U4,

Qd+!]
[ anmo(=),
S (H)2K n(K)

When expressed in the language of probability theory, this lemma implies that if
H is selected randomly from a set of hyperplanes in R? whose measure is @ (1), then
the probability that the slab S*(H) contains K is at most O (@t /u(K)).

Let s be an integer 1 <s < r. Given any r-corner L, = (Ji,..., J,), we can as-
sociate it with a region, called an s-corner slab, which is the intersection of the «-
distance slabs associated with the first s of its defining hyperplanes. More precisely,
let S¢(L,) =(j_; S*(J;) denote this s-corner slab. When s = r, we omit the sub-
script, that is, S*(L,) = Sy (L,). We define the width of this s-corner slab to be 2c.
We now establish our generalization of the isoperimetric inequality from hyperplane
slabs to r-corner slabs.

Lemma 3.2 Given any compact convex body K € U4,

NG
Lo eol(E)
S¥(L,)2K n(K)

Proof The integral on the left-hand side above represents the probability that the r-
corner slab of width 2« associated with a random r-corner contains K. Let L, =
(J1, ..., Jr) be any r-corner. By our earlier discussion, L, can be represented alter-
natively as a sequence of flats (fi, ..., f;). By definition, the r-corner slab S%(L,)
contains K if and only if S*(J;) contains K for 1 <i <r.

Since J1 (= f1) is selected randomly from a set of @ (1) measure, by Lemma 3.1
the probability that the slab S%(J;) contains K is at most O («?*! /i (K)). Now con-
sider any hyperplane f; such that S*(f;) 2 K. Let K’ be the orthogonal projection
of K onto f7. Let S;’il (f») denote the slab consisting of points in f; whose distance
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from f, is at most «. Observe that S*(J2) 2 K if and only if S‘;‘,l (f2) 2 K'. Again,
by observing that f5 is selected randomly from a set of measure ® (1) and applying
Lemma 3.1, it follows that the probability that the slab S;’il (f2) contains K’ is at most
0@’ /u(K")).

Since S¥(f1) 2 K and this slab has width 2, it follows that p(K) < 2a - u(K").
Therefore assuming that S*(J;) contains K, the conditional probability that S‘;ﬁl (f2)
contains K’ (and hence of S¥(J,) containing K) is at most O (@4t /u(K)). Con-
tinuing in this manner, we see that the integral in the statement of the lemma is the
product of r factors of «?+! /4 (K), ignoring constant factors in d. d

This leads to the following lemma, which will be useful in our analysis.

Lemma 3.3 Let r be any integer where 1 <r < d. Given any compact convex body

K C U4, we have
ad—H r
f dL = 0(( ) )
S¢(L)DK u(K)

Proof The left-hand side is the probability that the r-corner slab associated with a
random d-corner contains K. In view of the definition of dL and dL,, this quantity
is the same as fSO‘(L)DK dL,. The claim now follows from Lemma 3.2. O

3.2 Macbeath Regions and the Generalized Slicing Lemma

The slicing lemma is another key in BCP’s lower bound proof [12]. Intuitively it
states that, given a convex body K C R4 of unit volume and 0 < B < 1, there exists
a collection of O ((1/B)!~%/@+D) disjoint convex bodies such that, for any cap of K
of volume at least §, one of these bodies lies entirely within the cap and its volume
is proportional to the volume of the cap.

The concept of a Macbeath region was an integral element in the proof of the
slicing lemma of [12]. Given a compact convex body K, a point x € K, and a real
number A > 0, the set

Mx, M) =x+A((K—x)N(x —K))

is called a Macbeath region. Note that a Macbeath region is convex and centrally
symmetric about the point x, and if A < 1, then M (x,A) C K. Macbeath regions
have numerous applications in the theory of convex bodies [9-11].

Our ranges are not halfspaces, but rather involve the intersection of a number of
halfspaces. In this section we state Lemma 3.5 below, which is our generalization of
the slicing lemma of [12] to the intersection of multiple halfspaces. Informally this
lemma states that given a compact, convex body K and a volume parameter p, there
exists a relatively small number of (overlapping) convex bodies contained within K
satisfying the following property. Given any collection of halfspaces whose region of
intersection with K has volume exceeding p, at least one of these convex bodies will
fully contain this region of intersection, and it will not be significantly larger in the
sense that it will be contained within a suitable expansion of each of the caps defined
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(a)

Fig. 4 Slicing lemmas

by these halfspaces. (Note that one difference between our slicing lemma and that of
[12] is that the body is contained within the cap, whereas ours contain the cap. This
distinction seems to be necessary for technical reasons arising from our approach.)

Recall that given a cap C and positive real A, the notation C* denotes the expan-
sion of C by a width factor of L. Before presenting our slicing lemma, we present
the following a simpler version, which involves a single halfspace. (See Fig. 4(a) and
(b).) It is a technical modification of the slicing lemma of [12]. This lemma makes
use of a real constant Sy, which we define to be 1/(2d).

Lemma 3.4 There exist constants c1, c2, c3 > 1 such that the following holds. Con-
sider a compact, convex body K C RY of volume v and a positive real p < Bov.
Let B = p/v. There exists a collection of at most c1(1/8)' =2/ @+ convex bodies
K1, K>, ... < K such that

(i) p < u(K;) <cap foralli.
(i1) Let H be a halfspace, and let C denote the cap K N H. If u(C) = p, then there
exists j such that (a) K; 2 C and (b) K; € C.

The relatively technical proof of the above lemma will be deferred to Sect. 3.5. We
will then apply this along with induction to prove our generalization of the slicing
lemma, whose statement follows. (See Fig. 4(c).) Its proof will also be deferred to
Sect. 3.5.

Lemma 3.5 (Generalized Slicing Lemma) There exist positive constants c4 and A
such that the following holds. Consider a compact, convex body K C R? of volume v,
a positive real p < v, and a positive integer r. Let B = p/v. There exists a collection

of at most
w0
i) ()
B B

convex bodies K1, K>, ... C K such that given any r halfspaces Hy, Ha, ..., H,
where W(K N (Hy N HyN---N H,)) > p, there exists j such that

() Ki2KNH NHN---NH,).
(i) Por1 <i<r,K; C Ci)‘, where Ci)‘ is the A-expansion of the cap C; = K N H;.
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3.3 Lower Bound for Rotated Hypercubes: The Idempotent Case

Provided with the geometric tools from the previous section, we are ready to tackle
the proof of Theorem 3.1. This section is devoted to proving part (i) of this theorem,
namely the lower bound in the idempotent case. As mentioned earlier, the general
structure of the proof is similar to the proof we presented earlier for approximate
spherical range searching [6], which in turn is an adaptation of the BCP proof [12]
for exact halfspace range searching.

We begin with some of the basic concepts and properties that will be used through-
out the proof. Recall that U¢ denotes the unit hypercube in R?. Let K be any convex
body contained within U¢, and let k = | P N K |. The BCP proof employs the notion
of scattered point sets [12], which will be useful for us as well. A point set P € U< is
said to be scattered if the following holds for some constant ' > 1 and for all convex
bodies K € U9:

logn logn

D) — 2B <k <alnp(k) + 21 ®)
a’ 2 2

Intuitively, scattered point sets behave like uniformly distributed point sets in the
sense that the volume of a convex body is related to the number of points of the set it
contains. This suggests the following lemma, which is a trivial variant of Lemma 2.1
in [12].

Lemma 3.6 (Bronnimann, Chazelle, Pach) A random set of n points sampled uni-
formly and independently in U? is scattered with probability 1 — o(1).

For our purposes, it will be convenient to express scatteredness in terms of the
following scattered-point properties, which (as we shall see below) follow from the
above definition. For some constant a > 1:

1
Property 3.1 If u(K) > “=8%  then k > 2 ju(K).
Property 3.2 Ifk >logn, then k < anu(K).
Property 3.3 Ifk > logn, then k > 7 u(K).

To see that these properties hold for any scattered set, observe that the left in-
equality of (2) implies Property 3.1 and Property 3.3 (for a > 3a’/2), and the right
inequality implies Property 3.2 (for a > 2a’).

Let r denote an integer parameter, 1 <r < d, whose value will be set later. Let ¢
denote the approximation error. We assume throughout that ¢ is a sufficiently small
real number between 0 and 1. Recall from Sect. 2 that Q denotes our range space
consisting of all quads, that is, hypercubes of side length 1/2. Also recall that n
denotes the number of points in the data set, m > n denotes the number of generators,
and t = t(n, m) denotes the worst-case query time in the arithmetic model over all
the ranges in Q. Our bounds hold under the assumption that 7 is sufficiently large. As
mentioned earlier, following the approach of our earlier work [6], our proof involves
three parts: partitioning the set into a collection of disjoint sets called replicants,
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analyzing a single replicant, and then combining the results. These are presented in
the next three subsections.

3.3.1 Decomposition into Replicants

We construct a set P of n data points for which we will argue that the query time
must be sufficiently large for some range in Q. As mentioned above in the overview
of the proof, we will assume that P is composed of a collection of identical subsets,
called replicants. Towards this end, let

n = ;—r log 8%
For simplicity, we will assume that n is a multiple of n’. Consider any collection I
of n/n’ unit hypercubes whose interiors are pairwise disjoint. Our set P consists of a
scattered set of n’ points placed in each of these hypercubes.

Let G denote any set of m generators for P. For each hypercube in U/, consider the
subset of generators that contains no point outside this hypercube. Let U’ denote the
hypercube that has the smallest such subset of generators. Let G’ denote this subset of
generators. Clearly |G'| < m’, where m’ = mn’/n. Henceforth, we restrict attention
to the subset of n’ points P' = P N U’ in this replicant. Without loss of generality, we
may take U’ to be the unit hypercube U<.

The remainder of the proof consists of placing a lower bound on the number of
generators needed to cover some quad of Q that is contained within U’ (= U9), as
a function of n’, m’, r, and ¢. This lower bound will be presented in Sect. 3.3.2. To
complete the proof, this bound will then be cast in terms of our original parameters n
and m, and the value of r will be selected to produce the best lower bound, which is
presented in Sect. 3.3.3.

Let £ denote the set of all d-corners L such that the corresponding e-expanded
quad, DZ, lies entirely within U4, and let Q' denote the corresponding set of (unex-
panded) quads, [z . Note that two different d-corners may give rise to the same quad.
(This might happen because they generate different vertices of the same hypercube,
or because they generate the same vertex but through a different ordered sequence.)
For the purposes of the proof, we consider these to be distinct elements of Q’. Thus,
we can associate a unique d-corner with each quad in @', so that the hyperplanes of
this d-corner all pass through a vertex of the quad.

For any L € L, let A; C G denote the smallest set of generators that provides a
valid answer to the query, that is,

pnO.c | J GeprnOj. (3)
GeAp

Clearly t > |AL|. Since the hypercubes of I/ have disjoint interiors and D‘[ c U9, it

follows that the above inequality holds if P is replaced with P’ and Ay is restricted
to a subset of G'.
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Fig. 5 The regions of interest:
(a) Ry, and (b) R}

3.3.2 Analysis of a Single Replicant

We have limited consideration to a single replicant, that is, we consider the subset of
generators G’ of size at most m’ that lie entirely within the unit hypercube U¢, the
subset of points P’ of size n’ that lie within U¢, and the subset of quad ranges Q’
whose e-expansions lie within U<,

Recall that we have a d-corner L € £ and its associated quad [z . We next consider
how to define the region of interest. Let L = (J1, J2, ..., J4). Let b be a positive
constant, whose value will be set later, and let « = be. Recall the integer parameter
r introduced earlier (whose value will be fixed later). For 1 <i <r, let J;(x) be
the hyperplane that results by translating J; by distance « towards the origin. Let S;
denote the slab bounded by the two parallel hyperplanes J; and J; («). The region of
interest for L, denoted Ry, is defined to be intersection of these slabs with [y, that
is,

Ry, =0rN m S;.

I<i<r

(See Fig. 5(a).) Recall that, by definition, L1, lies within the inner halfspaces of the
hyperplanes J;, which implies that Ry is nonempty.

Later in the proof, we will also make use of the following outer region, which
will be convenient to define now. Define J;=(«) to be the halfspace that results by
translating J;= by distance of o towards the origin. Let

Ri= [ V(). )

I<i<r

(See Fig. 5(b).) Observe that since S; C J;* (), we have Ry, C Ri.

As observed in [12], the complexity of (exact) halfspace range searching stems
from the difficulty of covering points inside the range that lie close to its boundary.
The same is true for approximate range searching. In order to make this precise, we
introduce a quantity that corresponds roughly to the number of points lying within
the region of interest for an average query. Let

q>=/|P/mRL|dL, 3)
L

where dL = dL, is the probability density defined earlier for d-corners. We will
compute lower and upper bounds on @, which together will provide the desired lower
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bound on the worst-case query time ¢. Intuitively, if a generator covers a large number
of points in Ry, then it cannot be useful in this manner for many queries.

First we want to show that, through an appropriate choice of the constant b, we
can apply the properties of scattered sets to lower bound the number of points in Ry,
and so provide a lower bound on @. For all sufficiently small ¢, one can easily verify
that for any L € £, the volume of the region of interest Ry, satisfies

R B l d—r ;o 1 d—rb r>br8r
nk=(5) o =(3) o=

Now, by setting b = (8 - Zda)l/ " where a is the constant used in the scattered set
properties, we have

n(Rr) > 8as’".

It is easy to verify that this exceeds (alogn’)/n’. Thus, by Property 3.1 of scattered
point sets, it follows that | P’ N Ry | > (n'/a)(8as™) = 8¢ log(t/&"). Clearly the prob-
ability measure of L is at least some constant, and so we have the following lower
bound on &:

@:Q(zlog;—r) 6)

Next, we compute an upper bound on @. To do this we will focus only on those
generators that are most efficient in covering the region of interest Ry . Intuitively,
in order to achieve a query time of ¢, an average generator that is useful in covering
the points of Ry should cover or “consume” a fraction of roughly §2(1/¢) of these
points. Based on this, we say that a generator G € G’ is absolutely far with respect
toad-corner L € Lif |GN RL| > 4log(t/e") and G C Dz. Indeed, as shown in the
next lemma, a constant fraction of points of Ry are covered by such generators.

Lemma 3.7 For any d-corner L € L, a constant fraction of the points of P’ lying
within Ry, are covered by generators in G' that are absolutely fat with respect to L.

Proof Given L € L, recall the smallest set Ay, of generators covering the query region
L1z defined just prior to the start of this section. Recall that |[A; | <?. Let Ay denote
the subset of A consisting of those generators that are absolutely fat with respect
to L. Observe that the generators in the set Ay \ A} cover at most 4t log(t/e") points
of P’ in Ry (because each such generator covers at most 4log(z/e") points of P’ in
R; and the number of these generators is bounded by |Ay | which is at most ). As
shown earlier, | P’ N Ry | is at least 8¢ log(z/€"), which is at least twice the number
covered by the non-fat generators in A;. Therefore, at least half of the points of
P’ N Ry, are covered by absolutely fat generators. O

Recall the outer region RE defined in (4). Since R C Ri, the above lemma im-
plies that a constant fraction of the points of P’ in Ry are covered by generators

G € G’ that satisfy |G N R} | > 4log(r/¢") and G C Dz (where the last condition is
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needed to satisfy the approximation bound). Let us therefore define
N t
AG = {Leﬁ: |G NR| >410g£—r anngDJLr}.

In the following analysis, many of the inequalities hold up to constant factors
whose precise values are not important to us. To simplify the formulas that follow,
we use the notation < (resp., >) to denote less than (resp., greater than) up to constant
factors. If we take the definition of @ in (5) but restrict consideration to only these
generators and also change the order of integration and summation, then we have

D =< Z IGNRL|dL. (7
Geg/ AG

We will refer to the quantity | Ac |G N Ry |dL as the usefulness of generator G, de-
noted #(G). Our main task now is to compute an upper bound on the usefulness of
any generator G € G’, which will lead to a lower bound on ¢.

In order to apply our slicing lemma, it will be convenient to work with R, rather
than Ry, since the former is expressed as the intersection of » halfspaces. Since Ry C
R, we have

u(G)ff |GNR7|dL. 8)
Ag
Because each generator G contributing to @ provides a sufficiently large number of
points within RE, we may apply Property 3.2 of scattered points to bound the volume
of the convex set conv(G) N Rf. Towards this end, consider any G € G’ and L € Ag.
Clearly G € P’ N conv(G), and therefore

|G NR;| <|P'N(conv(G) N R})|. ©)
Since [GN R} | > 4log(t/e") > logn’, we have | P’ N (conv(G) N R;)| > logn’ (recall
that we are dealing with a single replicant). Thus we may apply Property 3.2 (where
the convex body is conv(G) N Ri) to obtain

|P' N (conv(G) N R7)| < an’u(conv(G) N R). (10)

Thus, by combining (8), (9), and (10) we obtain
u(G) ﬁn// u(conv(G) N R;)dL. (11)
Ag

Our next task is to apply our version of the isoperimetric inequality (Lemma 3.3)
to bound the above integral. In order to do this we will first apply our version of the
slicing lemma (Lemma 3.5) to conv(G) to produce suitably sized bodies to which
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the isoperimetric inequality can be applied. Observe that for all G, in the integra-
tion domain, by (10) we have u(conv(G) N R;) = (1/an’)|P' N (conv(G) N R})I.
Recalling that | P’ N (conv(G) N RE)| > 4log(t/e") and substituting the definition of
n’ for a single replicant, it follows that u(conv(G) N RE) is at least 4¢” /(at). Re-
call that the corner L is defined by the hyperplanes (Ji, J2, ..., Jq). Now, by setting
p =4¢" /(at), we may apply Lemma 3.5 to conv(G), where the halfspaces are the
defining halfspaces of R; . For some constant A, we obtain a collection of

1\~ 2
0 _ 1 V*l _)
<<ﬂ) R

convex bodies K1, K>, ... C conv(G) such that for some j:

(i) Kj 2conv(G) N R}, and
@) for 1<i<r, K; C Cl.)‘, where Cl.)‘ is the A-expansion of the cap conv(G) N
Ji#(@). (Recall that J; () is the ith defining hyperplane of R;.)

Here 8 = p/u(conv(G)). Since conv(G) € U?, we obtain u(conv(G)) < 1. Thus
B = p, and so B > 4¢" /(at). Observe that the number of convex bodies K; is
O (1/B'9) for some positive constant o

Given a d-corner L = (Jy, ..., Jg) and § > 0, recall that S;S (L) denotes the inter-
section of slabs (), _; -, S%(J;), where S%(J;) denotes the slab of width 28 centered
about J;. For some constant ¢, we claim that condition (i) implies that K; is con-
tained within the r-corner slab S¢°(L). To see this, let J/ be the hyperplane obtained
by translating J; by amount ¢ - diam([Jz ) away from the origin. (Note that this passes
through a facet of the expanded range DJLF.) Since G € 7, it follows that the cap
C; = conv(G) N J;=(a) lies between the hyperplanes J; (o) and Jl.’. Therefore, since
a = O(g), by condition (ii), K; S §(J;) for a suitable constant ¢. Since this holds
for all i, where 1 <i <r, the desired assertion follows. Thus,

/ u(conv(G) NR;)dL < E ,u(Kj)/ dL, where
Ag , Ak,
j i

ANg,={LeLl:S(L)2K;},

and where the sum is taken over the number of bodies described in Lemma 3.5.
We are finally at a point where we can apply our isoperimetric inequality. By
Lemma 3.3 we obtain

d+1 gld+hr

e r
G)NRZ)dL E\wxy) = 2axy—T
/AG p(conv(G) N R}) ﬁ;ﬂ( /)<M(Kj)) ;M(Kj)rl

Recall that p(conv(G) N R}) > 4¢"/(at) and, by condition (i), K; 2 conv(G) N R;.
It follows that 1 (K ;) > 4¢" /(at). Therefore, we have

8(d+1)r

> r(d—r+2) ,r— 1
/AG ,u(conv(G)ﬂRL)dL<Z(8r/t)r : Zs t
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From our bound on the number of convex bodies K ; we have

1 l—-o ¢ 1-o
f M(COHV(G) N RE)dL <= 8r(d—r+2)tr—l - 8r(d—r+2)tr—l
AG B e’

(10 grd=—r+lto) o yror(d—r+lto)

Substituting this into (11), we achieve the desired upper bound on the usefulness
of the generator G. We have

u(G) < n/tré\r(d—r+l+a).

Recalling that |G’| < m’, we have our desired upper bound on @:

& < n/m/trgr(d—r+l+a).

Now, by combining this with our lower bound on @ given in (6) we obtain the fol-
lowing:

t
n'm' e d—r+1+o) :Q([]og g_”> (12)

3.3.3 Putting it All Together

We are now able to incorporate the above single-replicant results into the overall
analysis. We will show that the lower bound on the query time given in (13) holds.
We may assume that ¢ is bounded from above by a polynomial in 1/¢, since otherwise
this lower bound holds trivially. It follows that logz = O (log(1/¢)). Recall that m’ =
mn’/n and n’ = (t/¢")log(z/e"). Substituting these values of m’ and »n’ into (12) and
then simplifying yields the following lower bound on the query time:

1 1 r(d—r=1)
n r+1 n\~+ /1 r+1
t> — > | — - , (13)
mer@d=r=1+o)Jog 1 m €

where we have used the fact that £ log(1/¢) < 1 for sufficiently small ¢. Note that
the above lower bound holds for all integer values 1 <r <d.

Let us consider how to select r to achieve the strongest lower bound. To put
the lower bound into a somewhat nicer form, let us express the space as m =

2
O(n(l/e) WT), where ¢ > 0 is a real parameter. We obtain
rd=r=1)—(g?/4)
1 r+1
t>| -
- (2)
Let E(r) denote the exponent of the (1/¢)-term. We can rewrite E(r) as follows:

2
n (¢ /4)+d)’

r/

E(V)Id—i-l—(r
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where r’ =r + 1. To obtain our best lower bound, we set r’ = [/(¢?/4) +d ]. Note
that the lower bound stated in Theorem 3.1(i) is trivial if ¢ > d. Thus, we may assume
that 0 < ¢ < d, and in this range we have 1 <r <d (since d > 2). Therefore, we

obtain
@2 7
E(r)>=d—2 Z+dzd—2(§+~/2>=d—¢—z\/ﬁ.

This completes the proof of Theorem 3.1(i), the lower bound in the case of idem-
potent semigroups. In the next section we consider integral semigroups.

3.4 Lower Bound for Rotated Hypercubes: The Integral Case

In this section we prove part (ii) of Theorem 3.1. As mentioned earlier, throughout
this section we assume that the set of generators G satisfies the convex generator
assumption, which states that for all G € G, we have G = P N conv(G).

The proof proceeds along the same general lines as in the idempotent case. We
recall that in the integral case, the generators used to answer a query are required to
be disjoint. Intuitively, it seems that this requirement should reduce the usefulness
of large generators. This idea was first observed and formalized in [6], where it was
used in the context of exact halfspace range searching and approximate spherical
range searching. A key idea introduced in that paper is a different notion of gener-
ator usefulness that is more appropriate for the integral case. By analogy with their
definition, define a generator G to be relatively fat with respect to a d-corner L € L
if  GNR|>¢&"|G|and G C DZ“. As in the idempotent case, it is possible to limit
consideration to generators that are fat, but now both in the absolute and relative
senses. Combining this with the generalized Macbeath region machinery results in
the desired bound.

We now give the details highlighting the differences in the analysis from the idem-
potent case. The proof is identical to that for the idempotent case up to Lemma 3.7,
where it is argued that a constant fraction of the points in the region of interest are
covered by generators that are absolutely fat. Exploiting the fact that in the inte-
gral case the generators used to answer a query are disjoint allows us to strengthen
Lemma 3.7 to include generators that are both absolutely and relatively fat.

Lemma 3.8 For any d-corner L € L, a constant fraction of the points of P’ lying
within Ry, are covered by generators in G’ that are both absolutely and relatively fat
with respect to L.

Proof Given L € L, let A; € G’ denote the smallest set of generators that provide a
valid answer for the query [y . That is,

P'NnO,C U GC P NnOf,
GeAyp

and the generators in Ay, are all disjoint. Note that |A; | <t. Let AlL denote the subset
of Ay consisting of those generators that are not absolutely fat with respect to L, and
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A% denote the subset of A; consisting of those generators that are not relatively fat
with respect to L. The proof of Lemma 3.7 shows that the generators in AlL cover at
most 47 log(¢/¢") points of P’ in Ry . Since each generator G € A% covers at most
&"|G| points of P’ in Ry, the generators in A% together cover at most &” ZGeAZL |G|

points of P’ in Ry . Since the generators in Ai are disjoint, we have ) . _,2 |G| <
L

| P’|. Recalling that | P'| = (t/&") log(t/€"), it follows that the generators in A% cover
at most 7 log(z/¢") points of P’ in Ry . Recall that P’ N Ry > 8tlog(z/¢"). Since the
generators in Ak cover at most 4¢ log(z/¢") points of P’ N Ry, and the generators in
A% cover at most 7log(z/&") points of P’ N Ry, it follows that a constant fraction of
the points of P’ N Ry, are covered by generators in the set Ay, \ (A i U Ai). As these
generators are both absolutely and relatively fat, the lemma follows. g

Arguing as in the idempotent case but using generators that are both absolutely
and relatively fat (i.e., Lemma 3.8 in place of Lemma 3.7), we can easily see that (7)
holds with A redefined as follows:

t
Ag = {L €L:|GNR;| >max<4log—r,gr|G|) and G gmj}.
&

(Throughout our analysis, A will refer to this revised definition.) As before, we will
refer to the quantity f Ac |G N Rr|dL as the usefulness of generator G, denoted u(G).
Arguing as before, but using the above definition of Ag, we can establish (8)—(11) as
before. For convenience, let us write (11) here again:

u(G) =< n// ,LL(COIIV(G) N Ri) dL. (14)
Ag

Let G € G’ and L € Ag. Recall that in order to bound the integral in (14) via the
generalized Macbeath region machinery (Lemma 3.5), we need to compute a lower
bound on the ratio of w(conv(G) N Ri) to u(conv(G)).

By (9) and (10), we have u(conv(G) N Ri) > (1/an")|G N Rf |. Using the defini-
tion of Ag, we have |G N R} | > &”|G|. Thus p(conv(G) N R}) > (¢" /an’)|G|. Next
we compute an upper bound on w(conv(G)). Obviously |P’ N conv(G)| > |G| >
|G N R;|. By the definition of Ag, we have |G N R} | > 4log(t/¢") > logn’, and
so | P’ Nconv(G)| > logn’. We may, therefore, apply Property 3.3 of scattered point
sets (with K = conv(G)) to obtain u(conv(G)) < (a/n’)| P’ N conv(G)|. By the as-
sumption of convex generators, G = P’ Nconv(G), and so u(conv(G)) < (a/n")|G|.
Therefore

_ u(conv(G) N RY) - (¢"/an)|G| &

pconv(G))  ~ (a/n)IG| a2

Note that our lower bound on 8 is ¢ times larger than in the idempotent case (ignoring
constant factors). Thus, in the integral case, we can apply Lemma 3.5 with a larger
value of B, which yields a smaller upper bound on the usefulness #(G) of any gen-
erator G. The rest of the calculations are similar to those in the idempotent case and
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are omitted. We finally obtain

1 1
= (ogt) () ()
= d—r—1 1] =\m A ’
merd—r +<7)10gE m &

which holds for all integer values 1 < r < d. Expressing the space as m =

2
on(1/ e)wT), where ¢ > 0 is a real parameter, and optimizing for r, we can show
that r > (%)d_w_z, which proves Theorem 3.1(ii).

3.5 Proof of the Generalized Slicing Lemma

In this section we present the proof of our generalization of the slicing lemma of [12],
which we deferred from Sect. 3.2. This involves first proving Lemma 3.4, which
follows from extensive but relatively straightforward modifications of the methods
appearing in [9, 11, 12], and [18]. We then establish the generalized slicing lemma
by providing the proof of Lemma 3.5. Before presenting the proof of Lemma 3.4, we
review a number of facts about Macbeath regions, which will be useful for us. The
first follows immediately from the definition of the Macbeath region. Throughout, K
will denote a compact convex body, and H will denote a halfspace. Let xy denote
the center of mass of the section K N dH.

Lemma 3.9 Let K be a compact, convex body, and let H be a halfspace. Let C =
K N H beacap. Then M(xy,1) C Cc2.

The following lemma, proved by Ewald, Larman, and Rogers [18], is useful for
establishing containment relationships between the Macbeath regions generated by
suitably close points.

Lemma 3.10 Let K be a compact, convex body. If for some x,y € K, M (x, %) N
M(y, 3) # 9, then M(x, 1) C M(y,5).

The next result asserts that each suitably thin cap of K is contained within a
Macbeath region centered on the cap’s defining hyperplane. It was first proved by
Ewald, Larman, and Rogers [18], but we use a variant due to Bronnimann, Chazelle,
and Pach [12].

Lemma 3.11 Let K C RY be a compact convex body containing the ball of radius r
centered at the origin. Let H be a halfspace not containing the origin such that the
distance between 0 H and one of the supporting hyperplanes of K parallel to 0H is
atmostr/3. Then K N H C M(xy, 3d).

Given a compact convex body K and a real number 8 > 0, let Kg be the set of
all points of K not contained in any halfspace H such that (K N H) = 8. Kg is
called the floating body' of K for 8. Barany and Larman [11] established an upper

IThe term floating body originates from the physical analogy with a buoyant object that is floating on the
flat surface of a body of water, so that the volume of the body lying beneath the water’s surface is S.
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bound on the volume of the region obtained by subtracting the floating body from the
original convex body. This region is called the wet part of K.

Lemma 3.12 Let K C RY be a compact convex body of unit volume, and let > 0
2
be any real number. Then w(K \ Kg) = O(B@+T1).

The following facts are easy to prove and will be useful for the rest of our devel-
opment. The first is a simple fact about centrally symmetric convex bodies. A proof
appears in Barany [9].

Lemma 3.13 Let A and B be centrally symmetric convex bodies with center points a
and b, respectively, where B C A. Then forany A > 1,b+ A(B —b) Ca+ A (A —a).

The following well-known result, related to the John ellipsoid [20], states that any
convex body can be transformed by a volume preserving affine transformation so
that it is nested between two balls of similar radii. Recall that 5(O, r) denotes the
Euclidean ball of radius r centered at the origin.

Lemma 3.14 Given any compact convex body K C RY, there exists a volume-
preserving affine transformation T such that b(O,r) C T(K) C b(0O, dr) for some
r>0.

The next fact follows from straightforward geometric calculations. A proof can be
found in Lemma 2.7 of [12]. Recall the constant Sg = 1/(2d)*¢ defined just prior to
the statement of Lemma 3.4 in Sect. 3.2.

Lemma 3.15 Let K C R? be a compact convex body of unit volume such that
b(0,r) C K Cb(0,dr) for somer > 0. Let H be a halfspace such that u(K "H) <
Bo. Then the width of the cap K N H is at most r /3.

We now present the proof of Lemma 3.4. As a convenience, we assume that K has
been scaled to unit volume. It follows that we need to establish properties (i) and (ii)
with B written in place of p. Note that in light of Lemma 3.14, we may assume that
K has been transformed so that b(O,r) € K C b(O, dr) for some r > 0. Recall that
for any halfspace H that intersects K, the center of mass of the section K N dH is
denoted by xg.

Consider the following incremental process for constructing a set H of halfspaces.
Initially H is the empty set. A general step of this process works as follows. If there
exists a halfspace H such that w(K N H) = g and M (xy, %) does not intersect any of
the Macbeath regions {M (xg, %) : H' € H}, then add H to H. (Fig. 6(a) illustrates
M(xy, %).) If no such H exists, the process terminates.

We will show that the set of convex bodies

K={Mxy, 15d)NK : H € H}

satisfies all the properties of this lemma.
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Fig. 6 Entities used in the /
proof of Lemma 3.4 H R(H )
B B
A
M (X%

(a) (b)

Our first task is to bound the number of bodies in . We begin by showing that
|H| = 0((1/B)'~%@+D) For each halfspace H' € H, associate a region R(H') =
M (xpy, %) N H’ with it. (See Fig. 6(b).) We claim that all the regions R(H’) for
H’ € 'H are contained in the wet part, K \ K g, and each has volume £2(8). To prove
the claim, note that since (K N H') = B (by definition of the floating body Kpg), we
have KNH' C K\ K g- Also, by definition of a Macbeath region, M (xg/, 1) € K.
Therefore R(H') = M (xg, %)HH’ C KN H' Itfollows that R(H') € K \ Kg. Next
we bound the volume of R(H’). Since u(K N H') < By, by Lemma 3.15 it follows
that the width of the cap K N H' is at most r/3. By Lemma 3.11, M (xg’, 3d) 2
K N H', and so w(M(xy',3d)) > B. It follows that u(M (xpy-, %)) = £2(pB). Since
Macbeath regions are centrally symmetric and d H' bisects M (x g, %), it follows that

1 1
n(R(H") = EM(M(xH/, 5)) =2(8).

Since the regions R(H’) for H' € H are pairwise disjoint (by construction) and by
2
Lemma 3.12, u(K \ Kg) = O(Ba+1), it follows by a standard packing argument that

< MK\ Kp) =0<<1>1ﬁ1>
= minger p(R(H) p '

Because the elements of K are in 1-1 correspondence with the elements of H, the
same bound applies to the number of bodies of K.

To complete the proof, we show that /C satisfies conditions (i) and (ii) in the state-
ment of Lemma 3.4. To establish (i) consider a convex body K’ = M (xg/, 15d) N K,
where H' € H. We showed above that M (xg/,3d) 2 KN H'. Thus K’ D KN H'.
Since (K N H") = B, it follows that w(K") > B.

Next, we show that (K”) is O(8). Recall that M (xy+, 1) € K, which implies that
M(xy, h)NH' € KNH' Therefore, w(M(xy, H)NH") < uw(KNH") = B.Recall-
ing that Macbeath regions are centrally symmetric and that d H' bisects M (xg-, 1),
we have

w(M (g, D) =2 (M, 1)V H') = O(B).
Thus, w(K') < u(M(xpr, 15d)) = O(B), as desired. This completes the proof of (i).
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It remains to show that for any halfspace H with u(K N H) = B, there exists a
convex body K’ € K that satisfies conditions (ii.a) and (ii.b). From the construction
of H, it is clear that there exists H' € H such that M (xp, %) NM(xg, %) #+ 0. We
claim that K’ = M (xg, 15d) N K is the desired body.

Let C = K N H. We first establish (ii.a), namely that K’ O C. By the same
reasoning that was used above to show that M (xp,3d) 2 K N H', we can show
that M(xy,3d) 2 K N H. Since M(xy, 1) N M(xp, 1) # @, by Lemma 3.10
we have M(xy,1) C M(xpy/,5). Since Macbeath regions are centrally symmet-
ric, we can apply Lemma 3.13 with A = M(xgy/,5), B= M(xg,1), and A = 3d
to obtain M (xg,3d) C M(xy/, 15d). Since M(xgy,3d) 2 K N H, it follows that
M(xy,15d) D KN H. Thus, K' = M(xy/,15d) N K 2 K N H, as desired.

To show (ii.b), we will use a similar argument as used for condition (ii.a). Re-
call the proof of condition (ii.a). By swapping the roles of H and H’, we have by
Lemma 3.10 that M (xg/, 1) C M(xy,5). By Lemma 3.13 with A = M (xy,5), B=
M(xgs, 1), and A = 15d, we obtain M (xg’, 15d) C M (xg,75d). From Lemma 3.9
we have M(xg,1) C C2, where C = K N H. Therefore, M(xyg,75d) N K C
CUHTD Thus, M(xpr, 15d) N K € CH73D which establishes condition (ii.b) and
completes the proof of Lemma 3.4.

Now that we have established Lemma 3.4, we use it to prove Lemma 3.5, the
generalized slicing lemma. Before doing so we provide two preliminary lemmas. The
first lemma shows that if a cap for some convex body has sufficiently high volume,
then its expansion by a suitable constant contains the entire body.

Lemma 3.16 There exists a constant 1. > 1 such that the following holds. Let K C R?
be a compact, convex body of unit volume, and let H be a halfspace in R%. Let C
denote the cap K N H. If u(C) > Bo, then K < c*.

Proof In view of Lemma 3.14, it suffices to prove this lemma for K such that
b(0O,r) C K C b(0,dr) for some r > 0. Let H be a halfspace such that the cap
C = K N H has volume 1£(C) > By. We will show that wid(C) > Bor/d¢, which will
imply that the A-expansion of C contains K for A = 2d9%!/p,.

Let w; denote the volume of a d-dimensional unit ball. For the sake of contradic-
tion, suppose that wid(C) < ,BOr/dd. Since K C b(0, dr), the (d — 1)-dimensional
cross-sectional volume of the intersection of K with any hyperplane is at most
wg—1(dr)?=1. It follows that

_1Por
R(C) < @y B < poangr,

where we have used the fact that wy_1 < dwg. Since b(O,r) C K, we have a)drd <
w(K)=1.Thus u(C) < Bo, which contradicts our initial assumption. It follows that
wid(C) > Bor/d?, as desired. O

The second lemma shows that two parallel caps (that is, bounded by parallel half-
spaces) of similar volumes have similar widths. (Note that the converse is also true,
but we will not need it.) The proof is similar to that of Theorem 7 in [11] by Bérany
and Larman.
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Fig. 7 Proof of Lemma 3.17

Lemma 3.17 Let K C R? be a compact, convex body, and let Hy and H> be two
parallel halfspaces, where Hy C H,. Consider the two caps C1 = K N Hy and Cy =
K N H,, and suppose that i(Cr) <2u(Cp). Then wid(Cr) < 2d - wid(Cy).

Proof Note that it suffices to prove the lemma under the assumption that both d H;
and 0 H; intersect K. Let u# denote the unit vector orthogonal to the bounding hyper-
planes of Hy and H>. For 0 <z <1, let J(z) denote the hyperplane {x : (x - u) = z}.
Through an appropriate translation, we may assume that J(0) is a supporting hyper-
plane to K. Finally, by directing u properly, we may assume that 0 H; = J(z1) and
dHy = J(z2), where 0 < z1 < z. (See Fig. 7.) Let V| be the maximum value of the
(d — 1)-dimensional cross-sectional volume w(J(z) N K) in the range 0 < z < z3.
Clearly n(Cy) < Viz;.

Next we compute a lower bound on ©(C>). Let y; and y, be any points in the
cross-section J(0) N K and J(z2) N K, respectively. Let V, be the maximum value of
w(J(z)NK) in the range 0 < z < z» and suppose that this maximum is realized at z =
7. Observe that C, contains the two cones with common base J(z") N K and apexes
at y; and y;, respectively. (See Fig. 7.) Since the sum of the volume of these two
cones is Vpzo/d, it follows that £ (C2) > Vaz2/d. Obviously V> > V1, and therefore
w(Ca) = Vyz2/d. By our earlier remarks, 1 (C1) < Viz1, so we have u(Ca)/u(Cy) >
z2/(dz1). By the statement of the lemma, ©(C2)/n(Cy) < 2. It follows that z; <
2dzy, as desired. O

We now have all the pieces we need to prove Lemma 3.5. The idea is to apply
Lemma 3.4 inductively for each halfspace. Consider applying this lemma directly to
K where the value of p is proportional to w(K N Hj). Given the first halfspace Hj,
it follows that there exists a convex body K that encloses the cap K N Hj. (See
Fig. 8(a).) We then apply Lemma 3.4 recursively to each of the bodies of this first-
level decomposition, which provides a second-level decomposition of K ;. By the
lemma there exists a body in this second-level decomposition that contains the cap
K; N H;. (See Fig. 8(b).) We continue in this manner for all 7 halfspaces.

One complication in this approach is that, although we have a bound on the final
volume K N(H{NHyN---N H,), we do not have a bound on the volume of individual
caps like K N Hj. For this reason, when we apply the construction of Lemma 3.4, we
will do it for a geometrically increasing sequence of volume bounds and then select
the appropriate body at each step of the induction.
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Fig. 8 Proof of Lemma 3.5

Let us define this multi-level decomposition more formally. Consider a compact,
convex body K and let v = u(K). Given a positive real p < v, a p-decomposition of
K is a set of convex bodies, each contained within K, defined as follows.

Case I If p > Bov, then itis {K}.
Case II: If p < Bov, then it is the union of { K} together with the union of the sets of
convex bodies described in Lemma 3.4 for
Pov Pov Pov

/— —_— —_—
10 —/3017, 2 ) 4 ’~-'525_1’

where s is the smallest integer such that p > Sov/2°.

Note that the elements of the decomposition will generally overlap one another. Also,
since Bov/2°~! > p, by property (i) of Lemma 3.4, it follows that the volume of each
of these elements is at least p.

Next, we introduce the concept of an r-level decomposition of K, which involves
recursively applying the decomposition to its own elements. As above, given K
and p, and a positive integer r, we define an r-level p-decomposition of K as follows.
We assume that p < u(K). If r = 1, then it is just a p-decomposition of K. Other-
wise, for r > 1, for each convex body K’ in the p-decomposition of K, recursively
compute an (r — 1)-level p-decomposition of K’. The union of these decompositions
over all K’ is the final r-level decomposition.

We will show that the r-level p-decomposition of K satisfies the conditions of
Lemma 3.5. Our first task is to bound the number of elements of an r-level decom-
position. The proof is based on an induction on r and the bound on the single level
decomposition of Lemma 3.4.

To simplify notation somewhat, throughout the proof let f(d) =1 — d—il denote
the term in the exponent in the statement of the lemma. For the basis case, assume
that r = 1. If Bov < p < v, the p-decomposition consists of only one convex body,
and the desired bound holds trivially. If p < Bpv, the number of convex bodies in the
p-decomposition is at most

(We have added 1 to account for K.) This is a geometric progression and so is
dominated by the largest term, which is (2°71/B0)/@. By the definition of s,
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p < Bov/2°~!, and so up to a constant factor, the number of convex bodies in the
p-decomposition is at most
2s—1\ f@d) v\ /@
(&) =G
Bo P

which is within the stated bound for a suitable constant c4.

For the induction step, assume that r > 1. If Bov < p < v, the r-level p-
decomposition of K consists of only one convex body. So the desired bound holds
trivially. If p < Bov, consider the set of convex bodies described in Lemma 3.4, where
o' is setto Bov/(21). The size of this set is at most ¢ (2! /o) ?@. The volume of each
convex body in this set is at most min(czz’? 0 v, v). By the induction hypothesis the size
of the (r — 1)-level p-decomposition constructed for each such body is at most

o @B\ (2w
+ o\ 20p £ \h)

Therefore, the size of the r-level decomposition is at most

s—1 i\ f(d) 1) [

2 2 2
ZC[( ) 62_1<C2iﬁ0v> logrz( v) +C£_1<E> 10gr2< U>.
— \bo 2ip o P P

’ (15)

(The last term accounts for the (r — 1)-level decomposition of K.)
Simplifying (15), we find that the number of bodies in the r-level decomposition
is at most

s—1 fd) 2 fd) 2
(%) () 05 (3) ()
P P p P P

i 5
<G+ 1)c1cg—1c{‘”’)<%> logr_2<;v>. (16)

(The “+1” in the “(s 4+ 1)” term is there to absorb the second term.)

Recall that p < Bov/2°~!, which yields s + 1 < log(4Bov/p). Since By =
1/(2d)*?, we have s + 1 < log(2v/p). Thus, by further simplifying (16) the num-
ber of bodies of the decomposition is at most

@ ’
et (7)o ()

By making c4 at least as large as clczf (d), we find that the number of bodies of the

decomposition is at most

which completes the induction proof.
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Trivially, all the convex bodies in the r-level decomposition of K are contained
within K. It remains to prove properties (i) and (ii). Again, the proof is by induction
onr.

For the basis case, assume that r = 1. We need to show that for any halfspace H;
with (K N Hy) > p, there exists a convex body K; in the 1-level p-decomposition
of K such that (i) K; © K N Hj and (ii) K; € C}, where C7 is the A-expansion of
the cap K N H;. Henceforth, let C; denote the cap K N H;.

We consider two cases, based on w(C1). First, suppose that u(Cp) > Bov. Recall
that the p-decomposition of K contains K. Clearly, K © C1, so property (i) trivially
holds. By Lemma 3.16, K € C f for some constant A, and so property (ii) also holds.

Next, suppose that p < w(Cp) < Bov. Recall that Byv/(2°) < p, so Bov/(2°) <
u(C1) < Bov. Therefore, for some i, 0 <i <s — 1, we must have

Pov Bov

i <u(Cy) < R

Consider expanding the cap C; by translating its defining hyperplane d H; until the
volume of the cap is Bov/(2'). Let us denote this cap by C’. Clearly, 1 (C") < 2u(Cy),
and so it follows from Lemma 3.17 that the width of C’ is at most 2d - wid(C}).
Recall that the p-decomposition of K includes the set of convex bodies described
in Lemma 3.4, where p’ is set to ﬂov/(Zi). Since u(C’) = ﬁov/(Zi), it follows from
Lemma 3.4 that there exists some K in this set such that K; 2 C’ and K;C (cHe
for some constant c3. Since C' D C, we have K j 2 C1. Using the facts that the width
of C’ exceeds the width of C| by at most a constant factor and that K; € (C")3, we
have K; C Cf‘ for a suitable constant A.

For the induction step, assume that » > 1. Let Hy, Ha, ..., H, be any r halfspaces
such that u(K N (H1N HyN---N H,.)) > p. Since w(K N Hy) > p, by the argument
given for the basis case, there exists K’ C K in the 1-level p-decomposition of K
such that K’ 2 K N H;y and K’ C (K N H))*. Since K’ 2 K N H;, we obtain

KNH NHN---NH)YCK' N(H,N---NH,). (17)

It follows that w(K’' N (H, N---N H,)) > p.

Applying the induction hypothesis, it now follows that the (r — 1)-level p-
decomposition of K’ must contain a convex body K such that K; 2 K'N(H N ---
N H,) and K ; is contained within each of the expanded caps (K "MH)  for2 <i<r.
Using (17), it follows that K; © K N (Hy N HyN---N H,), which proves property (i).

Next we prove property (ii). As just mentioned, we have K; € (K’ N H;)* for
2 <i <r.Since K’ C K, by definition, the width of cap K’ N H; is no larger than the
width of cap K N H;. Therefore, for2 <i <r, K; C(K N Hi)}‘. Also, by our earlier
remarks, K’ € (K N H;)* and K; € K’, which implies that K; € (K N H,)*. Thus,
for 1 <i <r, we have K; C C}, where C}" is the A-expansion of the cap K N H;.
This establishes property (ii) and completes the proof of Lemma 3.5.

4 Smooth Convex Ranges

In this section we present lower and upper bounds on the complexity of range search-
ing for x-smooth convex ranges over idempotent semigroups.
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4.1 Lower Bound

We begin by presenting the lower bound for x-smooth ranges. If « is greater than
some fixed constant, then for all sufficiently small ¢ and sufficiently large n, the
lower bound is £2(logn + (1/ £)@=1/2) This lower bound holds in the decision-tree
model. Thus, it holds irrespective of space, and no space-time tradeoffs are possible.
We present the bound in the following theorem, which includes the dependency on « .

Theorem 4.1 Let d > 1 be a fixed dimension, and consider any real k > 1. Consider
a range space consisting of all k-smooth convex bodies and a weight function over
any idempotent semigroup. Then for all sufficiently small ¢ and sufficiently large n,
the worst-case query time for e-approximate range searching among n points in the
decision-tree model is at least

Kk —1 T
.Q(logn + (—) )
&K

The proof is based on a construction that first builds a maximal set of m =
2(((k —1)/(ek))@=D/2) points on the unit sphere such that each pair is separated by
a distance of £2(4/¢). At each point x we create a ball of radius 1/« that lies within
the sphere and is tangent at x. For each of the 2™ subsets of points, we create a range
consisting of the convex hull of the corresponding tangent balls. We show that no two
of these ranges are equivalent to within an ¢ error, and so any decision tree must have
at least 2 leaves, which implies a depth of at least £2(m), and hence query time of
2(m).

Proof The proof is based on a standard decision-tree argument. We show that any
decision tree must distinguish between some number L of distinct possible outcomes,
and hence the worst-case query time is §2(log L). Two ranges are e-distinct if one
contains a point that lies outside the other’s ¢ expansion. By the faithfulness of the
semigroup, distinct ranges must be handled differently by the decision tree.

First observe that the £2(logn) term is easy to prove. Consider n Euclidean ball
ranges, each centered at a point, but so small that its ¢ expansion contains no other
point. This bound holds irrespective of the point distribution.

To prove the other part of the bound, we generate a large collection of e-distinct
ranges. Given § > (0, we say that a set of points is §-sparse if the distance between
any pair of distinct points is at least . Let § = /6ek/(k — 1). Let us assume that
¢ is small enough that § < 1. Consider any §-sparse point set P on a unit sphere in
R¢ centered at the origin O. It is well known that such a set exists having at least 7
points, where

of ! d-1 o1 s
= 8 o 6eK ’

Assume that n > ng. The point set is constructed by taking ns points from P and
placing the remaining n — ns points arbitrarily (since they will play no role in the rest
of the argument).
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One approach to construct the ranges would be to consider the convex hulls of
each of the 2% — 1 nonempty subsets of P. Although this would work, the resulting
ranges would not be smooth. Our approach is to “round off” the sharp edges of these
ranges. For each p € P, let b(p) be aball of radius 1/« that lies within the unit sphere
and is tangent to the sphere at p. For each subset P’ C P, let n(P’) be the convex
hull of the union of b(p) for p € P/, that is,

n(P) = conv( U b(p)).

peP’

Clearly each of the resulting ranges is «-smooth. Let the range space Q consist of
the 2""¢ — 1 ranges n(P’) corresponding to all the nonempty subsets P’ of P. Note
that the diameter of each range in Q is at most 2, because they all lie within the unit
sphere.

We assert that every pair of distinct ranges of Q is e-distinct. Consider two ranges
arising from distinct subsets P’ and P”. There is some point y that is in one set
and not the other. Assume without loss of generality that y € P’ but y ¢ P”. Clearly
y € n(P’), and so it suffices to show that y lies outside the ¢ expansion of n(P"). To
prove this fact, consider the line segment Oy and the hyperplane H that is orthogonal
to Oy and at distance 2¢ from y. We assert that all the balls b(x) for x € P” lie on
the opposite side of H from y. It will follow that the convex hull of these balls also
lies below H, implying that the minimum distance of y to n(P") is at least 2¢. Since
diam(n(P")) < 2, it follows that y lies outside the & expansion of n(P"), as desired.

To prove this assertion, consider any x in P”. The orthogonal projection of b(x)
onto line Oy is a line segment. We will show that this segment’s closest endpoint to
y is at least at distance 2¢, from which it follows that b(x) lies entirely below H.
Consider the intersection of b(x) with the plane containing x, y, and O. For the sake
of illustration, imagine that the ray 6))) is directed upwards, let z be the highest point
of b(x), and let x” and z’ be the orthogonal projections of x and z onto the line Oy.
(See Fig. 9.) Let @ = Zx Oy. By basic trigonometry, the distance || O x| is cos 8, and
because b(x) is of radius 1/k, we have ||x" 7’| = (1/x)(1 — cos ). Thus, we find that

Fig. 9 Lower bound for smooth
convex ranges
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the vertical distance from y to the upper endpoint of b(x)’s orthogonal projection is
Iyl =1=(lox"I+x"Z'll)

1 Kk—1
=1—-cosf ——(1 —cosf) = ——(1 —cosH).
K K

To bound this distance, we use the fact that if @ < 1, then 1 — cosf > 02/3. By the
definition of 6 we obtain

K k—1 6ex/(k—1)
Iz" yll > - : =

2e,
K 3

92
—_ >
3 =

as desired.

Therefore, the decision tree must have at least 2% — 1 leaves corresponding to
these e-distinct ranges. Its depth is at least log, (2" — 1) = £2(ns), and this establishes
the desired lower bound on the query time. t

4.2 Upper Bound

In this section we present a data structure that can answer approximate range queries
for idempotent semigroups for smooth convex ranges. Assuming any fixed degree of
smoothness, the query time is quite similar to the lower bound proved in the previous
section. This result demonstrates that the improvements offered by idempotence for
spherical range searching also apply to ranges that are sufficiently smooth. Our results
apply to the range space of all x-smooth convex bodies for any fixed « > 1. (The
hidden constants increase with «.) As in [2], we make the unit-cost test assumption,
which states that given any ball or hypercube and range 7, in constant time we can
determine whether the ball or hypercube is contained within ™, is disjoint of n*, or
neither. Here is our main result.

Theorem 4.2 Consider a range space consisting of all k-smooth convex bodies for
any real constant k > 1. Let P be a set of n points in R?. Let 0 < & < 1/2 be a
real parameter. Then we can construct a data structure of O(n/e) space that al-
lows us to answer e-approximate range queries over any idempotent semigroup in
time O (logn + (1/g)@=D/2 log(1/¢)). The time to construct the data structure is
O((nlogn)/e@+D/2y,

Our data structure for smooth ranges is similar in spirit to those described in [5, 6],
and [7] for Euclidean balls. (Those other data structures provided space-time trade-
offs. In light of the lower bound presented in Sect. 4.1, the above result is optimal
up to a factor of O(1/¢) in space and logarithmic factors in query time. Thus, we
have not pursued the question of tradeoffs here, since they would be of a very limited
nature.) Our approach is based on the concept of an approximate Voronoi diagram,
or AVD, as described in [3] and [4]. This is a quadtree-like structure in which space
is subdivided recursively until the leaf cells satisfy certain “separation properties”
with respect to the surrounding points. Each node of the tree (internal and leaf) is
responsible for handling query ranges that overlap the corresponding cell and whose
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diameter is proportional to the size of the cell. Each node is associated with a small
collection of generators, each of which is the semigroup sum of points lying within a
judiciously chosen Euclidean ball. To avoid an excessive repetition of details, we will
refer to results proved in our earlier works on approximate spherical range searching,
which can be found in [5, 6], and [7]. The principal new elements arise from the lack
of symmetry in arbitrary smooth ranges, but these obstacles are rather technical in
nature.

The critical fact that enables us to answer queries efficiently is that any «-smooth
range can be g-approximated using O (1/e“~1/2) balls of radius §2 (diam(z)/«) that
are suitably placed just touching the boundary of ™. The generator subsets are cho-
sen so that it is possible to compute an appropriate subset of them that approximate
each of these O (1/&@~1D/2) balls. We present this geometric result in the next sec-
tion. Following this, in Sects. 4.2.2 and 4.2.3 we present the data structure and query
processing algorithm, respectively.

4.2.1 Geometric Preliminaries

The main result of this section is the following lemma, which shows that it is possible
to compute a small set of canonical balls such that any smooth range can be approx-
imated by a suitable union of these balls. This is similar to Lemma 9 in [6], which
proves a somewhat more general result for spherical ranges.

Lemma 4.1 Let 8 > 0 and k > 1 be constants. Let Q be a set of k-smooth convex
ranges. Let b be any ball of radius r. It is possible to find a set B of O(1/g@+1/2)
balls and store them in O (1/e9TD/2) space so that for any range n € Q whose diam-
eter diam(n) is at least Br, the following property holds: In O((1/¢)@~D/21og(1/¢))
time, it is possible to find a subset B, C B of size 0(1/e9=V/2) such that their
union, Ul?eBn I;, covers n N b and is contained within 77+. (Constants hidden in the
O -notation depend only on 8, k, and d.)

Before proving this lemma, we establish some useful geometric facts. The first
is a useful trigonometric inequality due to Chan and Snoeyink [13]. The second is a
technical result, which will be applied below in the proof of Lemma 4.1 for processing
queries.

Lemma 4.2 (Chan and Snoeyink) Let Axyz be a triangle with /xzy =0, Zyxz = ¢,
and Zxyz > w /2. Then

llxyll + llyzll < (1 +sin@ sing)||xz]|.
Lemma 4.3 Let 0 <& < 1/2 and y > 4 be two real parameters. Let b be a ball of
radius r centered at o, x be a point on the boundary of b, and p be a point on ox
such that ||px|| > re. Let y be a point such that ||oy| <r/y and Zyox < . /ey/8.
Let b be a ball of radius at least (r — ||oy|)/(1 + &/2) centered at y. Then p € b.
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Fig. 10 Proof of Lemma 4.3 r— |loy|l

d+e/2

Proof Let 7 denote the radius of the ball 5. We are given that 7 > (r — [loy|)/(1 +
g/2). Since |loy|| <r/y <r/4 and ¢ < 1/2, it follows that
r—r/4 r
> —.
1+1/27 2

P>

This implies that 7 > r/y > |loy|| and thus o € b. Let t denote the point of intersection
of the boundary of b with the ray starting from o and passing through x (see Fig. 10).
By convexity, all the points on segment of are contained in b. We will show that
llot|| = r(1 — ¢&). This will imply that the point p described in the statement of the
lemma belongs to b, which will complete the proof.

First, we consider the case y > 16/¢. By the triangle inequality we have ||ot|| >
Iyzll = lloyll. Since |lyz|l =7 = (r — lloy)/(1 + £/2) and |loyl| <r/y <re/16, we
obtain

r—lloyll r—re/l6  re
o]l = Tren loyll > ——7 — —.
+¢&/2 14¢/2 16
Since ¢ < 1/2, this simplifies to |lof|| > r(1 — €), as desired.

In the remainder, we consider the case y < 16/¢. Let z denote the point on ox such
that [loy|| = [loz|. Since |loy|| < r/y and Lyoz < ,/ey/8, it follows that ||yz| <
rW/& Since ¢ < 1/2 and y > 4, we have ||yz| < r/16. Since ||yt|| =7 > r/2,
we have || yt|| > ||yz||. By elementary trigonometry, it follows that Lyrz < /2. Ap-
plying the law of sines to the triangle Ayzt, we have

sinZytz _ sinZyzt - 1
lyzll Iyl llyell

Thus

sinZytz <

llyz] <r¢e/y/8_1\/§
byel = 2 AV Y

Consider the triangle Aoyt. Let 6 denote Zyor and ¢ denote Lyzz. Since 6 <
VeV /8, e <1/2,and y < 16/¢, it follows that 6 < /6. Also, we showed above that
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¢ <m/2andsing < «/8/)//4. Using the facts that ¢ < 1/2 and y > 4, it follows that
¢ < /6. Thus Loyt > /2. We can therefore apply Lemma 4.2 to Aoyt to obtain

lot]| > loyll +llyrl _ lloyll + (- —lloylD/(1+&/2) _ r+elloyll/2
T 1+sinfsing ~ 14 (/e7/8)(Vely /4 (1+¢/32)(1+¢/2)
r

= (1+¢&/32)(1 +¢/2)°

Since ¢ < 1/2, we can easily verify that ||of|| > r(1 — ¢), as desired. O
Setting y = 4, we have the following corollary.

Corollary 4.1 Let 0 < ¢ < 1/2 be a real parameter. Let b be a ball of radius r
centered at 0, x be a point on the boundary of b, and p be a point on ox such that
| px|l > re. Let y be a point such that ||oy|| <r/4 and Zyox < /¢/4. Let b be a ball
of radius at least (r — ||oy|)/(1 + &/2) centered at y. Then p € b.

Now that we have established the necessary tools, the remainder of this section is
devoted to giving the proof of Lemma 4.1.

Let r' = Br/(2«). For each of the d coordinate axes, consider an infinite set of
hyperplanes orthogonal to it such that the distance between successive hyperplanes
is 7' /(16+/d). On each of these hyperplanes overlay a regular (d — 1)-dimensional
grid of side length r'\/e/(64+/d — 1). Let G denote the set of grid points on all these
hyperplanes that are contained inside the ball b=(1+ B/Q2k))b. Note that O(1)
hyperplanes intersect b and each of these hyperplanes contains O (1/¢@~D/2) grid
points inside b. Thus |G| = 0(1/¢@=V/2). For each point y € G, consider a set
of concentric balls B, centered at y whose radii span the range from 3r'/5 to r’,
such that the radius of any two successive balls differs by a multiplicative factor of
1 4 £/2. We store the balls in B in an array in order of increasing radius. Finally
we define B =J,cg By Since |G| = O(1/¢"D/2) and |By| = O(1/¢) for each
y € G, it follows that |B| = O(1/¢@+1/2)_ Next we show that B satisfies the prop-
erty described in the lemma.

Let n be any range in Q with diameter D, > Br. For each y € G, first we check
if the smallest ball in B, is contained within nT. If it is not, we ignore all the balls
in By. Otherwise, we use binary search to find the largest ball in 3, that is con-
tained within . Let B, denote the set of balls found using binary search over all
groups By of concentric balls. Since it takes O (log(1/¢)) time for each binary search,
the total time to find By is O((1/g)@d=D/2 log(1/¢)). (By using the floor function, we
can shave a log(1/¢) factor from this time if we assume that we can compute the
distance from any point inside ™ to the closest point on 3" in constant time. The
straightforward details of this relatively minor improvement are omitted.)

It remains to show that n N b C | beB, b C 5. By construction, each ball in B, is

contained inside n T, and so U beB b cnt.To prove the first part, let p be a point in
n

n N b. We will show that p is contained in some ball in ;. Let x” denote the point
on dn™T that is closest to p (see Fig. 11(a)). Let b” denote the largest ball inside 1™
that is tangential to an™ at x”. Let o” denote the center of »”, and let " denote
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@ (b) (©)

Fig. 11 Proof of Lemma 4.1

its radius. Clearly p € o”x”. Since 5 is k-smooth and n is the e-expansion of 7,
it follows that 7" > D, /(2«) + e Dy > Dy(1 + 2¢)/(2k) = D+ /(2«), where D+
denotes the diameter of nT. Since D+ > Br, we have r” > Br/(2«). Also, since
p € 1, it follows that || px”|| > eDy. Since D+ = Dy (1 +2¢) and ¢ < 1/2, we have
| px"|| = eDy+ /2. Since b” € ', we have D+ > 2r". Thus || px”|| > r"e.

Let b’ be the ball of radius r’ = Br/(2x) obtained by scaling " about p as the
origin (see Fig. 11(b)). Let o’ denote the center of »’, and let x’ be the point on 95’
that is closest to p. Clearly b’ Cb”, p € o'x/, and || px'|| > r's.

We claim that there must be a point y € G such that ||o'y| <r'/4 and Lyo'x’ <
J/€/4. To prove this, first observe that p € b and that points o’ and x’ are both
within distance r’ from p. It follows that o’ and x’ are both contained in the ball
b=+ B/(2k))b. Consider the coordinate axis that make the smallest acute angle
6 with segment o’x’. Clearly cosé > 1/+/d. Recall that our construction places hy-
perplanes intersecting ball b that are orthogonal to this coordinate axis and separated
by a distance of r//(16+/d). Since cos@ > 1/+/d, these hyperplanes intersect o'x’,
separated by a distance of at most r'/16. Thus, there must be a hyperplane H in this
set that intersects o’x’ at a point whose distance from o’ is between r’/8 and 3r'/16.
Let z denote this point of intersection. Recall that we overlay a (d — 1)-dimensional
grid on H of side length r'\/e/(64+/d — 1). Let y denote the grid point on H that
is closest to z. It is easy to see that ||zy|| < r's/e/64. By the triangle inequality,
lo'yll < o'zl + llzyll <3r'/16 + ' \/e/64 < ¥’ /4, since & < 1/2. Also,

/
Nyl _r'Ve/64 e

“lozl T /8 87

sin Zyo'x

It follows that Z/yo'x" < (7/2)sin Zyo'x’ < \/e/4. This completes the proof of the
claim.

Let b denote the largest ball in B, that is contained within nT (see Fig. 11(c)).
Since b’ C 5T, the distance of y from dn™ is at least ¥’ — ||o’y||. Since ¥’ — |l0’y|| €
[3r'/4,r'] and & < 1/2, it s clear from our construction that the radius of b is at least
(r' = lo'y|)/(1 + &/2). Applying Corollary 4.1, it follows that p € b. Recalling that
be B, completes the proof of Lemma 4.1.
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4.2.2 AVD for Smooth Ranges

In this section we present the data structure for answering approximate range queries
for smooth convex ranges. Let P be a set of n points in R?, and let 0 < & < 1/2 be
a real parameter. We assume that the weights assigned to the points of P belong to
an idempotent semigroup. Without loss of generality, we may assume that the set of
points P has been scaled and translated to lie within a ball of radius ¢ /2 placed at the
center of the unit hypercube U?. This allows us to easily dispense the case of a query
1 that is not contained within U? as follows. If  contains the center of U¢, we output
w(P) (i.e., the semigroup sum of all the points in P), otherwise we output the special
null symbol, which represents the empty set. Henceforth, we assume that 7 € U¢ and
show how to construct a data structure to handle such a query.

We will use the following terminology. A quadtree box is defined recursively as
U4 or any d-cube that can be obtained by splitting a quadtree box into 2¢ identical
subcubes by d axis-orthogonal hyperplanes passing through its center. We define a
cell to be either a quadtree box or the set-theoretic difference of two quadtree boxes,
an outer box and an inner box. The size of a cell is defined to be the side length
of its outer box. Throughout, for a cell u, we define the following three items. We
define s, to be its size, we define r, to be s,d /2, and we define b, to be the ball of
radius r,, whose center coincides with the center of u’s outer box. (Note that u C b,,.)
Finally, for any ball b and any positive real y, we use y b to denote the ball with the
same center as b and whose radius is y times the radius of b. Because of the close
association between each node and its cell, when it is clear from context, we will
often use the same name to refer to both of them.

In Lemma 4.4 below we abstract the main features of the data structure used in
[5-7] for spherical range queries. This data structure is based on a hierarchical sub-
division of the unit hypercube into cells. We classify each cell u of this subdivision
into three types. Let y > 16 and 0 < f < 1 be two real parameters.

Type-1: u enjoys no separation property in general.

Type-2: There exists a ball b/, such that |P N (yb, \ b,)| = O(1/f) and the ball y b,
does not overlap u. (See Fig. 12.)

Type-3: u is a quadtree box (not the difference of two boxes), and there is an associ-
ated quadtree box v such thatu C v and |P N (yb, \ 8b,)| = O(1/f). (See Fig. 12.)

Note that these definitions are not mutually exclusive. The construction algorithm
assigns a unique type to each cell.

To provide a somewhat better understanding of the usefulness of this classification,
let us imagine for now that the O (1/f) term is simply zero. In our application, we will
set y to a sufficiently large constant depending on the smoothness parameter . We
first find a cell u such that the query range is roughly centered about u and satisfies
certain properties depending on u’s type. If u is of type 1, the range’s diameter will be
proportional to the diameter of u. Because of smoothness, such a range can be well
approximated by a small collection of covering balls. If u is of type 2, the range’s
diameter can be arbitrarily small relative to u’s diameter (but is at most a constant
factor larger). In this case, the problematic points are densely clustered within b/,.
Either b, lies entirely outside the range (in which case they do not contribute to the
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Type-2 cell Type-3 cell

Fig. 12 Generic separation properties for cells. (Not drawn to scale.) The O(1/f) points that do not
satisfy the separation properties are shown as white points

result) or else the fact that y b/, does not overlap u implies that they are at a certain
distance from u and can be well approximated by a small collection of covering balls.
Finally, if u is of type 3, the range will lie between a certain constant expansion of
b, and yb,, where v is the quadtree box associated with u. In this case, since all the
points in y b, are very close to u, they can be treated as a lump and all inferred to lie
within the range.

What about the O (1/f) points that fail to satisfy the separation properties? These
points arise as the leftovers of a sampling process (implicit in Lemma 4.4) that we
employ to minimize the space requirements. They are called pollutants. The value f
will be selected so that 1/f is proportional to the query time. This implies that we
can simply inspect all of the pollutants one-by-one without increasing the overall
asymptotic query time.

We now present the lemma, proved in [7], that establishes the existence of a data
structure satisfying the desired separation properties for a given range. Although this
lemma is provided without explicit reference to the type of range, the point ¢ can be
thought of as the center of the range and D as its diameter.

Lemma 4.4 (Generic Separation Properties) Let P be a set of n points in RY. Let
y > 16 and 0 < f < 1 be two real parameters. In O(ny“log(ny)logy) time, it
is possible to construct a data structure with O (nfy?) cells of type-1, type-2, and
type-3, respectively, such that the following holds. For any pair (q, D), where q is a
point in U9 and 0 < D < «/d is a real number, in O(log(ny)) time, we can find a
cell u such that q € u and u satisfies one of the following properties.

(1) uis of type-1,and yr, /4 < D <yr,/2.
(i) u is of type-2,and D < yr, /4.
(iii) u is of type-3, and yr, /4 < D < yr, /4, where v denotes the quadtree box asso-
ciated with u. (See properties of type-3 cells given above.)

In case (ii) the node u stores the ball b), and the set of points P N (yb, \ b)). In
case (iii) the node u stores the weight of points in the ball 8b, (that is, w(P N 8b,))
and the set of points P N (yb, \ 8b,).
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Type-1 cell ) Type-2 cell Type-3 cell

Fig. 13 Separation properties for cells for smooth ranges. (Not drawn to scale.) The O(1/f) points that
do not satisfy the separation properties are shown as white points

We will now show how to apply the above lemma in our particular context of
smooth convex ranges. Recall that the query range n being considered lies entirely
within U?. Let diam(n) denote its diameter. In order to apply the previous lemma,
which is stated in terms of pair (¢, D), we need to introduce the notion of a center
point g and diameter D for a convex range query. In particular we shall assume that
the query algorithm is given a pair (g,, D;), where g, € n is a point that is at distance
at least diam(n)/(2«) from the boundary of n (by smoothness such a point exists),
and D, is the diameter of the range.

Throughout this section, let y, denote the constant 72«. (Any sufficiently large
multiple of ¥ would work, and no attempt was made to optimize its value.) In the de-
finition of type-1, type-2, and type-3 cells given above, henceforth let y = y,, = 72k,
and let f = &@~1D/2_ We now tailor the generic separation properties of Lemma 4.4
to a form that can be conveniently applied to the space of k-smooth convex ranges.
The cases are illustrated in Fig. 13.

Lemma 4.5 (Separation Properties) Let k > 1 be a constant. Let Q be a set of k-
smooth convex ranges. Let P be a set of n points in R%. In O(nlogn) time, it is
possible to construct a data structure with O (ne'@=Y/2) cells of type-1, type-2, and
type-3, respectively, such that the following holds. For any range n € Q that is con-
tained within U?, in O(logn) time, we can find a cell u such that qn € u and u
satisfies one of the following properties.

(1) u is of type-1, n C y, by, and the diameter of n is at least y,r,, /4.
(i) u is of type-2, and n C y,by,.
(i) u is of type-3, and 8b,, C n C y, by, where v denotes the quadtree box associated
with u. (See properties of type-3 cells given above.)

In case (ii) the node u stores the ball b), and the set of points P N (y,cby, \ b),). In
case (iii) the node u stores the weight of points in the ball 8b, (that is, w(P N 8b,))
and the set of points P N (y,cby \ 8by,).

Proof We construct the data structure of Lemma 4.4 for y = y,, = 72« and f =
e@=D/2 1ot D= diam(n). By smoothness we have b(g,, D/(2«)) € n C b(gy, D).
Also, since n C U?, it follows that 0 < D < +/d. By Lemma 4.4, for the query
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(g4, D), in O(logn) time, we can find a cell u such that g, € u and u satisfies one of
the three properties listed therein.

If u satisfies Lemma 4.4(i), then u is of type-1 and y,r, /4 < D < y,r,/2. By the
triangle inequality, it follows that the distance of any point in 1 from the center of u
isatmost D +ry, <y, 1y, /2 + 1y < yiry. Thus n C y,b,. Noting that D > y,.r, /4, it
follows that property (i) holds.

If u satisfies Lemma 4.4(ii), then u is of type-2 and D < y,.r, /4. Arguing as for
property (i), it follows that the distance of any point in 1 from the center of u is at
most D +r, < y,ry,/4+r, < yery. Thus n € y,.b,, and so property (ii) holds.

Finally, if u satisfies Lemma 4.4(iii), then u is of type-3 and y, 1, /4 < D < y, .1y, /4,
where v is the quadtree box associated with u. By the triangle inequality, it follows
that the distance of any point on the boundary of n from the center of u is at least
D/(2k) — ry. Since D > y,r,/4 and y, = T2k, this quantity is at least 8r,. Thus
8b,, C n. The same calculation as for property (ii) implies that n C y, b,.. This estab-
lishes (iii) and completes the proof. g

During preprocessing, for each cell in the data structure of Lemma 4.5, we com-
pute the weight of certain clusters and store them with the cell. To answer a query 7,
we first apply the above data structure to find the cell u that satisfies one of the three
properties listed in Lemma 4.5. The cluster sums for the case of type-1 and type-2
cells are based on Lemma 4.1.

4.2.3 Query Processing for Smooth Ranges

In this section we discuss how to answer range queries from the data structure pre-
sented in the previous section. Lemma 4.1 suggests a simple approach to answering
approximate range queries for smooth ranges. First we construct the data structure
of [5] for approximate spherical range queries and then apply the data structure di-
rectly to the approximating balls described in the lemma. Unfortunately, this approach
would result in an unacceptably high query time (larger by a factor of O (1/g@~1/2)
assuming linear space). Instead, we will apply a more integrated solution. We now
explain how to use the above lemma, to process the various types of cells.

Type-1 Cells By property (i) of Lemma 4.5, a type-1 cell # handles query ranges n
such that n C y,.b, and diam(n) > y,r, /4. A cell of type-1 does not generally satisfy
any separation property. But note that it only needs to handle ranges in its vicinity
whose diameter is proportional to its own size (i.e., neither too small nor too big),
which makes the task manageable.

We first discuss the preprocessing phase. Setting b to y,b, and S to 1/4, we apply
Lemma 4.1 to obtain the set B of 0(1/£(d+1)/2) balls. For each ball b € B, we com-
pute w(P N b) and associate it with b. The space used for storing this information is
on the order of the number of balls in 3, which is 0(1/8(d+1)/2).

Using these cluster sums, we compute the answer for a query n by first finding
the set BB, € B of balls described in the statement of Lemma 4.1 and then outputting
3 beB, w(P N l;). To establish the correctness of this method, first observe that n C b
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and the diameter of 7 is at least 8 times the radius of ». By Lemma 4.1, we obtain

nnbc | Jbent
beB,

Since n = n N b, it follows that the query is answered correctly.

Finally, we consider the query time. By Lemma 4.1, it takes O ((1/¢)@=D/2 x
log(1/¢)) time to find the set B,). Recall from Lemma 4.5 that it takes O (logn) time
to find the cell u. Thus, the total query time is O (logn + (1/g)@=D/2 log(1/¢)).

Type-2 Cells By property (ii) of Lemma 4.5, a type-2 cell # handles query ranges
n such that g¢,, € u and n C y, b,. By the properties of type-2 cells mentioned earlier,
the points P N yb, = P N y,.b, fall into two groups. Points in one group lie in ),
and points in the other group (the pollutants) lie in y, b, \ bj,. Recall that the number
of pollutants is at most O(1/f) = O(1/¢“4~1/2). Since the number of pollutants is
few, preprocessing simply involves storing these points in a list. To answer query 7,
we scan the list and identify the points that lie inside 7.

Next we consider the set of points P N b/,. Clearly these points are relevant to a
query only if the range 7 overlaps the ball b/,. By properties of type-2 cells, recall that
the ball yb], = y,.b;, does not overlap u. Since g, € u, it is clear that if n overlaps b,
then diam(n) > (y, — 1)), where r,, is the radius of b),. Thus, n is large relative
to b/, and so we can use Lemma 4.1 to preprocess the ball b}, and then answer such
queries. To be precise, we set b to b}, and 8 to y, — 1 and apply Lemma 4.1 to
obtain the set B of 0(1/8(d+1)/2) balls. For each ball b € B, we compute w(P N l;)
and associate it with 5. We answer a query n by finding the set B, € B of balls

described in the statement of Lemma 4.1 and then outputting 5 .. w(P N b). We
n
have nNbC Y beB, b C n*, which implies that the query is answered correctly.

The space used is 0(1/@=D/2y for the pollutants and 0 (1/&@*D/2y for stor-
ing the structure of Lemma 4.1. The query time is O(1/¢“~1/2) for scanning the
list of pollutants. If 1 overlaps b/, it takes an additional O((1/¢)@~1/2log(1/¢))
time for finding the clusters using Lemma 4.1. Thus the space used for cell u is
O(1/¢@*D/2) " and the total query time, including the time for finding cell u, is
O(logn + (1/¢)@=D/21og(1/¢)).

Type-3 Cells By property (iii) of Lemma 4.5, a type-3 cell u handles query ranges
n such that 8b, C n C y,b,. Recall that a type-3 cell u is a quadtree box, and it is
contained inside another quadtree box v such that |P N (y b, \ 8b,)| = O(1/f). Since
¥y =ye and f =¢&@"D/2 we have |P N (ycby \ 8b,)| = O(1/£4~1/2)_ Clearly, we
can answer query 1 exactly by taking the sum of w(P N 8b,) and the weights of
the pollutants in P N (y, by \ 8b,) that lie inside 5. Thus, by precomputing w(P N
8b,) and storing the list of the pollutants, we can answer queries in time O (logn +
1/@=1/2) The space used per cell is O(1/e@=D/2y

In summary, we have shown that for all three types of cells, the query time is
bounded by O (logn + (1/e)@=D/2 log(1/¢)), and the space used per cell is bounded
by 0(1/¢@*D/2) Since the total number of cells is O (ne@—1/2), it follows that the
total space used by the data structure is O (n/¢).
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Finally, we make a few remarks regarding preprocessing time. The bottleneck is
the computation of the cluster sums for type-1 and type-2 cells. Recall that each clus-
ter is the intersection of the point set P with a suitable ball, and the total number
of cluster sums is O(n/¢). For the sake of simplicity, we assumed in our descrip-
tion that each cluster sum is computed exactly. However, this would take too long,
and it can be easily replaced by an approximate computation (i.e., we allow errors
O (¢)-close to the boundary of the ball). For this purpose, we can use the standard
BBD-tree data structure of Arya and Mount [2]. This structure takes O (nlogn) time
to construct and allows us to answer an g-approximate convex range query in time
O(logn + 1/&?~1). Thus, the time to compute all the cluster sums approximately is
O((nlogn)/e +n/e%).

We can improve the e-dependency in the construction time significantly by us-
ing the more sophisticated data structure of [5], which is tailored to spherical
range queries. This data structure uses a parameter y, 2 < y < 1/g, to control
the space/time tradeoff. (The value y here is not to be confused with the value
¥« = 72k used in the earlier constructions.) The time to construct this data structure
is O(ny?log(n/e)log(1/¢)), and it allows us to answer an e-approximate spherical
range query in time O (log(ny) + 1/(ey)?~"). To achieve our best bound, we con-
struct this structure for y = 1/¢4/24=1D _The time to construct this structure and use
it to compute all the cluster sums approximately is

0 n 1 n1 1 _0 nlogn
c/d—n B 08 )T Y\ garnz )

This completes the proof of Theorem 4.2.

5 Concluding Remarks

In this paper we have presented a number of results on the complexity of approx-
imate range searching in spaces of constant dimension. In particular we have con-
sidered how semigroup properties, such as idempotence and integrality, interact with
range shape properties, such as sharpness and smoothness, in determining the space
and time complexities of the problem. We have shown that the advantages of idem-
potency do not apply to ranges with sharp corners. In particular, our results im-
ply that for the range space of rotated unit hypercubes, arbitrary (including idem-
potent) semigroups, and linear space, the query time is £2(1/ sd_2‘/‘_i). For integral
semigroups, it is £2(1/e47%). These lower bounds nearly match the upper bound of
O(logn + (1/£)?~1), which holds for arbitrary semigroups. In contrast, we showed
that the improvements offered by idempotence do apply to smooth convex ranges.
We presented a lower bound of §2(logn + (1/£)@~1D/2) in the decision-tree model of
computation and presented a nearly matching upper bound. Since the lower bound is
in the decision-tree model, it holds irrespective of space.

There are a few problems that would be nice to resolve. Our lower bounds in the
integral case (both here and in [6]) apply under the assumption of convex generators.
Can this assumption be removed? The above lower bound on the complexity of range
searching for rotated unit hypercubes contains a messy factor of +/d in the exponent.
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An interesting question is whether this term can be eliminated, either in the case of
rotated hypercubes or by considering some other natural range space involving ranges
with sharp corners.

Another problem is that of providing good upper bounds with space-time trade-
offs for smooth convex ranges (over integral semigroups) and rotated hypercubes.
Recently, Arya, Fonseca, and Mount [8] have made some progress in this direc-
tion. They present a multilevel generalization of a data structure called the half-
box quadtree. (This structure was first introduced by Fonseca for approximate range
searching in the absolute model [16].) They show that, for 1 < y < 1/,/e, given
space O(ny?), the halfbox quadtree answers approximate range queries for smooth
convex ranges in O (logn + 1/(gy)?~") time. They also show that for any integer ,
0 <k <d — 1,1t is possible to answer approximate fat simplex range queries (which
subsumes the case of rotated hypercubes) with space O (n/ gkd/(d- D) and query time
O (logn +1log % + 1/9=1=k)_Both results apply over integral semigroups. Given the
same query time, both the lower and upper bound on space are of the general form

O(n /W),
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