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Abstract We establish two new lower bounds for the halfspace range searching prob-
lem: Given a set of n points in R

d , where each point is associated with a weight from
a commutative semigroup, compute the semigroup sum of the weights of the points
lying within any query halfspace. Letting m denote the space requirements, we prove
a lower bound for general semigroups of ˜Ω(n1−1/(d+1)/m1/(d+1)) and for integral
semigroups of ˜Ω(n/m1/d).

Our lower bounds are proved in the semigroup arithmetic model. Neglecting log-
arithmic factors, our result for integral semigroups matches the best known upper
bound due to Matoušek. Our result for general semigroups improves upon the best
known lower bound due to Brönnimann, Chazelle, and Pach. Moreover, Fonseca and
Mount have shown that, given uniformly distributed points, halfspace range queries
over idempotent semigroups can be answered in O(n1−1/(d+1)/m1/(d+1)) time in
the semigroup arithmetic model. As our lower bounds are established for uniformly

A preliminary version of this paper appeared in the Proceedings of the 26th Annual Symposium on
Computational Geometry, 2010, pp. 29–37.

S. Arya · J. Xia
Department of Computer Science and Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong

S. Arya
e-mail: arya@cse.ust.hk

D.M. Mount (�)
Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742, USA
e-mail: mount@cs.umd.edu

Present address:
J. Xia
Yahoo! Labs Beijing, Beijing Yahoo! Global R&D Center, Beijing 100083, China
e-mail: johnx@yahoo-inc.com

Author's personal copy

mailto:arya@cse.ust.hk
mailto:mount@cs.umd.edu
mailto:johnx@yahoo-inc.com


712 Discrete Comput Geom (2012) 47:711–730

distributed point sets, it follows that they also resolve the computational complexity
of halfspace range searching over idempotent semigroups in this important special
case.

Keywords Range searching · Lower bounds · Idempotence

1 Introduction

Given a set of n points P in R
d , preprocess these points so that given any halfs-

pace η, the number of points of P lying within η can be computed efficiently. This
problem, called halfspace range counting, while simple to state, is among the most
challenging problems in the field of computational geometry. It is a fundamental
geometric search problem and a basic building block in a number of other search
problems, such as simplex range searching and semialgebraic range searching [1,
18]. In this paper, we consider lower bounds on the computational complexity of this
problem.

This problem is typically posed in a weighted setting. Each point is associated
with a weight from a commutative semigroup (that is, a set over which is defined a
commutative, associative binary operator, denoted “+”), and the output of the query
is the semigroup sum of the points lying within the halfspace. Semigroup properties
can be exploited by the data structure and may affect the computational complexity of
the problem. A semigroup is idempotent if x + x = x for all semigroup elements x. It
is integral if, for all nonzero semigroup elements x and all natural numbers k ≥ 2, the
k-fold sum x + · · · + x is not equal to x [13]. For example, (R,min) and ({0,1},∨)

are both idempotent, and (N,+) is integral.
Idempotence is relevant because of the way that most range searching algorithms

work. At preprocessing time, the algorithm implicitly computes the semigroup sum
of a number of suitably chosen subsets of P , which we call generators (also known as
canonical subsets). To answer a query η, the algorithm determines an (ideally small)
subset of generators whose union is equal to P ∩η and then returns their total sum. If
the semigroup is idempotent, these subsets may overlap, but for integral semigroups,
they are typically disjoint to avoid multiple counting. Because of the constraint of
disjointness, one would expect that range searching over integral semigroups should
be harder than for idempotent semigroups.

This problem has an extensive history within computational geometry. Early
work focused on data structures of linear size. A number of methods based on
partition-trees were proposed, including methods by Willard [21], Edelsbrunner and
Welzl [12], and Yao [23]. A major breakthrough was achieved by Haussler and
Welzl [16], who applied the concepts of VC-dimension and ε-nets to obtain a data
structure with query time O(nα), where α ≈ 1 − 1

d(d−1)+1 . In a sequence of pa-
pers, a number of new techniques were introduced, resulting in linear space (or
near-linear space) algorithms by Welzl [20], Chazelle and Welzl [9], Matoušek and
Welzl [19], and Chazelle et al. [8]. This culminated in a solution by Matoušek [17],

which achieves linear space and the optimal query time of O(n1− 1
d ). Chan [5] has

shown that this same query time can be achieved with a conceptually simpler and
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more flexible approach based on partition trees. For further information, see the ex-
cellent surveys by Agarwal and Erickson [1] and Matoušek [18]. All of these results
are based on the use of disjoint generators and so apply to both integral and idempo-
tent semigroups.

Since the query time is relatively high, it is natural to consider space-time trade-
offs. By precomputing more generators, it is possible to cover ranges by a smaller
number of generators, thus leading to lower query times. Letting m denote the space
requirements, where n ≤ m ≤ nd , the best upper bound for halfspace range searching
is due to Matoušek [17], who has shown that, using m units of space, queries can
be answered in O(n/m1/d) time. This bound holds in both the standard real RAM
model and the semigroup arithmetic model (defined below).

Lower bounds for this problem were established by Brönnimann, Chazelle, and
Pach [4] in the semigroup arithmetic model. We refer to this paper throughout as
BCP. They established a lower bound on the query time for general semigroups of
˜Ω(n

1− d−1
d(d+1) /m1/d),1 assuming m units of space. This bound holds for both idempo-

tent and integral semigroups. The gap between the BCP lower bound and Matoušek’s
upper bound was investigated by Arya et al. [2], and, for the special case of integral

semigroups, the lower bound was improved slightly to ˜Ω(n/m
d+1
d2+1 ). Although the

improvement was small, this result showed that semigroup properties are significant
to the complexity of the problem.

In this paper, we take a substantial step in reducing the gap between the upper and
lower bounds for halfspace range searching. In particular, we establish the following
two new lower bounds for halfspace range searching in the semigroup arithmetic
model:

• We establish an improved lower bound for general semigroups of ˜Ω(n1−1/(d+1)/

m1/(d+1)).
• We establish an improved lower bound for integral semigroups of ˜Ω(n/m1/d).

The latter result relies on the assumption that the convex hulls of the genera-
tors used to answer a query are pairwise disjoint. Although this assumption does
not hold for Matoušek’s incremental construction [17], it is satisfied by Chan’s sim-
pler partition-tree construction [5]. Subject to this assumption, our lower bound
for integral semigroups is within a polylogarithmic factor of the best known upper
bounds.

For general semigroups, it is useful to observe that, as with BCP, our lower bounds
are established for uniformly distributed point sets. In contrast to many geometric
problems, uniformly distributed point sets appear to represent a fairly hard case for
halfspace range searching. Fonseca and Mount [10] recently showed that, given uni-
formly distributed points, halfspace range queries over idempotent semigroups can
be answered in O(n1−1/(d+1)/m1/(d+1)) time in the semigroup arithmetic model.
Thus, for the semigroup arithmetic model, our results nearly resolve the computa-
tional complexity of halfspace range searching over idempotent semigroups in the
case of uniformly distributed point sets.

1We use the notation ˜Ω in place of Ω to indicate that we are ignoring factors of the form logO(1) n.
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2 Preliminaries

Before presenting our results, we begin with some general definitions and assump-
tions. Throughout, we assume that the dimension d is a fixed constant greater than 1.
Unless otherwise stated, we will use the term “constant” to refer to any fixed quantity,
which may depend on d but not on n. To avoid specifying many real-valued constants
that arise in our analysis, we will often hide them using asymptotic notation. For pos-
itive real x, we use the notation O(x) (resp., Ω(x)) to mean a quantity whose value
is at most (resp., at least) cx for an appropriately chosen constant c. It will also be
convenient in our analysis to use the notations � (resp., �) to denote less than (resp.,
greater than) up to constant factors.

Let (S,+) be a commutative semigroup. Let P be a set of n points in R
d , and

let w : P → S be a function that assigns a semigroup value in S to each point in P .
For any subset G of P , we define its weight w(G) to be

∑

p∈G w(p), where the
summation is taken over the semigroup. Let Q denote the set of query ranges in the
range space. In the range searching problem, we are required to preprocess P so that,
for any query range η ∈ Q, we can efficiently compute w(P ∩ η).

Our lower bound proofs hold in the semigroup arithmetic model [14, 22]. We
briefly recall the basic elements of this model for online range searching prob-
lems. (Details can be found in [1, 6, 7].) Given a set {x1, . . . , xn} of n variables
over S, a generator G(x1, . . . , xn) is a linear form

∑n
i=1 αixi , where the values αi

are nonnegative integers, not all zero. Lower bounds in this model assume that the
semigroup is faithful, meaning that any two identically equal linear forms have the
same set of variables [6]. For example, (N,+), (R,min), and ({0,1},∨) are faithful,
but ({0,1},+mod 2) is not. A storage scheme is a set of generators {G1, . . . ,Gm}
satisfying the following property. For any query range η ∈ Q, there exist a set
Iη ⊆ {1, . . . ,m} and a set of labeled nonnegative integers {βi : i ∈ Iη} such that

w(P ∩ η) =
∑

i∈Iη

βiGi

(

w(p1), . . . ,w(pn)
)

,

for any weight function w. The query time for η is defined to be the size of a smallest
such set Iη. In this model, the space is the number of generators in the storage scheme.
Intuitively, the generators correspond to partial sums that have been precomputed
in the data structure. The query time in the semigroup arithmetic model counts the
minimum number of semigroup operations on these generators needed to answer a
query. The time for auxiliary operations, such as determining which generators to
use, is ignored.

Note that a storage scheme can exploit the properties of both the semigroup (S,+)

and the point set P , but it must work for any weight function.2 For our purposes, it
will be convenient to identify a generator with the subset of P corresponding to the
variables in the linear form with positive integer coefficients. An easy consequence
of the faithfulness and the definitions given above is that, for idempotent semigroups,
the time to answer a query η in this model is the size of the smallest set of generators

2This requirement implies that the lower bounds in the semigroup arithmetic model do not apply to the
range counting problem, which is the special case that arises when w(pi) = 1, for all i.
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Fig. 1 Widths, breadths, and
caps

whose union is P ∩ η [6, 13]. More formally, let G be any storage scheme consisting
of m generators. For any range η ∈ Q, define Aη ⊆ G to be the smallest subset of
generators of G such that

⋃

G∈Aη
G = P ∩η. The worst-case query time for a storage

scheme G is the maximum of |Aη| over all ranges η ∈ Q. Given a space bound m, the
worst-case query time complexity in the semigroup arithmetic model is the minimum
worst-case query time over all storage schemes G of size m [6]. We can adapt the
above definitions to integral semigroups by adding the restriction that, when taking
unions in answering a query, the generators, viewed as subsets of P , are pairwise
disjoint [13].

Let us define some other terms that will be used throughout the paper. Given a
halfspace H , let ∂H denote its bounding hyperplane. Consider a compact (closed
and bounded) convex body K , a halfspace H , and a vector u orthogonal to ∂H . The
width of K in the direction u, denoted width(K,u), is defined to be the orthogonal
distance between the two supporting hyperplanes for K that are orthogonal to u (see
Fig. 1(a)). The breadth of K orthogonal to u, denoted breadth(K,u), is defined to be
the maximum cross-sectional area of K orthogonal to u. Throughout, we use the term
area to mean the (d −1)-dimensional Hausdorff measure. Note that for our purposes,
width is always a one-dimensional measure, while breadth is a (d − 1)-dimensional
measure. As a convenience, given a halfspace H with boundary normal u, we define
width(K,H) = width(K,u) and breadth(K,H) = breadth(K,u).

The closed region in R
d bounded by two parallel (d −1)-dimensional hyperplanes

is called a slab, and its width (or thickness) is the orthogonal distance between these
hyperplanes. Let Δ > 0 be a real parameter. Given any hyperplane J , let SΔ(J )

denote the slab consisting of points in R
d whose distance from J is at most Δ. This

slab has width 2Δ. For any halfspace H , let SΔ(H) = SΔ(∂H) ∩ H denote the slab
consisting of points in H that are within distance Δ of the bounding hyperplane of H .

Consider a compact convex body K and a halfspace H that has a nonempty inter-
section with K . Let u be a vector orthogonal to ∂H . The intersection C = K ∩ H is
called the cap of K generated by H . We refer to u, the vector orthogonal to ∂H , as
the defining direction of cap C. The width (or thickness) of a cap, denoted width(C),
is defined to be the width of C along its defining direction u (see Fig. 1(b)).

Let U = [0,1]d denote the unit hypercube in R
d , and for any body K in R

d ,
let μ(K) denote its Lebesgue measure. The data point instance used in the proofs
consists of a set of uniformly distributed points in U. This will make it possible to
relate the volume of any sufficiently large convex subset of U to the number of data
points it contains.
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Fig. 2 Region of interest, fatness, and usefulness of generators (for t = 5)

3 Techniques

Our proofs are structurally similar to those in BCP. Their proof is based on a num-
ber of sophisticated geometric tools, such as the isoperimetric inequality, the slicing
lemma, and Macbeath regions. In this section we provide a high level overview of
the structure of their proof and provide a bit of intuition regarding the modifica-
tions leading to our improvements in the lower bounds. This will be formalized in
Sect. 4.

The complexity of halfspace range searching arises from the difficulty of cover-
ing points close to the boundary of the query halfspace. To formalize this idea, in
BCP, a suitable set of query halfspaces is considered, and for each halfspace H in
this set, a region of interest, denoted RH , is defined to be a thin slab close to the
boundary of H (see Fig. 2(a)). Recall that the goal in the arithmetic model is to relate
the space (number of generators) to the query time (maximum number of generators
needed to answer any query). In order to establish this relationship, a natural proba-
bility distribution is defined on the set of query ranges, and a lower bound is obtained
by showing that if a generator covers a large number of points in the region of in-
terest for some query range, then it cannot be useful in this manner for many query
ranges.

Let us consider how to formalize the intuitive notion of the “usefulness” of a gen-
erator. In order to achieve query time t , the storage scheme must have at most t

generators that cover all the points of P , including those that lie in the region of in-
terest (see Fig. 2(b)). In its simplest form, the usefulness of any generator G with
respect to H can be defined to be |G ∩ RH |, the number of points it covers in the
region of interest. In order to apply this notion effectively, however, it is necessary to
add further restrictions on the generators that will be considered useful for a partic-
ular query. In BCP it was observed that, by a simple counting argument, in order to
cover P ∩ RH with t generators, a constant fraction of the points of P ∩ RH belong
to generators that cover at least a fraction Ω(1/t) of the points in the region of in-
terest. We designate such generators as being (absolutely) fat, in the sense that they
consume a sufficiently large number of points of the region of interest. (This is not to
be confused with the conventional usage of the term “fat” in computational geometry
[11].) For example, in Fig. 2(b), only generator G3 fails to be fat, and hence it would
not be considered among the useful generators. The BCP lower bound proof exploits
the geometric properties of such fat generators.

There are, however, other ways of defining the notion of fatness. These lead to
different geometric properties of the generators, which may be exploited to greater
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success in the analysis. For example, suppose we have an integral semigroup (and
thus generators cannot overlap), and consider the generator G4 in Fig. 2(b). Such a
generator satisfies the BCP notion of fatness, since it covers a fraction of Ω(1/t) of
the points of the region of interest, but it covers a much higher fraction of points of
the general set. Arya et al. [2] define a notion of a relatively fat generator to be one
in which the ratio |G ∩ RH |/|G| is not significantly smaller than the ratio between
the volume of the region of interest and the total volume of the unit hypercube. If we
were to attempt to cover too many points of the region of interest with absolutely fat
generators that were not relatively fat, we would face a situation where points were
being covered by multiple generators, which is not allowed in the integral case. In
[2], these two notions of fatness are combined to establish a stronger lower bound for
halfspace range searching for integral semigroups.

Even together, the notions of absolute and relative fatness are not strong enough to
rule out configurations of generators that are clearly illegal. For example, in Fig. 2(c)
all the generators intersecting RH are both absolutely and relatively fat according to
the definitions of BCP and [2]. But because they overlap, these generators would not
be valid in an integral setting. What is needed is a stronger notion of fatness that does
a better job of limiting the overlap between generators.

In this paper, we introduce a new characterization of relative fatness, which is
based on cross-sectional area. Consider the generators G1 through G4 in Fig. 2(c).
These generators satisfy both notions of fatness given earlier, but for each of
these generators Gi , the cross-sectional area of its convex hull with respect to H

(breadth(conv(Gi),H)) is very large relative to the fraction of points it covers within
the region of interest. Intuitively, a large fraction of the points of the region of interest
cannot be covered by such generators, since otherwise these generators must overlap
each other within the unit hypercube. This intuition will be established formally in
Lemma 4.11. It relies on our aforementioned assumption that the convex hulls of the
generators used to answer a query are disjoint. As we shall see, the breadth constraint
provides a much more effective method of characterizing the nonoverlapping nature
of generators for integral semigroups.

Once the notion of usefulness has been specified, the analysis proceeds by estab-
lishing an upper bound on the expected usefulness of any generator. This, in turn,
implies a lower bound on the total number of generators needed to achieve the given
query time. A number of techniques are presented in BCP for bounding the useful-
ness of a generator. An important ingredient is something called the slicing lemma.
Given a convex body K , the slicing lemma of BCP states that it is possible to gen-
erate a small collection of bodies, called Macbeath regions, all contained within K .
These bodies have the property that, if K lies within a query halfspace H and K has
a sufficiently large volume of intersection with RH , then at least one of these bodies
lies within K ∩ RH and its volume is proportional to μ(K ∩ RH ) (see Fig. 3).

A critical quantity in the BCP analysis is the number of convex bodies into which
we need to decompose the convex hull K of a generator in order to satisfy the afore-
mentioned property. We refine the slicing lemma of BCP, taking into consideration
both the volume of intersection and thickness of the region of interest. This leads to
a smaller number of Macbeath regions, and an improvement in the lower bound for
range searching over general semigroups. This is given in Lemma 4.2. In the case
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Fig. 3 Slicing lemma and
Macbeath regions

of integral semigroups, we establish a much stronger version of the slicing lemma,
which is tailored to work with this breadth-based notion of relative fatness. This is
given in Lemma 4.5.

4 Lower Bound

The main results of this paper are summarized in the following theorem. Our first re-
sult for general semigroups improves the lower bound of Brönnimann, Chazelle, and
Pach [4]. Moreover, since our bounds are established for uniformly distributed points,
Fonseca and Mount’s result mentioned in the introduction implies that this result is
almost optimal for this distribution and idempotent semigroups. Our second result is
almost optimal in the worst-case for integral semigroups in light of Matoušek’s upper
bound [17].

Theorem 4.1 Let d ≥ 2 be a fixed dimension. Consider a range space consisting of
n points and all halfspaces in R

d , where the weight function for the points is over any
faithful semigroup. Then for all sufficiently large n, using m ≥ n units of storage,

(i) For general (and hence idempotent) semigroups, the worst-case query time in the
semigroup arithmetic model is at least

Ω

(

n1− 1
d+1

m
1

d+1

· 1

log1− 1
d+1 n

)

= ˜Ω

(

n1− 1
d+1

m
1

d+1

)

.

(ii) If the semigroup is integral, then under the assumption that convex hulls of the
generators used to answer a query are disjoint, the query time is at least

Ω

(

n

m
1
d

· 1

log1+ 2
d n

)

= ˜Ω

(

n

m
1
d

)

.

4.1 New Slicing Lemmas

In this section, we establish our new slicing lemmas tailored to the requirements of
the idempotent and integral cases. To help us in that task, we will need the following
lemma, which involves the useful concept of Macbeath regions. This lemma is an
easy consequence of Lemma 2.7 in BCP. Recall that for any body K in R

d , we let
μ(K) denote its Lebesgue measure.
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Lemma 4.1 Consider a compact convex body K ⊂ R
d and a parameter 0 < v ≤

μ(K). There exists a collection of pairwise disjoint convex bodies K1,K2, . . . ⊆ K

satisfying the following properties:

(i) μ(Ki) = Ω(v) for all i.
(ii) Let H be a halfspace, and let C be the cap K ∩H . If μ(C) ≥ v, then there exists

j such that Kj ⊆ C.

Using the above lemma, we now prove our slicing lemma that will be useful in
the idempotent case. It differs from the one given in BCP in that it incorporates a
condition on the cap width and, thereby produces a smaller number of convex bodies
in cases of interest.

Lemma 4.2 Consider a compact convex body K ⊂ R
d of surface area O(1), and

two parameters v > 0 and Δ > 0. There exists a collection of O(Δ/v) convex bodies
K1,K2, . . . ⊆ K satisfying the following property: Let H be a halfspace, and let C be
the cap K ∩H . If width(C) ≤ Δ and μ(C) ≥ v, then there exists j such that Kj ⊆ C

and μ(Kj ) = Ω(μ(C)).

Proof Let KΔ ⊆ K denote the region consisting of points in K that are within dis-
tance Δ of K’s boundary. Observe that μ(KΔ) = O(Δ), since the surface area of K

is O(1).
Consider the set C consisting of caps C formed by intersecting K with any half-

space, such that C satisfies the properties width(C) ≤ Δ and μ(C) ≥ v. We partition
the set C into groups based on the volume of the caps as follows. For i > 0, let Ci

be the subset of C consisting of caps whose volume lies between 2i−1v and 2iv. We
claim that there exists a collection of O(Δ/(2i−1v)) convex bodies satisfying the
properties mentioned in the lemma with respect to the caps in Ci . The lemma then
follows immediately from this claim by summing over all i.

To prove the claim, we apply Lemma 4.1, setting the parameter v in that lemma
to 2i−1v. Clearly, this yields a collection Ki of pairwise disjoint convex bodies, each
contained within K and having volume Ω(2i−1v). Further, for any cap C ∈ Ci , one
of these bodies is contained within C and has volume Ω(μ(C)) (because the volume
of each body is Ω(2i−1v) and μ(C) ≤ 2iv). Thus, the collection Ki satisfies all the
required properties with respect to the caps in Ci . However, the number of bodies in
Ki may be too large. We fix this by eliminating any convex body in Ki that is not
contained in KΔ. Since the caps in Ci have width at most Δ, such a body is in any
case of no use in satisfying a cap of Ci . Thus, the resulting collection continues to
satisfy all the desired properties. Finally, since the bodies in Ki are pairwise disjoint
and are all contained in KΔ, we have |Ki | = O(μ(KΔ)/(2i−1v)) = O(Δ/(2i−1v)).
This completes the proof of the claim and the lemma. �

Before presenting our slicing lemma that will be useful for integral semigroups,
we need to introduce a standard notion of fatness. A convex body K ⊂ R

d is
said to be α-fat, for some α ≥ 1, if there exist two concentric balls B+ and B−
such that B− ⊆ K ⊆ B+, and the ratio between the radii of B+ and B− is at
most α. Further, we say that K is fat if it is α-fat, where α is a constant depending
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Fig. 4 Proof of Lemma 4.4

only on d . The following well-known result states that any convex body can be trans-
formed by a volume-preserving affine transformation into a fat convex body. (See,
for example, [15].)

Lemma 4.3 Given any compact convex body K ⊂ R
d , there exists a volume-

preserving affine transform T such that T (K) is fat.

The next lemma considers the effect of the above fattening transformation on the
width of caps. We will find it useful in proving the slicing lemma.

Lemma 4.4 Consider any compact convex body K ⊂ R
d of unit volume. Let H be

a halfspace, and let C denote the cap K ∩ H . Let K ′ = T (K) and H ′ = T (H),
where T is the transformation of Lemma 4.3. Let C′ = K ′ ∩ H ′. Then width(C′) =
Θ(breadth(K,H) · width(C)).

Proof Let wK denote the width of K along the defining direction of C and wK ′
denote the width of K ′ along the defining direction of C′ (see Fig. 4). A straight-
forward geometric argument implies that μ(K) = Θ(breadth(K,H) · wK). Since
μ(K) = 1, we have wK = Θ(1/breadth(K,H)). By Lemma 4.3, K ′ is fat and
μ(K ′) = 1. It follows that the width of K ′ in any direction is Θ(1). In particu-
lar, we have wK ′ = Θ(1). Thus wK ′/wK = Θ(breadth(K,H)). By standard prop-
erties of affine transformations, we obtain width(C′)/width(C) = wK ′/wK . Thus
width(C′)/width(C) = Θ(breadth(K,H)), as desired. �

We are now ready to prove the slicing lemma that will be applied in the integral
case.

Lemma 4.5 Consider an α-fat compact convex body K ⊂ R
d and two parameters

β ≥ 1 and Δ > 0. There exists a collection of O(β logα) convex bodies K1,K2, . . . ⊆
K satisfying the following property: Let H be a halfspace, and let C denote the cap
K ∩ H . If width(C) ≤ Δ and μ(C) ≥ breadth(K,H) · Δ/β , then there exists j such
that Kj ⊆ C and μ(Kj ) = Ω(μ(C)).

Proof Observe that all the relations stated in the lemma are invariant under uniform
scaling, and hence, without loss of generality, we may assume that K is scaled to
have unit volume. Consider the set C consisting of caps C formed by intersecting
K with some halfspace H , such that C satisfies the properties width(C) ≤ Δ and
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μ(C) ≥ breadth(K,H) · Δ/β . We partition the set C into groups such that, for all
caps in a group, the breadth of K orthogonal to the defining direction of the cap
differs by a factor of at most 2. Since K is α-fat, it is clear that the ratio between
the largest and smallest value of the breadth of K over all possible directions cannot
exceed αd−1, and thus we can obtain a partitioning with at most O(logα) groups.

Let us focus on one such group of caps, for which the breadth of K orthogonal to
the defining direction of any cap in it is between b and 2b. We will show that there
exists a collection of O(β) convex bodies satisfying the properties mentioned in the
lemma with respect to all the caps in this group. Since the total number of groups is
O(logα), the lemma will then directly follow from this.

Let C = K ∩ H denote any cap in this group. From the conditions in the
lemma, we have μ(C) ≥ breadth(K,H) · Δ/β ≥ bΔ/β and width(C) ≤ Δ. Let
K ′ = T (K) and H ′ = T (H), where T is the transformation of Lemma 4.3. Let
C′ = K ′ ∩ H ′. Since T is volume-preserving, we have μ(C′) = μ(C) ≥ bΔ/β . By
Lemma 4.4, we have width(C′) = Θ(breadth(K,H) · width(C)). Since width(C) ≤
Δ and breadth(K,H) ≤ 2b, we obtain width(C′) = O(bΔ).

Note that the surface area of K ′ is O(1). We invoke Lemma 4.2 on K ′, set-
ting the parameter Δ (upper bound on cap width) to a suitable constant times bΔ,
and parameter v (lower bound on cap volume) to bΔ/β . We obtain a collection of
O((bΔ)/(bΔ/β)) = O(β) convex bodies in K ′, such that one of these bodies is
inside any cap C′ of K ′ corresponding to a cap C of K in the group under consid-
eration, and its volume is Ω(μ(C′)). It follows that the set of bodies in the original
space corresponding to these bodies satisfies all the desired properties with respect to
the caps in the group. This completes the proof of the claim and the lemma. �

4.2 Lower Bound: The Idempotent Case

We begin with the proof of Theorem 4.1(i), namely the lower bound in the idempotent
case. As mentioned earlier, our proof in this case is a simple adaptation of the one in
BCP, differing only in its use of a more suitable slicing lemma. We present details for
the sake of completeness.

Let P be a set of n points in the unit hypercube U = [0,1]d . Let K be any convex
body contained within U, and let k = |P ∩ K|. We say that P is scattered if the
following two properties hold for some constant a > 1:

(i) If μ(K) ≥ a logn/n, then k ≥ (n/a)μ(K).
(ii) If k ≥ logn, then k ≤ anμ(K).

Intuitively, scattered point sets behave like uniformly distributed points in the sense
that the volume of a convex body is related to the number of points it contains. The
following lemma asserts the existence of such point sets. It is proved in [3] and is a
simple variant of Lemma 2.1 in BCP.

Lemma 4.6 A random set of n points sampled uniformly and independently in U is
scattered with probability 1 − o(1).

The data set P in the proof consists of a scattered set of n points in U. We next
describe the set of query ranges. Let O denote the origin of the coordinate system
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in R
d . Let q be any point in R

d \ {O}. Let Hq denote the halfspace containing the
origin, whose bounding hyperplane passes through q and is orthogonal to segment
Oq . Let B be the ball of radius 1/4 whose center coincides with the center of U. We
define the query set Q to be the set of halfspaces {Hq : q ∈ B}.

Next, we define a probability measure over the set of queries. As in BCP, define
the measure of any set H of halfspaces as follows:

∫

H
dHq =

∫

Hq∈H

dx1 ∧ · · · ∧ dxd

‖q‖d−1
,

where q = (x1, . . . , xd). The choice of this measure is based on the fact that it is
invariant under rigid motions [6]. It is easy to see that the measure of the query set
Q is Θ(1). Therefore, restricted to the set Q, we can interpret this measure as a
probability density by dividing it by the total measure of Q. In our analysis, we will
assume that a query halfspace is selected from Q according to this probability density
(we will say that the halfspace is random over Q). Given any query halfspace H ∈ Q,
we see that for a suitable constant c1 and any sufficiently small Δ (say Δ ≤ 1/4),
μ(SΔ(H) ∩ U) ≥ c1Δ.

The following isoperimetric inequality, which was proved by Chazelle [6], bounds
the probability that a random slab encloses a given convex body. For convenience, we
restate it in a slightly different form.

Lemma 4.7 Let K ⊆ U be any compact convex body, let H be a random halfspace
of Q, and let Δ > 0 be a real parameter. Then

μ(K) · Pr
[

K ⊆ SΔ(H)
] = O

(

Δd+1).

Let G be any set of m ≥ n generators for P . Let t = t (n,m) denote the worst-
case query time in the semigroup arithmetic model over all the ranges of Q. We will
establish a lower bound on t , assuming that n is sufficiently large.

In BCP, it is observed that the complexity of halfspace range searching stems
from the difficulty of covering points that lie close to the boundary of the halfspace.
To formalize the idea, for each halfspace H ∈ Q, define a region of interest RH ⊆ H

to be SΔ0(H), where Δ0 = c0t logn/n for a suitable constant c0.
Let Φ denote the expected number of points of P in the region of interest RH .

That is,

Φ = E
[|P ∩ RH |].

We will compute lower and upper bounds on Φ , which together will provide the
desired lower bound on the query time t . We may assume that t = O(n/ log2 n),
since otherwise Theorem 4.1 holds trivially.

We claim that, for a suitable choice of c0, |P ∩ RH | ≥ 8t logn for all H ∈ Q. By
the property of query halfspaces mentioned above, we have μ(RH ∩ U) ≥ c1Δ0 =
c1(c0t logn/n), if c0t logn/n ≤ 1/4. Since t = O(n/ log2 n), this condition holds for
sufficiently large n. Setting c0 = 8a/c1, where a is the constant used in the scattered
set properties, we have μ(RH ∩ U) ≥ 8at logn/n. Since t ≥ 1, we can apply prop-
erty (i) of scattered point sets to obtain |P ∩ RH | = |P ∩ RH ∩ U| ≥ (n/a)μ(RH ) ≥
8t logn, as desired. The following lower bound on Φ is now immediate.
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Lemma 4.8 Φ is at least Ω(t logn).

Next we compute an upper bound on Φ . Toward this end, it is helpful to focus
on those generators that are most efficient in covering the region of interest RH . In-
tuitively, in order to achieve a query time of t , a typical generator should cover a
fraction of roughly Ω(1/t) of the points in RH . This suggests the following defini-
tion. We say that a generator G ∈ G is absolutely fat with respect to a query H ∈ Q
if |G ∩ RH | > logn and G ⊆ H . The following lemma, implicit in the BCP proof,
shows that a constant fraction of the points in RH are covered by such generators.

Lemma 4.9 For any query H ∈ Q, a constant fraction of the points of P lying within
RH are covered by generators of G that are absolutely fat with respect to H .

Proof Given H ∈ Q, consider the set AH ⊆ G of generators that allow us to answer
query H within time t . Clearly, |AH | ≤ t . Let A1

H denote the subset of AH consisting
of generators that are not absolutely fat with respect to H . Observe that the generators
in the set A1

H cover at most t logn points of P ∩RH (because there are at most t such
generators and each covers at most logn points of P ∩ RH ). Recalling that |P ∩ RH |
is at least 8t logn, it follows that at least 7/8 of the points of P ∩ RH are covered
by the generators in AH \ A1

H . As all these generators are absolutely fat with respect
to H , the lemma follows. �

Consider any G ∈ G and H ∈ Q. We define the usefulness of G with respect to H

to be |G ∩ RH | if G is absolutely fat with respect to H , and 0 otherwise. We denote
this quantity by u(G,H). Further, we define the usefulness of G, denoted u(G), to be
the expectation of u(G,H), where the average is taken over the query distribution.

The above lemma implies that,

|P ∩ RH | �
∑

G∈G
u(G,H).

Therefore,

Φ = E
[|P ∩ RH |] � E

[

∑

G∈G
u(G,H)

]

=
∑

G∈G
E
[

u(G,H)
] =

∑

G∈G
u(G).

In the remainder, we compute an upper bound on u(G,H), and hence on u(G),
with the help of our version of the slicing lemma and Chazelle’s isoperimetric in-
equality. This will then allow us to upper bound Φ by using the above inequality.

Lemma 4.10 Consider any G ∈ G and H ∈ Q such that G is absolutely fat with
respect to H . Let K = conv(G). Then |G ∩ RH | � nμ(K ∩ RH ) and μ(K ∩ RH ) =
Ω(logn/n).

Proof By the definition of absolute fatness, |G ∩ RH | > logn. Clearly, |P ∩ K ∩
RH | ≥ |G∩RH |. Therefore |P ∩K ∩RH | > logn. Applying property (ii) of scattered
point sets, we have |P ∩K ∩RH | � nμ(K ∩RH ). Putting these inequalities together,
the lemma follows. �
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Let G,H,K be as in the above lemma. Since G is absolutely fat with respect to
H , by definition, G ⊆ H , and so K ∩RH is a cap of K . Clearly, this cap has width at
most Δ0 = O(t logn/n), and its volume, by the above lemma, is Ω(logn/n). Also,
since K ⊆ U, its surface area is O(1). We apply our slicing lemma (Lemma 4.2) to
K , setting v to a suitable constant times logn/n and Δ to Δ0. We obtain a collection
of O(Δ/v) = O(t) convex bodies K1,K2, . . . ⊆ K such that one of these bodies lies
inside K ∩ RH and has volume Ω(K ∩ RH ). Thus,

μ(K ∩ RH ) �
∑

i

μ(Ki) · I[Ki ⊆ RH ],

where I[Ki ⊆ RH ] is an indicator random variable that takes the value 1 if Ki ⊆ RH

and 0 otherwise. Applying Lemma 4.10, we obtain

u(G,H) = |G ∩ RH | � nμ(K ∩ RH ) � n
∑

i

μ(Ki) · I[Ki ⊆ RH ].

Since u(G,H) = 0, if G is not absolutely fat with respect to H , it follows that the
inequality

u(G,H) � n
∑

i

μ(Ki) · I[Ki ⊆ RH ]

holds for all G ∈ G and H ∈ Q. Taking expectation on both sides, we obtain

u(G) � n
∑

i

μ(Ki) · Pr[Ki ⊆ RH ] � n tΔd+1
0 ,

where we have used Lemma 4.7 (Chazelle’s isoperimetric inequality) and the O(t)

bound on the number of convex bodies derived from our slicing lemma.
Recalling that Φ � ∑

G∈G u(G) and the total number of generators is |G| = m, we
obtain

Φ = O
(

mntΔd+1
0

)

.

Combining this with the lower bound of Ω(t logn) on Φ derived earlier and substi-
tuting the value Δ0 = O(t logn/n), we obtain

t logn � mnt

(

t logn

n

)d+1

,

which can be simplified to

td+1 � nd

m
· 1

logd n
.

Therefore,

t = Ω

(

n
d

d+1

m
1

d+1

· 1

log
d

d+1 n

)

= ˜Ω

(

n1− 1
d+1

m
1

d+1

)

.

This completes the proof of Theorem 4.1(i).
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4.3 Lower Bound: The Integral Case

In this section, we prove part (ii) of Theorem 4.1. As mentioned earlier, throughout
this section, we assume that the convex hulls of the generators used to answer a query
are disjoint. This assumption does not seem to be too restrictive. Although it does
not hold for Matoušek’s data structure [17], it is satisfied by Chan’s partition-tree
structure [5].

Our proof is structurally similar to that of Arya et al. [2], who first showed how
to enhance the BCP framework to take advantage of disjointness. The key difference
is that we use a different formulation for capturing disjointness, which enables us to
obtain better bounds. We now present the details.

We define the data set P , query set Q, worst-case query time t , slab thickness
Δ0, region of interest RH for each halfspace H ∈ Q, set of generators G , and Φ ,
exactly as in the idempotent case. To simplify the notation, for any generator G, we
use breadth(G,H) to denote the quantity breadth(conv(G),H). As before, we can
establish a lower bound of Ω(t logn) on Φ . A key aspect of our strategy is to use a
different notion of generator usefulness. To motivate our definition, recall from Sect. 3
that a generator is useful only if the fraction of points it covers within the region of
interest is large relative to its breadth. Since the region of interest is of volume roughly
Δ0, the fraction of points covered by generator G in RH is about |G ∩ RH |/(Δ0 · n).
This suggests that we are interested in generators for which |G∩RH | is large relative
to breadth(G,H) · Δ0 · n. For technical reasons, we will also need a normalization
factor that is proportional to log(1/Δ0). Formally, we define a generator G ∈ G to be
relatively fat with respect to a query H ∈ Q if

|G ∩ RH | ≥ breadth(G,H) · Δ0 · n
c log(1/Δ0)

,

for a suitable constant c to be specified later. Further, define generator G to be fat with
respect to query H if G is absolutely fat with respect to H and either (i) G ⊂ RH or
(ii) G is relatively fat with respect to H . We can now strengthen Lemma 4.9 for the
integral case as follows.

Lemma 4.11 Assume that the convex hulls of the generators used to answer a query
are disjoint. For any query H ∈ Q, a constant fraction of the points of P lying within
RH are covered by generators of G that are fat with respect to H .

The proof of Lemma 4.11 relies on the following important geometric observation.

Lemma 4.12 Consider a halfspace H ∈ Q and any subset GH ⊆ G consisting of
generators whose convex hulls are disjoint. Further, suppose that each generator
G ∈ GH satisfies the following properties:

(i) G ⊂ H ,
(ii) G ∩ SΔ0/2(H) �= ∅, and

(iii) G �⊂ SΔ0(H).

Then
∑

G∈GH
breadth(G,H) = O(log(1/Δ0)).
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Fig. 5 Proof of Lemma 4.12

Proof To simplify the exposition, define horizontal to mean orthogonal to the d th
coordinate axis. Through a suitable rotation of space, we may assume that ∂H is
horizontal, and H is the halfspace consisting of points below ∂H (that is, having
smaller d-coordinate values). Let J0 denote the hyperplane parallel to ∂H and at
distance Δ0/2 below it. Further, for i ≥ 1, let Ji denote the hyperplane parallel to J0

and at distance 2i−3Δ0 below it (see Fig. 5). Note that the number of hyperplanes in
the set {Ji : i ≥ 0} that intersect U = [0,1]d is O(log(1/Δ0)).

Let G be any generator of GH . Let KG = conv(G), bG = breadth(G,H),
and let BG be the cross-section that defines bG (note area of BG is bG). Let G′

H

(resp., G′′
H ) be the subset of GH consisting of generators G such that BG lies be-

low (resp., above) J1. It suffices to show that
∑

G∈G′
H

bG = O(log(1/Δ0)) and
∑

G∈G′′
H

bG = O(1).

To establish the first bound, consider any generator G ∈ G′
H . Observe that KG

intersects both J0 and J2, since G ∩ SΔ0/2(H) �= ∅ (Property (ii)) and G �⊂ SΔ0(H)

(Property (iii)). Suppose that BG lies between the hyperplanes Ji and Ji+1, for some
i ≥ 1. Consider the pyramid formed by joining any fixed point x in KG ∩ J0 to all
the points in the base BG. Let B ′

G be the surface patch formed by intersecting this
pyramid with the plane Ji . It follows from convexity that B ′

G ⊆ KG. Also, since the
distance of x from Ji is at least half the distance of x from Ji+1, it follows that the
area of B ′

G is Ω(bG).
Because the convex hulls of the generators of G′

H are disjoint, the associated set
of surface patches {B ′

G : G ∈ G′
H } are also disjoint. Since these patches lie on the

portions of the hyperplanes Ji, i ≥ 1, that lie inside U, and the number of these hyper-
planes that intersect U is O(log(1/Δ0)), it follows that

∑

G∈G′
H

bG = O(log(1/Δ0)).
This completes the proof of the first bound.

The second bound is established by a similar argument. In this case, the points x

are chosen to lie on J2, and the surface patches are taken only from the hyperplanes
J1 and J0. Since there are only a constant number of hyperplanes involved, the bound
obtained for this case is O(1). This completes the proof. �
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We can now prove Lemma 4.11 by using the above observation. The proof relies
crucially on showing that, among the set of generators used to answer query H , the
ones that are neither contained in RH nor relatively fat do not cover more than a
constant fraction of the points of P ∩ SΔ0/2(H). It can be shown that the convex
hulls of such generators intersect both bounding hyperplanes of the slab SΔ0(H) \
SΔ0/2(H). We show that the convex hull disjointness assumption implies that the
sum of the breadths associated with these generators is at most O(log(1/Δ0)). Recall
that generators that are not relatively fat cover “few” points in RH relative to their
associated breadths. Using these two facts then allows us to obtain the desired bound
on the number of points covered by these generators.

Proof of Lemma 4.11 Given H ∈ Q, consider the set AH ⊆ G of generators that
allow us to answer the query H within time t . Clearly, |AH | ≤ t . Consider the slab
SΔ0/2(H). Note that SΔ0/2(H) ⊂ SΔ0(H) = RH . Just as we showed |P ∩ RH | ≥
8t logn (after Lemma 4.7), we can show that |P ∩ SΔ0/2(H)| ≥ 4t logn. Applying
property (ii) of scattered point sets, we can easily show that |P ∩ RH | = O(t logn).
We claim that the generators of AH that are not fat cover at most 2t logn points of
P ∩SΔ0/2(H). (Here and throughout this proof, fatness, absolute fatness, and relative
fatness of generators are understood to be with respect to H .) Clearly this implies that
the fat generators of AH cover at least 2t logn points of P ∩ SΔ0/2(H), and hence a
constant fraction of the points of P ∩ RH .

To prove the claim, consider the subset A0
H ⊆ AH consisting of generators that

are not fat and cover some point of P ∩ SΔ0/2(H). Let A1
H denote the subset of A0

H

consisting of generators that are not absolutely fat. By definition, each such generator
covers at most logn points of P ∩RH . Therefore, the generators of A1

H cover at most
t logn points of P ∩ RH , and hence of P ∩ SΔ0/2(H).

Let A2
H = A0

H \A1
H . Since any generator G ∈ A2

H is absolutely fat but not fat, and
covers some point of P ∩ SΔ0/2(H), it is easy to see that it satisfies the following:

(i) G ⊂ H ,
(ii) G ∩ SΔ0/2(H) �= ∅,

(iii) G �⊂ RH , and
(iv) G is not relatively fat (i.e., |G∩RH | < (breadth(G,H) ·Δ0 ·n)/(c log(1/Δ0))).

Also, by the assumption in the lemma, the convex hulls of the generators in A2
H are

disjoint. Clearly, the generators of A2
H satisfy all the preconditions of Lemma 4.12,

and therefore
∑

G∈A2
H

breadth(G,H) = O(log(1/Δ0)). Since the generators of A2
H

are not relatively fat, it follows that the number of points of P ∩ SΔ0/2(H) covered
by these generators is at most
∑

G∈A2
H

|G ∩ RH | ≤
∑

G∈A2
H

breadth(G,H) · Δ0 · n
c log(1/Δ0)

= Δ0n

c log(1/Δ0)

∑

G∈A2
H

breadth(G,H).

We know that
∑

G∈A2
H

breadth(G,H) = O(log(1/Δ0)) and Δ0 = O(t logn/n), and
so by choosing the constant c (in the definition of relatively fat generators) to be
sufficiently large, we can ensure that the generators of A2

H cover at most t logn points
of P ∩ SΔ0/2(H). Combining the contributions from the generators of A1

H and A2
H ,
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it follows that the generators of A0
H together cover at most 2t logn points of P ∩

SΔ0/2(H). This completes the proof of the claim and the lemma. �

Next we define a notion of generator usefulness based on the above lemma, which
will help us derive the lower bounds. Consider any G ∈ G and H ∈ Q. We define
the usefulness of G with respect to H , denoted u(G,H), as in the idempotent case,
except that we use “fatness” in place of “absolute fatness”. As before, let u(G) =
E[u(G,H)]. Arguing as before, but using Lemma 4.11 in place of Lemma 4.9, we
obtain

Φ ≤
∑

G∈G
u(G).

Consider any G ∈ G and H ∈ Q such that G is fat with respect to H . Let K =
conv(G). If G ⊂ RH , then by Lemma 4.10,

u(G,H) = |G ∩ RH | � nμ(K ∩ RH ) = nμ(K).

Otherwise, G must be relatively fat with respect to H . In this case, applying
Lemma 4.10, we have

μ(K ∩ RH ) � |G ∩ RH |
n

≥ breadth(G,H) · Δ0

c log(1/Δ0)
.

Thus, K ∩ RH is a cap of K of width at most Δ0 and volume Ω((breadth(G,H) ·
Δ0)/ log(1/Δ0)). Also, since K ⊆ U and, by Lemma 4.10, μ(K) ≥ μ(K ∩ RH ) =
Ω(logn/n), it is easy to show that K is α-fat for α = O(n/ logn). We apply our
slicing lemma (Lemma 4.5) to K , setting β to a suitable constant times log(1/Δ0) and
Δ to Δ0. We obtain a collection of O(β logα) = O(log(1/Δ0) · logn) = O(log2 n)

convex bodies K1,K2, . . . ⊆ K such that one of these bodies lies inside K ∩ RH and
has volume Ω(μ(K ∩ RH )). Arguing as before, we obtain

u(G,H) � n
∑

i

μ(Ki) · I[Ki ⊆ RH ].

By definition, u(G,H) = 0 if G is not fat with respect to H . Combining all the cases,
we have

u(G,H) � n

(

μ(K) · I[K ⊆ RH ] +
∑

i

μ(Ki) · I[Ki ⊆ RH ]
)

holds for all G ∈ G and H ∈ Q.
Taking expectation on both sides and arguing as before, we obtain

u(G) � n log2(n)Δd+1
0 ,

which yields

Φ = O
(

mn log2(n)Δd+1
0

)

.

Substituting Δ0 = O(t logn/n) and combining this with the Ω(t logn) lower bound
on Φ , we obtain

t logn � mn log2(n)

(

t logn

n

)d+1

,
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which can be simplified to

td � nd

m
· 1

logd+2 n
.

Therefore,

t = Ω

(

n

m
1
d

· 1

log
d+2
d n

)

= ˜Ω

(

n

m
1
d

)

.

This completes the proof of Theorem 4.1(ii).

5 Conclusions

In this paper we have established new lower bounds for halfspace range searching
in the semigroup arithmetic model, for both general (including idempotent) and in-
tegral semigroups. Neglecting logarithmic factors, our result for integral semigroups
matches the best known upper bound due to Matoušek [17] and Chan [5]. However, it
relies on the assumption that the convex hulls of the generators used to answer a query
are pairwise disjoint. This assumption is satisfied by methods, like Chan’s, that are
based on a straightforward application of partition trees. Our result for general semi-
groups improves upon the best known lower bound due to Brönnimann, Chazelle,
and Pach [4], and matches an upper bound by Fonseca and Mount [10] for halfspace
range searching in the semigroup arithmetic model over uniformly distributed points.

The near tightness of the lower bound in the integral case is somewhat surprising,
given the weakness of the semigroup arithmetic model (where the cost of computing
the generators used to answer a query is not counted). It is natural to wonder whether
our assumption about the disjointness of the generator hulls can be overcome. It is
certainly central to our approach, but perhaps there are other ways of constraining
overlap between generators without resorting to this assumption.

The other obvious open problem is to determine the computational complexity of
halfspace range searching over idempotent semigroups. Arya et al. [2] have shown
that idempotence can be exploited to dramatically improve query times for approxi-
mate range searching, but their methods cannot be easily extended to the exact case.
If one believes that uniformly distributed point sets are reflective of hard instances
of halfspace range searching, the results of Fonseca and Mount [10] offer hope that
halfspace range searching over idempotent semigroups may be strictly easier than
over integral semigroups. Unfortunately, their construction only shows the existence
of the desired number of generators; it does not provide a concrete method of com-
puting them efficiently.
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