Accounting for Boundary Effects in Nearest Neighbor

Searching”

Sunil Aryaf David M. Mount? Onuttom Narayan

Abstract

Given n data points in d-dimensional space, nearest neighbor searching involves
determining the nearest of these data points to a given query point. Most average-
case analyses of nearest neighbor searching algorithms are made under the simplifying
assumption that d is fixed and that n is so large relative to d that boundary effects can
be ignored. This means that for any query point the statistical distribution of the data
points surrounding it is independent of the location of the query point. However, in
many applications of nearest neighbor searching (such as data compression by vector
quantization) this assumption is not met, since the number of data points n grows
roughly as 2¢. Largely for this reason, the actual performances of many nearest neighbor
algorithms tend to be much better than their theoretical analyses would suggest. We
present evidence of why this is the case. We provide an accurate analysis of the number
of cells visited in nearest neighbor searching by the bucketing and k-d tree algorithms.
We assume m? points uniformly distributed in dimension d, where m is a fixed integer
> 2. Further, we assume that distances are measured in the L., metric. Our analysis
is tight in the limit as d approaches infinity. Empirical evidence is presented showing

that the analysis applies even in low dimensions.

*Appeared in Discrete and Computational Geometry, 16 (1996), 155-176. A preliminary version appeared

in the Proc. of the 11th Annual ACM Symp. on Computational Geometry, 1995, pp. 336-344.

tDepartment of Computer Science, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong. Part of this research was conducted while the author was visiting the Max-
Planck-Institut fiir Informatik, Saarbriicken, Germany. The author was supported by the ESPRIT Basic
Research Actions Program, under contract No. 7141 (project ALCOM II).

fDepartment of Computer Science and Institute for Advanced Computer Studies, University of Maryland,
College Park, Maryland. The support of the National Science Foundation under grant CCR-9310705 is
gratefully acknowledged.

$Physics Department, Harvard University, Cambridge, MA 02138 and AT&T Bell Laboratories, 600
Mountain Avenue, Murray Hill, NJ 07974. Supported in part by the Society of Fellows at Harvard University.

1 Introduction

Finding nearest neighbors is a fundamental problem in computational geometry with ap-
plications to many areas such as pattern recognition, data compression, and statistics. The
nearest neighbor problem is: given a set of n points P in d-dimensional space, and given a
query point ¢ € R%, find the point of P that minimizes the distance to q.

The problem of preprocessing a set of n points P so that nearest neighbor queries
can be answered efficiently has been extensively studied. Nearest neighbor searching can
be performed quite efficiently in relatively low dimensions. However, as the dimension d
increases, in the worst case, either the space or time complexities increase dramatically.
There are many important applications of this problem in moderate dimensions (e.g. in
the range from 10 to 20), where best worst-case algorithms are of little practical value.
For dimensions in this range, the most practical approaches for nearest neighbor searching
are based on simple spatial subdivisions, having poor worst-case performance, but relatively
good average-case performance. (Recently it has been suggested that another way to achieve
good performance in practice is to compute approximate rather than exact nearest neighbors
(2, 4, 7].)

A very simple algorithm that works well for uniformly distributed data is the bucketing
algorithm (sometimes called Elias’s algorithm [15]). Rivest [13] presented an analysis of
the performance of this algorithm for points uniformly distributed on the vertices of a d-
dimensional hypercube, and later Cleary analyzed the case of general uniformly distributed
point sets [8]. A practical and more flexible approach for nearest neighbor searching in high
dimensions is based on the k-d tree, as introduced by Bentley [5] and applied to the nearest
neighbor problem by Friedman, Bentley and Finkel [9].

The analyses of these algorithms presented in the literature [8, 9] show that their running
times contain a constant factor, which grows on the order of 2¢, assuming the L., metric.
The analysis in [8] assumes that the points are uniformly distributed while the analysis in
[9] assumes that the points are randomly chosen from some smooth underlying distribution.
The dimension d is regarded as a fixed constant, and the analysis is asymptotic as n tends
to infinity. This greatly simplifies the analysis because for any query point (assuming it
is chosen from the same distribution as the data points), the statistical distribution of the
data points surrounding it can be assumed to be essentially independent of the location of
the query point.

However, there are many important applications where the number of data points n and
dimension d are related. One such application is vector quantization, a technique used in the
compression of speech and images [11]. Samples taken from a signal are blocked into vectors
of length d (typically after applying some smoothing transforms). Based on a training set

of vectors, a set of codevectors is first precomputed. The technique then encodes each new

vector by the index of its nearest neighbor among the codevectors. The rate r of a vector
quantizer is the number of bits used to encode a sample, and it is related to n, the number
of codevectors, by n = 2"¢. For the common case of r = 1, it follows that n = 2.

For applications in which d and n are related, the theoretical analyses may signifi-
cantly overestimate the running time of the algorithm. In fact, our interest in this problem
stemmed from our observations of the empirical running times for the k-d tree and re-
lated algorithms (even for more general point distributions). These algorithms regularly
run faster than their predicted performance in higher dimensions. Intuitively, the reason is
that when a query point lies close to the periphery of the point set, a significant amount
of the data structure that would otherwise need to be searched for the nearest neighbor
may be pruned away. Because exponential constant factors in dimension are one of the
main obstacles to extending nearest neighbor searching to much higher dimensions (where
many more important applications reside), it is of important practical interest to accurately
understand the nature of these factors.

In this paper we provide a theoretical explanation of the phenomenon of these boundary
effects in nearest neighbor searching. We analyze the bucketing algorithm for the uniform
distribution, taking into account the effects of the boundary. Our results also apply to
the k-d tree algorithm [8]. Because of the complexity of the analysis, we assume that
points are uniformly distributed in a d-dimensional unit hypercube, and that distances are
measured using the Lo, metric. Our main result is that given 2¢ points in d dimensions, as
d tends to infinity, the expected number of cells visited by the bucketing algorithm grows
as (0.90...)(1.56594...)%. Empirical evidence indicates that this is remarkably close, even
for small d. This is significantly smaller than the growth rate of 2¢ predicted by previous
analyses which ignore boundary effects. (For example, a difference of roughly a factor 7.8
for dimension 8, and a factor of 55 in dimension 16.) We also generalize these results to the
case of m¢ points in d dimensions, where m is an integer > 2.

The remainder of the paper is organized as follows. In the next section we present some
background on the k-d tree and bucketing algorithms. We present two different analyses on
the number of cells visited by the bucketing algorithm. The model is described in Section 3
and analyzed in Section 4 and 5. Both the analyses are done for the limiting case of large
dimensions. Section 4 provides a simple analysis which yields a fairly good upper bound.
This analysis, however, relies on a technical assumption which we call the monotonicity
conjecture. In Section 5 we present a sophisticated analysis which yields a tight bound.
This does not rely on the monotonicity conjecture. We also present a “numerical proof” of
the monotonicity conjecture in Section 5, supporting the validity of the simpler analysis of
Section 4. In Section 6 we discuss extensions and generalizations of this refined analysis.

Finally, in Section 7 we provide the results of our empirical analysis.

2 Preliminaries

One of the the most practical and simple approaches for nearest neighbor searching in high
dimensions is based on the k-d tree. Bentley [5] introduced the k-d tree as a generalization of
the binary search tree in high dimensions. FEach internal node of the k-d tree is associated
with a hyperrectangle and a hyperplane orthogonal to one of the coordinate axis, which
splits the hyperrectangle into two parts. These two parts are then associated with the two
child nodes. The process of partitioning space continues until the number of data points
in the hyperrectangle falls below some given threshold. Given a suitable splitting rule, the
k-d tree induces a partitioning of space into cells whose sizes adapt to the local density of
the data points; the partitioning is finer where the density is higher.

Friedman, Bentley and Finkel [9] gave an algorithm to find the nearest neighbor using
optimized k-d trees. The internal nodes of the optimized k-d tree split the set of data points
lying in the corresponding hyperrectangle into two equal parts, along the dimension in which
the data points have maximum spread. The algorithm works by first descending the tree
to find the data points lying in the cell that contains the query point. Then it examines
surrounding cells if they overlap the ball B centered at the query point and having radius
equal to the distance between the query point and the closest data point visited so far.
Efficient implementations of the k-d tree algorithm have been given by Sproull [14] and
Arya and Mount [3].

Friedman et al. [9] showed that their algorithm takes O(logn) expected time, under
certain simplifying assumptions on the distribution of data and query points. They also
showed that the expected number of points examined attains its minimum value when each

cell contains one point, and is bounded by

E[N] < {[G(a)]"* + 137, (1)

Here d is the dimension and G(d) is the ratio of the volume of a d-dimensional hypercube
to the volume of the largest enclosed ball in the metric used for distance measurement. For
the Lo, metric, G(d) is 1, and the expected number of points examined is bounded by 24
A much simpler algorithm that works well for uniformly distributed data is the bucketing
algorithm, (sometimes called Elias’s algorithm [15]). Space is divided into identical cells
and for each cell, the data points inside it are stored in a list (see Fig. 1). The cells are
examined in order of increasing distance from the query point and for each cell the distance
is computed between the data points inside it and the query point. The search terminates
when the distance from the query point to the cell exceeds the distance to the closest point
visited. The algorithm was analyzed for data points uniformly distributed on the vertices
of the d-dimensional hypercube by Rivest [13], and later for general uniformly distributed
point sets by Bentley, Weide and Yao [6] and Cleary [8]. Cleary’s analysis showed that the

-

Figure 1: Bucketing Algorithm.

number of points examined was independent of n, and that the fewest number of points
were examined when there was one data point per cell. His analysis also applies to the k-d

tree algorithm and furnishes more accurate bounds than those obtained by Friedman et al

[9].

3 Model

Consider a set of m® data points distributed uniformly in a d-dimensional hypercube H
with edge length m. We will assume that m is an integer greater than 1. The hypercube
H is split into m? cells of equal size, which gives a density of one data point per cell. Each
cell stores a pointer to the data points inside it (if any). Fig. 1 shows the subdivision in
two dimensions for m = 4. Consider that the query point is also chosen from the uniform
distribution. The bucketing algorithm visits the cells in increasing order of distance from
the query point, examines the point(s) associated with each cell, and updates the closest
point seen so far. The algorithm terminates when the next cell to be visited is farther than
the closest point visited until then. The complexity of the algorithm is measured by the

number of cells visited averaged over all possible locations of the query point.

4 Crude Analysis

In this section, we compute an upper bound on the expected number of cells visited by the
algorithm. Our analysis is done for the large d limit, treating m as fixed. We will assume
that all distances are measured in the Lo, metric. Given a query point x = (x1,...,2q),
define the nearest neighbor ball to be the Lo, ball centered at x and having radius equal to
the distance between x and the data point closest to it. It is clear from the description of
the bucketing algorithm that a cell is visited if and only if it overlaps the nearest neighbor
ball. The quantity of interest therefore is the expected number of cells that overlap the

nearest neighbor ball, where the expectation is computed over all possible locations of the

query point.

Denote an Loo-ball of radius r centered at the query point x by B(x,r). This is a
hypercube of side length 2r centered at the query point. It is easy to show that the expected
volume of intersection of the nearest neighbor ball with hypercube H approaches unity in
the large d limit. This is true no matter where the query point is located. This suggests the
following model for the nearest neighbor ball, which we employ to simplify the analysis. For
any query point x, we call a ball centered at x and having unit volume of intersection with
hypercube H, a unit intersection ball. We will compute an upper bound on the expected
number of cells overlapped by the unit intersection ball, and regard this as an approximation
to the true upper bound. (Rigorous justification for this assumption is provided in Section 6,
where we will see that the expected number of cells overlapped by the unit intersection ball
differs from the expected number of cells overlapped by the nearest neighbor ball by at most
a constant multiplicative factor, which does not depend on the dimension.)

We define several random variables which we need for our analysis. These random
variables are all functions of the location x of the query point. Let the random variable
u denote the radius of the unit intersection ball, and let N denote the number of cells
overlapped by the unit intersection ball. More precisely, u(x) is the value of r such that
Vol(B(x,r) N H) = 1, and N(x) is the number of cells overlapped by the unit intersection
ball, B(x,u(x)).

For any given r, we define the random variable V,.(x) to be volume of intersection of the
ball of radius r centered at x with hypercube H. Thus, V,(x) = Vol(B(x,r) N H). For any
given r, we have d associated random variables, [;,,1 < ¢ < d, which we call the intercepts.
The i-th intercept, I; »(x) is the length of the side of B(x,r) N H along the i-th dimension.

It is easy to see that the volume of intersection, V,.(x), is the product of d intercepts,

Vi(x) = [L (). (2)

Further, for any given r, the d intercepts, I;(r),1 < i < d, are independent, identically
distributed random variables.

Finally, for given r, we define the random variable Z,(x) to be the number of cells
overlapped by the ball of radius r centered at x. For fixed r, we have d associated random
variables, Z;,,1 <1i < d, where Z; ,(x) is the number of unit intervals overlapped along the

i-th dimension. Thus,
Zr(x) = H Zir(%). (3)

Note that for given r, the d random variables, Z;,,1 < i < d are independent, identically

distributed random variables.

Let log denote the natural logarithm function. We define the critical radius ¢ to be the
value of r such that Elog(I;,)] = 0. In taking the expectation, i and r are regarded as
fixed, and the expectation is taken over all possible locations x of the query point. Such a
value of r must exist in the range 0.5 < r < 1, since for any x, I; »(x) > 1 for » > 1 and
I »(x) <1 for r <0.5. It is important to note that the critical radius ¢ depends only on
the edge length m defined earlier (see Section 3). In particular, it is independent of the
dimension. This is because for fixed r, I; , for all 1 <i < d are independent and identically
distributed, so that Elog(/;)] = 0 implies E[log(I;,)] = 0 for any pair i, j.

The following lemma establishes that the radius of the unit intersection ball, u, almost

always lies close to ¢, for high dimension.
Lemma 1 For any constant € > 0,

lim Plc—e<u<c+e=1. (4)

d—o0

Proof: We only establish that limy .o, Plu < ¢+ €] = 1. The proof of the other part is
similar and is omitted.

Consider the d independent and identically distributed random variables, I; oy, 1 <@ <
d. From the definition of the critical radius ¢ and the fact that E[log(l;,)] is clearly a
monotonically increasing function of r, it follows that E[log(I; c4¢)] > 0.

We will apply the Weak Law of Large Numbers to the variables, I; .,1 <@ < d. The
Weak Law of Large Numbers states that given a sequence of independent, identically dis-
tributed variables X; with finite expectation, the probability that the average 3y <;<4 Xi/d
differs from the expectation E[X;] by less than an arbitrarily small positive § approaches
1, as d approaches infinity [10, page 243]. Applying this to the variables I; .4.,1 < i < d,
using sufficiently small d, and noting that Eflog(l;c+c)] > 0, we have

d
. 1
Jim P lg ;bg(n,m) >0 =1. (5)
Rewriting this expression and taking antilogs, we get
d
lim P I; 1| =1.
e[l
Since V,. = H;-izl I; », we can write this as
lim P[Vepe > 1] =1. (7)
d—o00
Since u(x) < ¢+ € if and only if Vei(x) > 1, we obtain the desired result. O

The following lemma gives the expected value of Z,., the number of cells overlapped by
the Loo-ball B(x,r).

Lemma 2 For 0.5 <r <1,

BlZ] = [1+27~ <1 - ;L)r (8)

Proof: Recall that the random variable Z; ., for 1 < ¢ < d, denotes the number of unit
intervals overlapped along the i-th dimension, by the corresponding side of B(x,r). Then
Z, is given by Hle Z;r. For any given r, the d random variables Z;,,1 < ¢ < d are

independent variables. Therefore,

E[Zr] = HE[Zi,r]~ (9)

Fox fixed r, the variables Z;,,1 < i < d have a common distibution. It is easy to see
that for 0.5 <r <1, Z;, takes on the values 1, 2, and 3 with the following probabilities.

Z;» Probability
1 2—2r

o (me2E-2r)+or (10)
g (m-2)@r-n

m

From this, we get the following expression for the expected value of Z; ,,

EZ;,] = [1 +2r (1 — %)} : (11)

Substituting into Eq. (9), we get the desired result. 0

We now come to the main theorem of this section, which establishes an upper bound on
the expected number of cells overlapped by the unit intersection ball. (Since Lemma 1 says
that in high dimensions the radius of the unit intersection ball, u, is almost always close
to ¢, one may be tempted to conclude that the expected number of cells overlapped by the
unit intersection ball, E[N], approaches the expected number of cells overlapped by a ball
of radius ¢, E[Z.]. However, we will see in Section 5 that this is in fact not true.) Our proof

of the theorem relies on the following conjecture.

Conjecture 1 (Monotonicity conjecture) For all d, the expected number of cells overlapped
by the unit intersection ball subject to the constraint that the radius of the unit intersection

ball is v, E[N | uw =r|, is a monotonically decreasing function of r.

The intuition is that the radius of the unit intersection ball is usually smaller when the
query point is away from the boundaries of hypercube H; this case leads to a large number
of cells being overlapped by the unit intersection ball. While we we have confirmed this

observation in our experiments, we do not have a rigorous proof for it.

We present some evidence in favor of the conjecture in Fig. 2 and 3, which show the plots
obtained experimentally of [E[N | u = r]]'/¢ versus r for d = 8 and d = 16, respectively
(here m = 2). To compute this plot, we partitioned the radii in the range 0.5 to 0.75 into
a set of intervals. We generated 107 points from the uniform distribution, and for each
point, grew a ball having unit volume of intersection with hypercube H. We determined
the interval in which the radius of the ball lies and the number of cells overlapped by
it. For each interval, we computed the average number of cells overlapped over all balls
whose radius lies in that interval, and plotted these against the interval midpoint. (The
plots terminate at r = 0.75 since the probability of finding points where the radius of the
nearest neighbor ball is higher than this is very low and our sampling technique does not
find enough of them.) We will see further justification for the monotonicity conjecture in
the next section, where we give a numerical proof for it in the large d limit, which does not

rely on simulation.

13
0.5 0.55 0.6 0.65 0.7 0.75
r

Figure 2: Monotonicity conjecture (for d = 8): [E[N | u = r]]"/? vs. r.

13 L L L L
0.5 0.55 0.6 0.65 0.7 0.75
r

Figure 3: Monotonicity conjecture (for d = 16): [E[N | u = r]]"/% vs. r.

Theorem 1 Assuming Conjecture 1, for any constant € > 0, there exists dy such that for

all d > do,
awi< [raeso (- 1)) 2

Proof:
Let €’ be any positive constant less than e. We compute E[N] over two possible cases,
u<c+e andu>c+€.

E[N] =
Plu<c+¢€]-E[N|u<c+¢€]+
Plu>c+¢€]-E[N |u>c+¢€]. (13)
Conjecture 1 implies that
EIN|u>c+€]<E[N|u<c+¢€]. (14)

Substituting into Eq. (13) we get an upper bound for E[N],
E[N] < E[N |u<c+¢€]. (15)

Further,
EIN|u<c+€|<E[Zeye |u<c+d]. (16)

This follows from the fact that for any x, the number of cells overlapped by a ball of radius

r is a non-decreasing function of the radius. Combining this with Eq. (15), we have

EIN] < E[Zje |u<c+€]
E[Zc—i—e’]
< 1
~ Plu<c+¢] (17)
Substituting for F[Z.,] from Lemma 2, we get
d
[L+2(c+e) (1= 1)
N] < . (18)

Plu < c+¢€]

From Lemma 1, it follows that for sufficiently large d, Plu < ¢+ €'] is arbitrarily close to 1.
Since € < ¢, so that [1+2(c+€)(1—1/m)]¢/[1+2(c+¢)(1 —1/m)]? diverges exponentially
with d, this implies that for sufficiently large d,

E[N] < [1—#2(0—1—6) (1—l>]d, (19)

which is the desired result.

10

m E[N] <
2 | (1.601 + ¢)?
3| (1.748 + €)?
4| (1.815 4 ¢€)?
5| (1.854 + ¢)¢
10 | (1.929 + ¢)?
100 | (1.993 + €)?

Table 1: Upper bound on expected number of cells overlapped by the unit intersection ball.

To compute the critical radius ¢, we first write the cumulative density for I; .. It is easy

to see that this is given by

0 ift<r
PlLi, <t]={ 20 ifr <t <op (20)
1 if t = 2r.

From this, after some calculation, we get the following expression for Eflog(I;)],

Bllog(T;)] = 2 (log(2) — 1) + los(2r). (21)

For any m, we can equate this expression to 0, and solve it numerically to obtain the critical
radius ¢. We can then use Theorem 1 to compute an upper bound on E[N], the expected
number of cells visited. The results are shown in Table 1 for several different values of m.
For m = 2, the table shows an upper bound of (1.601 ... + €)%, for any small ¢ > 0. Since
the average density is one point per cell, this bound also applies to the number of points
visited by the algorithm. The fact that the number of points visited is much fewer than the
asymptotic bound of 2¢ confirms the importance of boundary effects when the number of

points is on the order of 2.

5 Refined Analysis

In this section and the next, we achieve a tight bound for the expected number of cells visited
by the bucketing algorithm. Our analysis does not rely on the monotonicity conjecture. For
simplicity we do the analysis for the case of m = 2. Further, as in the previous section,
we will assume that the ball of interest centered at the query point has unit intersection
volume with hypercube H. In the next section we generalize the result to arbitrary m, and
consider the modifications necessitated by the fact that the nearest neighbor ball is not

quite the unit intersection ball.

11

Let x = (z1,...,24) denote a point in the hypercube H. Consider an Lo, ball centered
at x. Let V denote the logarithm of its volume of intersection with hypercube H, and let
Z(x; V) be the number of cells that this ball overlaps. The quantity of interest N is then
Z(x;0), averaged over x lying anywhere inside hypercube H (note that this is the same as

the unconstrained expectation value E[N] defined in the last section). Thus

N = /dV5 / dxy .. / dzqZ(x; V) (22)

where the §-function enforces the condition that we are only interested in balls which have
unit intersection volume with hypercube H. (Recall that the Dirac J-function has the
properties (a) 6(z) = 0if z # 0 and (b) [0 g(x)d(x)dx = ¢(0) for all integrable g : R — IR
[1, pages 481-484].) Here the range of each x; integral is taken to be 0 to 1, since the 0 to
2 interval is symmetric around 1. Note that in this form we do not need any normalization
factors, because the volume of the region over which we are integrating is unity.

To solve the above integral, we need some elementary concepts from the theory of
complex functions [1, pages 352-434]. We will use the following notation. The real and
imaginary parts of a complex number z are denoted by Re(z) and Im(z), respectively. Let
z = rexplif] be the polar form of a complex number z. In this representation, r is called
the modulus or magnitude of z, and is denoted |z| or Abs(z). The angle 6 is labeled the
argument or phase of z, and is denoted Arg(z).

Eq. (22) can be expressed in terms of the radius r of the ball as
N / dr/ dxy .. / dxqZ (x; r)avé)é(V(x;r)). (23)
r

The integral over r ranges from % to 1, since these are the minimum and maximum values
of r needed for any x in order to achieve a ball with unit intersection volume.
The quantity V, which is the logarithm of the volume of intersection, is the sum of the

logarithms of the intercepts on all the d sides, which are given by

R B { log(z; +r) fora; <r

Li(zisr) (24)

log(2r) for x; > r.
Therefore the derivative, OV /dr is the sum of d terms, each of which lies between 1/r and

1/2r, i.e. between % and 2. Therefore, to within a constant factor,

1 1 1 N
=0 d/1 dr/ dxl.../ dxqZ(x;71)0 Z Li(zisr) | |- (25)
2 0 0 1<i<d
For any specific choice of r and x, the number Z of cells overlapped is the product of d

factors Z;(x;;r), which are given by

Zi(zi;r)

1 foray; <1-—r
(26)

2 foraxz; >1—r.

12

Thus Eq. (25) can be written as

N=6 (d/; dr /_O:O ;l—: {/01 dz; Zi(zi;r) exp[—jwfi(xi;r)}}d> . (27)

Here we have used the representation of the d-function, 27d(y) = [dw exp[—jwy|, where

j2 = —1[1, pages 481-484]. For fixed w and r, the integrals over all the x;’s then decouple

from each other.

The term in the {}-brackets is equal to

Flwir) =
f:clizr dr;2 exp[—jwlog(2r)] +
f;f{_r dx;2 exp|—jwlog(z; +)] +
JEZ0 " day expl—jwlog (@i + 1)), (28)

which can be evaluated to be

Flw;r) =

{2(1 —r)+ %} exp[—jwlog(2r)] —

—171jw -5 exp|—jw log(r)]. (29)

To solve for N from Eq. (27), we first evaluate the w integral. Although w is a real
variable in Egs. (27) and (29), it is convenient to analytically continue the definition of
F(w;r) to the complex plane for w. We then deform the contour of integration for w from
the real axis to some other contour. We shall first evaluate the integral over this deformed
contour, and then prove that it is equal to the integral over the original contour (the real
axis). In order to choose a convenient contour of integration, we use the following theorem,
called the method of steepest descent [1, pages 428-434],[12, pages 287-291]. Since we need
a slightly more general version of this method than is discussed in these references, we offer

a proof.

Theorem 2 If f(z) and g(z) are analytic functions of the complex variable z, and
(a) 05f(2) =0 at z = 2z,
(b) 02f(2) # 0 at = = 2z,

(c) the contour C' is finite, passes through zy and satisfies the condition
lim, ., (Arg[f(2)] — Arg[f(20)])/|z — 20]® ewists, and

(d) along the contour C there is a global mazimum in Abs[f(z)] at z = zo,

13

then in the asymptotic d — oo limit,

ek

2=20 f(Zo)

where « is Arg(z — zg) in the limit that z approaches zy along the contour of integration.

>’f(2)
022

[a=g I ~ gl espliall ol o (30)

We use the ~ symbol to mean that the ratio of the two sides of the equation tends to 1 as
d — oo. The basic idea behind this theorem is that if f(z) has a global maximum along
the contour C' at zg, then [f(z)]? falls off extremely rapidly as z moves away from zg, so
that the integral is dominated by a small neighborhood of zy. If the phase of f(z) changes
slowly in the neighborhood of zy, then [f(z)]? has an approximately constant phase in the
small neighborhood of zy, and is governed by the Gaussian falloff close to the maximum.
Proof:

We prove this theorem for g(z) = 1; the proof can be easily generalized. Parametrize
the contour C' by s(z), which is the distance of the point z from zp measured along C. Let
so be the total length of the contour C. Divide the contour C into two parts: C] consists
of the part of C' satisfying the condition |s| < s; = u[(logd)/d]'/?, with p some constant,
and C is the rest of C.

We first do the integral over the curve C. For large d, C is very small, so that we can

Taylor expand f(z) around zp and write

Gl = o)) [asexp |- (5K +06)] (31)
Cy c, ds 2

where by condition ¢), K is real, and is equal to |02 f(20)/f(20)|. Since |s| < u[(logd)/d]*/?,
the dO(s) term in the exponent tends to zero over the whole range of integration as d — oo,
and can be neglected. Similarly, dz/ds can be replaced by dz/ds|s—o = exp[ja] as d — .
The resulting Gaussian integral can be performed by changing variables to 5 = sv/d, and
recognizing that [dsexp[—K3%/2] over [3| < u[logd]'/? tends to (2r/K)Y? as d — oo,
which yields the right hand side of Eq. (30).

Now since Abs[f(z)] has a smooth global maximum over C at zp, it follows that
for sufficiently small C; (i.e. sufficiently large d), Abs[f(z)] at s = s; is greater than
Abs[f(z)] anywhere in Cy. Expanding f(2) as in Eq. (31), we see that [dz[f(2)]? <
so exp[—Kds?/2][f(z0)]?. Substituting s; = u[(logd)/d]"/?, we see that the integral over C
is negligible compared to that over C; as d — oo if p is chosen to be greater than 1/vK.

O

In order to use this theorem, we need to find a contour C in the w plane that satisfies

the conditions of the theorem. We first seek a point w(r) that satisfies conditions (a) and

(b) required of the point zg in Theorem 2:

14

Lemma 3 For any % < r < 1, there exists a saddle point w(r) on the imaginary azis,
where 0, F(w;r) = 0. At this point O2F(w;r) # 0. In the neighborhood of this point, with
w = w(r) +u (with real u), the real and imaginary parts of F(w;r) can be expanded as
Re[F(w;7)] = Re[F(w(r);r)] — Au® plus higher order terms in u (with A positive), and
Im[F (w;r)] = O(u?).

Proof: By inspection of Eq. (29), we see that Re[F(w;r)] is an even function of Re(w),
and Im[F'(w;7)] is an odd function of Re(w). Therefore the derivative of the real part of
F(w;r) with respect to Re(w) vanishes everywhere on the imaginary w axis. By numerical
construction, we have verified that, for w on the imaginary axis, Re[F(w;)] has a minimum
at some w(r) for all 3 < r < 1, so that 9, Re[F(w;r)] is zero at w(r). We have also verified
numerically that the second derivative of Re[F'(w;)] along the imaginary w axis is non-zero
at w(r).

By the properties of analytic functions, if w = w(r) + u + jv (with real u and v),
then 9, Re[F(w;r)] = OpIm[F(w;r)] and 9,Re[F (w;r)] = —0,Im[F(w;7)]. These imply that
OuRe[F(w;r)] = 0 is equivalent to J,F(w;r) = 0. At the saddle point w(r), expanding
in a Taylor series around w(r) up to third order in w and v, and using the fact that the
real and imaginary parts of F'(w;r) are even and odd functions of u respectively, we have
Re[F(w;7)] = Re[F(w(r);r)] + A(v? — u?) + B(3u?v — v?), and Im[F(w;r)] = —2Auv +
B(3uv? — u?) plus higher order terms in u and v. Since Re[F(w;r)] has a minimum on the
imaginary axis at w(r), with a non-zero second derivative, it follows that A > 0. Restricting
ourselves to the case v = 0, we see that Re[F(w;)] = Re[F(w(r); r)]—Au? and Im[F (w;)] =
—Bu? up to cubic order in u. O

Let L1 be the straight line in the w plane parallel to the real axis and running through
w(r), and let L;(up) be the part of L; for which |Re(w)| < ug. Then, we have seen that
Li(up) satisfies conditions (a), (b) and (c¢) required of the contour C' in Theorem 2. We

now verify condition (d):

Lemma 4
Abs[F(w;r)] < Abs[F (jIm(w);)] for Re(w) # 0. (32)

Proof: This result is obvious from the definition F(w;r) = [dzZ(z;r)exp[—jwl(x;r)].
Since I (z;7) is real, and Z(x; r) is real and positive, F(w;r) < [dxzZ(x;r)Abs(exp[—jwl(x;7)]),
which is equal to [dxZ(x;r)exp[Im(w)I(x;r)] = F(jIm(w);r) = Abs[F(jIm(w);r)]. By
considering the integral as a summation over x of real positive terms Z(z; 1) exp[Im(w)I(x;)],
each weighted by a complex weight exp[—jRe(w)I(z;7)], we see that the magnitude of
F(w;) is maximum when all the terms add up in phase, which occurs only when Re(w) = 0.

Thus the inequality is an equality only if Re(w) = 0. O

15

Thus the contour L (up) satisfies all the conditions of Theorem 2. Applying this theorem

yields
i [af O*Re[F(w;r)] T
g 1P Ve (”(””””{ FRo(w)? w:w(r)m(r);r)} (38)
for any wug.
Im()
w(r)

I—4(Uo) _I—2(Uo)

—UO _L3(Uo) UO Re(w)

Complex- w plane

Figure 4: Contours used in the evaluation of the w integral.

In order to complete the evaluation of the w integral, we show that the integral over
the real axis is also equal to the right hand side of Eq. (33) in the large d limit. Let L3
denote the real axis for w, and L3(up) be the part of the real axis for which |w| < wup.
Also, let Lo(ug) and Ly(ug) be the vertical straight line segments at Re(w) = up and —ug
respectively that connect Lj(ug) and L3(ug), so that Li(ug) — La(ug) — Ls(ug) + La(ug) is
a closed contour. (See Fig. 4. The negative signs arise from the fact that, in the closed
contour, Ly and Lj3 are oriented backwards.) By inspection of Eq. (29), we see that the
function F'(w;r) has no singularities in the complex w-plane. The only potential singularity
is a pole at 1 — jw = 0, but this is cancelled by a factor of 1 — jw in the numerator, as can
be seen by substituting w = —j + ¢ in Eq. (29). Since by Cauchy’s theorem the integral
of an analytic function on a closed contour in the complex plane that does not enclose any

singularities is zero, it follows that the integral of [F(w;r)]?

over L3(ug) is equal to the
integral over L1 (ug) + La(uo) — La(up). By inspection of Eq. (29), we see that if ug is large,
then (provided that Abs[w(r)] is finite) the integral over Lo(ug) and L4(ug) are dominated
by the term 2(1 —r) exp[—jwlog(2r)] in F'(w;r). This is in the sense that the integrals over

Ly (up) and Ly(ug) are bounded by [a(uo)]? times the integral of {2(1—r) exp[—jw log(2r)]}¢,

16

where a(ug) tends to unity as uy — 0o. The maximum modulus of 2(1 —7) exp[—jw log(27)]
over Lo(ug) and Lg(up) is 2(1—r) if jw(r) > 0 and 2(1 —r) exp[—jw(r) log(2r)] if jw(r) < 0.
In the second case, from Eq. (28) we see that 2(1 — r) exp[—jw(r) log(2r)] is just the first
term in F'(w(r);r). As can be seen by inspection (and as discussed in the proof of Lemma 4),
all the terms in the right hand side of Eq. (28) are real and positive for w = w(r), so that
F(w(r);r) > 2a(ug)(1 — r) exp[—jw(r)log(2r)] for sufficiently large uy. (Here the criterion
for ug to be considered large is independent of d.) For sufficiently large ug, the right hand
side of Eq. (33) thus dominates the integral of [F/(w;r)]¢ over L3(ug) and Ly(ug) in the limit
of large d (neither the 1/v/d factor in Eq. (33) nor the factor of |w(r)| from the length of
Ls(up) and L4(up) being large enough to compete with the exponential growth). If on the
other hand jw(r) > 0, the integrand is bounded over La(ug) and Ly (ug) by [2(1 —r)a(ug)]?.
Again, if F(w(r);r) > 2(1 —r) (as is shown to be the case in Fig. 5), for sufficiently large
ug this is negligible compared to Eq. (33) as d — oc.

Thus for large (but d-independent) ug, the large d limit of the integral of [F(w;r)]? over
Ls(ugp) is given by Eq. (33). What remains is to evaluate the integral over Ls — Ls(uyg),
and show that this is negligible for large ug in the d — oo limit. Expanding [F(w;7)]? in a
binomial series using Eq. (29) and arranging terms in increasing powers of 1/(1 — jw) we

have

d
[Flw;n))? = > <d> -{2(1 = r) exp[—jwlog(2r)]} 477 -

p=0 \P

{4r exp[—jwlog(2r)] — 1 — rexp[—jwlog(r)]}? - (1 _1jw>p- (34)
For all terms except the first two, we can bound the integrand by its modulus. Recognizing
that the integral of 1/(1 4+ w?)™?2 from ug to infinity is less than u(ol_n) for n > 1, we can
bound the sum of all these terms by (57 + 1)[2(1 —)] {exp[td] — 1 — td}/t, where t =
(57 +1)/[2(1 — r)up]. This is a monotonically decreasing function of ug. Since F(w(r);r) >
2(1 — r)e’ for sufficiently large wuo, it follows that we can neglect the sum of all the terms
except the first two as d — oo.

The integral of the first two terms has to be dealt with separately: the integral of
[2(1 — r)]? exp[—jdw log(2r)] over |w| > ug is bounded by 27[2(1 — r)]?/{dlog(2r)} (unless
r = 1/2, which is discussed separately later), which can be neglected. The second term is
[2(1 —)] multiplied by

{4r exp|—jwdlog(2r)]—exp|—jw(d—1) log(2r)]—r exp[—jw log(r)—jw(d—1) log(2r)] }
(35)

1—jw

By adding a similar contribution from [F(—w;r)]¢, we get expressions of the form
O([2(1 —)] D sin[A(r)w]w/(1 + w?)), which can be dealt with like the first term, and

17

O([2(1 —)] cos[A(r)w]/(1 + w?)), which can be dealt with like all the other terms, and
both are negligible as d — oo.

Thus, to within numerical factors, Eq. (25) can be expressed as

N-o (J& / L (w(r); r)]d> (36)

where F'(w(r);r) can be evaluated numerically for any r by searching for w(r) along the
imaginary axis, and finding the value of F there.! Fig. 5 shows a plot of this quantity made

using Mathematica.

0
05 055 06 065 0.7 075 08 085 09 0.95
r

Figure 5: F(w(r);r) vs. r. The straight line corresponding to 2(1 — r) is everywhere below
it.

The integral in Eq. (36), having a d in the exponent, can again be done by the method
of steepest descent. This time the procedure is easier, since F(w(r);r) is real, so that the
analytic continuation to the complex plane carried out for the w integral is not necessary:
Im(r) = 0 is manifestly a ‘contour’ along which Arg[F| is constant, and, as can be seen
from Fig. 5, F' has a global maximum with non-zero second derivative within the domain
of r between % and 1 so that the conditions of Theorem 2 are satisfied. For large d, the
integral is again dominated by the point where F'(w(r);r) attains a maximum as a function

of 7 over the domain % to 1. This can be evaluated numerically. We thus obtain, to within

!Note that our evaluation of the integral over w by the method of steepest descent is only valid for

% < r < 1l. Forr = %, the integral is not well defined. This is because for all points x satisfying

0.5 < z; < 1.5, which is a finite fraction of the volume of the hypercube H, the radius of the nearest
neighbor ball that is centered around the point is % Thus the probability density that the radius of the
nearest neighbor ball is r has a d-function at r = % However, since the weight of this d-function is %d, and
the number of cells intersected for any point in this central region is 2¢, the contribution this singularity
makes to N is (%)d -2¢ = 1, which can be neglected compared to the eventual answer, obtained in Eq. (37).
Although the method of steepest descent does not work for r = 1 too, we know that there is no §-function
in the probability density that the radius of the nearest neighbor ball is r at » = 1, so that the contribution

to N from r ezactly equal to 1 is zero.

18

a constant factor,
N =0 ([Fw(ra);rn]?) = © ((1.56594...)7) (37)

where 737 is the point where F(w(r);r) has a maximum, and is found numerically to be
ryr = 0.5715 £ 0.0005.

In order to find the multiplicative prefactor in Eq. (37), we have to include

(a) the factor of v/27|f"(20)/f(20)|~*/? in Eq. (30) that each of our two applications of

the steepest descent method induces, and
(b) the derivative 9,V that was dropped in passing from Eq. (23) to Eq. (25).

The first of these simply leads to a nontrivial function g(z) in the second application of
Theorem 2. The second factor is a little more involved. However, the derivative 9,V is the
sum of d terms 8,1;, where [ranges from 1 to d. By carrying out the z; integral separately

from all the 2, integrals in each term, we obtain a modified version of Eq. (27):

N~ d/; dr /_O:O Z—:[F(w;r)]dflp(w; r) (38)

where F comes from the z; integration. This expression satisfies the conditions of Theorem 2
(with a nontrivial g(z)), and can be evaluated as above. By this method, we have calculated

the multiplicative prefactor of Eq. (37) to be approximately 1.02.

2

1.9

18

1.7 |

1.6 |

15 ¢

14

1.3 N n
05 055 06 065 0.7 075 08 085 09 095 1
r

Figure 6: Evidence for the Monotonicity conjecture: limy_oo[E[N | u = 7]]/? vs. 7.

Remark: The procedure that we have carried out above can be carried out (more easily)
to evaluate the probability density p(r) that the radius of the unit intersection ball is r; the
only differences are those resulting from the fact that the factor of Z; in Eq. (27) is missing.
Since the expression in Eq. (36) can be written as N = [drp(r)N(r), and the corresponding
expression one would get in evaluating the probability density is 1 = [drp(r), one can obtain

the N(r), which is the expected number of cells overlapped by the unit intersection ball for

19

points where the unit intersection ball has radius r. Using Mathematica as in Fig. 5, the
d-th root of this quantity was computed for various values of r and is plotted in Fig. 6 (here
m = 2). If one believes that the plot in Fig. 6 is a faithful representation of the function,
then one may regard this as a sort of “numerical proof” of the monotonicity conjecture in

the large d limit for m = 2.

6 Extensions and Generalizations

In this section, we first outline how the results of the previous section would be generalized
to m > 2, and present results from a numerical evaluation similar to that carried out in
the previous section. We then consider the effect of the fact that the nearest neighbor ball
around a query point will only have unit intersection volume on the average, and show
that fluctuations around this average can only change the constant prefactor of our earlier
expression for N.

For general m, the z-integrals in Eq. (22) and thereafter are over the interval 0 to
m, with a prefactor of 1/m for each z-integral. (Note that we used the symmetry under
x; — 2 — x; for the case of m = 2 to reduce the range of the z-integrals to [0, 1].) Eq. (24)

is modified, to

log(x; +) for z; <r
Li(z;r) = log(2r) form—r>ax;>r (39)

log(m +r —z;) for x&; >m —r.

This, however, does not affect the transition to Eq. (25). Eq. (26) is also changed, since
Zi(xg;r) =3 for k+r >ax; > k+1—r for k an integer, 1 < k < m — 2. Similarly one can
determine when Z;(x;;7) takes the values 1 and 2. (Recall that r lies between 1/2 and 1,
so that it is never possible for Z; to be greater than 3.) After some calculation, we obtain

the following general form for Eq. (29),

F(w;r) =
(2r + 1) exp[—jwlog(2r)] +
% ({0 + g esol-otosn)-

1 r

s — 2 el —jwlog(r)]) (40)

The numerical analysis after Eq. (29) can be carried out from here for any value of m.
The results are given in Table 2, which shows the expected number of cells overlapped by
the unit intersection ball, for different values of m.

We now consider possible modifications to our result, Eq. (37), due to the fact that

the nearest neighbor ball around any query point has unit intersection volume with the

20

m E[N]
2 | ©(1.566%)
3 | ©(1.715%)
4 | ©(1.788%)
5| ©(1.831%)
10 | ©(1.916%)
100 | ©(1.992%)

Table 2: Expected number of cells overlapped by the unit intersection ball.

hypercube H only on average. For simplicity, we return to the case of m = 2, although
the results can be extended to any m. We show that Eq. (37) is valid, to within constant
factors, even without this assumption. We only require that the probability density that
the nearest neighbor ball has intersection volume A be independent of the location of x.
This weaker assumption is satisfied in the limit for large dimension, for points uniformly
distributed in the unit hypercube. In this case, it is easily verified that the probability that
the nearest neighbor ball has intersection volume A, has the Poisson density, exp[—A].
Consider an ensemble of hypercubes with points distributed randomly and uniformly in
their interior, with unit mean density. We assume that, by averaging over query points, N
is the same for every member of the ensemble, even though for a particular query point x
it is possible for N(x) to have significant fluctuations from one member to another in the
ensemble. For the ensemble average of N, the expression in Eq. (37) for N can be replaced
by
N~ / X exp[-AIN (M) (41)

where N () is the expected number of cells when the intersection volume is A (the quantity
evaluated in Eq. (37) is N(A = 1)).

We now use the fact that N () increases monotonically with), so that N(A < 1) < N(1),
and N()) is equal to 2% as A — oco. This implies that Jilog 2 A exp[-A]N()\) < 1 and
fol/d d\exp[—A]N(\) < N(1)/d, and we thus obtain

dlog2 o o dlog2 _ o
/1 L PeRl AN <N < /1 PRl F LN/ (12)
Both the extra terms in the upper bound for N are negligible compared to the lower bound
for large d, so that N is asymptotically equal to the lower bound obtained for it in Eq. (42).
We now evaluate this lower bound.

In evaluating N()), we have the following changes compared to N(1):

21

(a) there is an extra factor of exp[jw(log\)] in [F(w;r)]?, arising from the shift in the

o-function,
(b) the integral over 7 now ranges from A\/%/2 to A4, and
c¢) in going from Eq. (23) to (25), the derivative 9,V lies between 1\~1/4 and 21~1/4.
2

Since at both the upper and the lower limit of the A-integral in Eq. (42), limg_. log()\)/d =
0, rps lies within the range of integration of r for all X. Also, by expanding [dw[F(w;r)]¢
around w(r), it is easy to see that the change in w(r) caused by the extra factor in (a) is
O((log \)/d). The result of this shift in w(r) is a factor of exp[O((log A\)?/d)] in [F(w(r);r)]%,
which tends to unity for all A in the range of integration as d — oo. Thus N()), which
is dominated by the region around rys, is given by N(1) - A, where ¢ = —Im[w(ras)].
Integrating over A with an exp[—\] weight factor, this gives the same result as in Eq. (37),
but with a different multiplicative factor. The multiplicative factor can be obtained as in

Section 5, and is approximately equal to 0.90. We summarize our main result:

Theorem 3 Given a set of 2¢ points uniformly distributed in a d-dimensional hypercube,
and a query point also from the uniform distribution, the expected number of cells visited by
the bucketing algorithm, Ng, satisfies

Na

lim =1

d—co (0.90...) - (1.56594...)¢

7 Experimental Results

In this section, we present experimental results which show that even for low dimensions
(< 16), our analysis yields good bounds. Fig. 7 shows the average number of cells examined
by the bucketing algorithm and the optimized k-d tree algorithm, when the dimension d
ranges from 1 to 16, and the number of data points is 2¢. In each case the number of cells
examined is averaged over 10 different experiments, where each experiment is performed
with a different set of data points and averaged over 2,500 query points. Both data and
query points are chosen from the uniform distribution. The figure shows that Theorem 3
provides an excellent fit to the number of points visited by the two algorithms. The fit is
slightly worse for the k-d tree algorithm than for the bucketing algorithm. This could be
because the k-d tree partition is not perfectly regular. It could also be because the k-d tree
algorithm does not necessarily visit the cells in increasing order of distance, rather in an
order determined by the structure of the tree. These factors could lead to a small overhead.

It is also clear from Fig. 7 that the cell based algorithms examine significantly fewer
data points than exhaustive search, when the number of data points is on the order of 2¢. In

view of the greater overhead of the cell algorithms, we were interested in determining how

22

much of this advantage translates into an actual gain in the running time. We conducted
these experiments in dimension 16, for the same data and query sets as used to plot Fig. 7.
For this study we used the efficient implementation of k-d trees as described by Arya and
Mount[3], and stored 4 data points in each leaf cell which helped to reduce the overhead.
We found that the k-d tree algorithm ran over 37 times faster than brute force search on a
Sun SPARC 10 system. We also conducted similar experiments for the Euclidean distance
metric. Although we do not have theoretical results for this metric, our experiments indicate
that boundary effects are important and lead to some speedup but not as much as for the
Lo metric. In dimension 16, we observed that the k-d tree algorithm ran about 4 times
faster than exhaustive search.

10000

0.9 *1.566"d —
k-d tree -+
bucketing = 4

1000 £ A

100 ¢

Points Examined

10 ¢

16

Dimension

Figure 7: Average number of points examined by the bucketing and k-d tree algorithms;

the total number of data points in dimension d is 2¢.

8 Conclusions

Previous analysis have neglected the effects of the boundary in order to simplify the analysis.
However, there is plenty of evidence of the importance of boundary effects in realistic
instances in high dimensions. We have presented analysis that takes these effects into
account, thus providing a significantly more accurate analysis.

The main limitation of our analysis is that it applies only to the L., metric and the
uniform distribution. It would be nice to extend these results to other distance norms
and other distributions. Another interesting open problem is to prove the monotonicity

conjecture.

References

[1] G. B. Arfken. Mathematical methods for physicists. Academic Press, 3rd edition, 1985.

23

2]

[10]

S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions.
In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, pages 271—
280, 1993.

S. Arya and D. M. Mount. Algorithms for fast vector quantization. In J. A. Storer and
M. Cohn, editors, Proc. of DCC ’93: Data Compression Conference, pages 381-390.
IEEE Press, 1993.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Wu. An optimal al-
gorithm for approximate nearest neighbor searching. In Proceedings of the 5th ACM-
SIAM Symposium on Discrete Algorithms, pages 573-582, 1994.

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509-517, September 1975.

J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected-time algorithms for
closest point problems. ACM Transactions on Mathematical Software, 6(4):563-580,
1980.

K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of
the 10th Annual ACM Symposium on Computational Geometry, pages 160—164, 1994.

J. G. Cleary. Analysis of an algorithm for finding nearest neighbors in Euclidean space.
ACM Transactions on Mathematical Software, 5(2):183-192, June 1979.

J. H. Friedman, J. L. Bentley, and R.A. Finkel. An algorithm for finding best matches
in logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209—
226, September 1977.

W. Feller. An introduction to probability theory and its applications, volume 1. Wiley
Eastern, 3rd edition, 1968.

A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic, 1991.

G. Goertzel and N. Tralli. Some mathematical methods of physics. McGraw-Hill, 1960.

R. L. Rivest. On the optimality of Elias’s algorithm for performing best-match searches.
In Information Processing, pages 678-681. North Holland Publishing Company, 1974.

R. L. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees. Algo-
rithmica, 6, 1991.

24

[15] T. Welch. Bounds on the information retrieval efficiency of static file structures. Tech-
nical Report 88, MIT, June 1971.

25

