
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Analysis of Approximate Nearest Neighbor Searching with
Clustered Point Sets

Songrit Maneewongvatana and David M. Mount

Abstract. Nearest neighbor searching is a fundamental computational prob-
lem. A set of n data points is given in real d-dimensional space, and the
problem is to preprocess these points into a data structure, so that given a
query point, the nearest data point to the query point can be reported effi-
ciently. Because data sets can be quite large, we are primarily interested in
data structures that use only O(dn) storage.

A popular class of data structures for nearest neighbor searching is the
kd-tree and variants based on hierarchically decomposing space into rectangu-
lar cells. An important question in the construction of such data structures is
the choice of a splitting method, which determines the dimension and splitting
plane to be used at each stage of the decomposition. This choice of splitting
method can have a significant influence on the efficiency of the data structure.
This is especially true when data and query points are clustered in low dimen-
sional subspaces. This is because clustering can lead to subdivisions in which
cells have very high aspect ratios.

We compare the well-known optimized kd-tree splitting method against
two alternative splitting methods. The first, called the sliding-midpoint method,
which attempts to balance the goals of producing subdivision cells of bounded
aspect ratio, while not producing any empty cells. The second, called the
minimum-ambiguity method is a query-based approach. In addition to the
data points, it is also given a training set of query points for preprocessing.
It employs a simple greedy algorithm to select the splitting plane that mini-
mizes the average amount of ambiguity in the choice of the nearest neighbor
for the training points. We provide an empirical analysis comparing these two
methods against the optimized kd-tree construction for a number of syntheti-
cally generated data and query sets. We demonstrate that for clustered data
and query sets, these algorithms can provide significant improvements over the
standard kd-tree construction for approximate nearest neighbor searching.

1991 Mathematics Subject Classification. 68P10, 68W40.
Key words and phrases. Nearest neighbor searching, query-based preprocessing, kd-trees,

splitting methods, empirical analysis.
The support of the National Science Foundation under grants CCR–9712379 and CCR–

0098151 is gratefully acknowledged.

c©2002 American Mathematical Society

1

2 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

1. Introduction

Nearest neighbor searching is the following problem: we are given a set S of
n data points in a metric space, X, and are asked to preprocess these points so
that, given any query point q ∈ X, the data point nearest to q can be reported
quickly. Nearest neighbor searching has applications in many areas, including
knowledge discovery and data mining [FPSSU96], pattern recognition and clas-
sification [CH67, DH73], machine learning [CS93], data compression [GG92],
multimedia databases [FSN+95], document retrieval [DDF+90], and statistics
[DW82].

There are many possible choices of the metric space. Throughout we will
assume that the space is Rd, real d-dimensional space, where distances are measured
using any Minkowski Lm distance metric. For any integer m ≥ 1, the Lm-distance
between points p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qd) in Rd is defined to be the
m-th root of

∑
1≤i≤d |pi − qi|m. The L1, L2, and L∞ metrics are the well-known

Manhattan, Euclidean and max metrics, respectively.
Our primary focus is on data structures that are stored in main memory. Since

data sets can be large, we limit ourselves to consideration of data structures whose
total space grows linearly with d and n. Among the most popular methods are
those based on hierarchical decompositions of space. The seminal work in this area
was by Friedman, Bentley, and Finkel [FBF77] who showed that O(n) space and
O(log n) query time are achievable for fixed dimensional spaces in the expected
case for data distributions of bounded density through the use of kd-trees. There
have been numerous variations on this theme. However, all known methods suffer
from the fact that as dimension increases, either running time or space increase
exponentially with dimension.

The difficulty of obtaining algorithms that are efficient in the worst case with
respect to both space and query time suggests the alternative problem of finding
approximate nearest neighbors. Consider a set S of data points in Rd and a query
point q ∈ Rd. Given ε > 0, we say that a point p ∈ S is a (1 + ε)-approximate
nearest neighbor of q if

dist(p, q) ≤ (1 + ε)dist(p∗, q),

where p∗ is the true nearest neighbor to q. In other words, p is within relative error
ε of the true nearest neighbor. The approximate nearest neighbor problem has
been heavily studied recently. Examples include algorithms by Bern [Ber93], Arya
and Mount [AM93b], Arya, et al. [AMN+98], Clarkson [Cla94], Chan [Cha97],
Kleinberg [Kle97], Indyk and Motwani [IM98], and Kushilevitz, Ostrovsky and
Rabani [KOR98].

In this study we restrict attention to data structures of size O(dn) based on
hierarchical spatial decompositions, and the kd-tree in particular. In large part
this is because of the simplicity and widespread popularity of this data structure.
A kd-tree is binary tree based on a hierarchical subdivision of space by splitting
hyperplanes that are orthogonal to the coordinate axes [FBF77]. It is described
further in the next section. A key issue in the design of the kd-tree is the choice
of the splitting hyperplane. Friedman, Bentley, and Finkel proposed a splitting
method based on selecting the plane orthogonal to the median coordinate along
which the points have the greatest spread. They called the resulting tree an opti-
mized kd-tree, and henceforth we call the resulting splitting method the standard

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 3

splitting method. Another common alternative uses the shape of the cell, rather
than the distribution of the data points. It splits each cell through its midpoint by
a hyperplane orthogonal to its longest side. We call this the midpoint split method.

A number of other data structures for nearest neighbor searching based on
hierarchical spatial decompositions have been proposed. Yianilos introduced the
vp-tree [Yia93]. Rather than using an axis-aligned plane to split a node as in kd-
tree, it uses a data point, called the vantage point, as the center of a hypersphere
that partitions the space into two regions. There has also been quite a bit of
interest from the field of databases. There are several data structures for database
applications based on R-trees and their variants [BKSS90, SRF87]. For example,
the X-tree [BKK96] improves the performance of the R∗-tree by avoiding high
overlap. Another example is the SR-tree [KS97]. The TV-tree [LJF94] uses a
different approach to deal with high dimensional spaces. It reduces dimensionality
by maintaining a number of active dimensions. When all data points in a node share
the same coordinate of an active dimension, that dimension will be deactivated and
the set of active dimensions shifts.

In this paper we study the performance of two other splitting methods, and
compare them against the kd-tree splitting method. The first, called sliding-
midpoint, is a splitting method that was introduced by Mount and Arya in the
ANN library for approximate nearest neighbor searching [MA97]. This method
was introduced into the library in order to better handle highly clustered data sets.
We know of no analysis (empirical or theoretical) of this method. This method
was designed as a simple technique for addressing one of the most serious flaws in
the standard kd-tree splitting method. The flaw is that when the data points are
highly clustered in low dimensional subspaces, then the standard kd-tree splitting
method may produce highly elongated cells, and these can lead to slow query times.
This splitting method starts with a simple midpoint split of the longest side of the
cell, but if this split results in either subcell containing no data points, it translates
(or “slides”) the splitting plane in the direction of the points until hitting the first
data point. In Section 3.1 we describe this splitting method and analyze some of
its properties.

The second splitting method, called minimum-ambiguity, is a query-based tech-
nique. The tree is given not only the data points, but also a collection of sample
query points, called the training points. The algorithm applies a greedy heuristic to
build the tree in an attempt to minimize the expected query time on the training
points. We model query processing as the problem of eliminating data points from
consideration as the possible candidates for the nearest neighbor. Given a collec-
tion of query points, we can model any stage of the nearest neighbor algorithm as a
bipartite graph, called the candidate graph, whose vertices correspond to the union
of the data points and the query points, and in which each query point is adjacent
to the subset of data points that might be its nearest neighbor. The minimum-
ambiguity selects the splitting plane at each stage that eliminates the maximum
number of remaining edges in the candidate graph. In Section 3.2 we describe this
splitting method in greater detail.

We implemented these two splitting methods, along with the standard kd-tree
splitting method. We compared them on a number of synthetically generated point
distributions, which were designed to model low-dimensional clustering. We believe
this type of clustering is not uncommon in many application data sets [JD88]. We

4 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

used synthetic data sets, as opposed to standard benchmarks, so that we could
adjust the strength and dimensionality of the clustering. Our results show that
these new splitting methods can provide significant improvements over the standard
kd-tree splitting method for data sets with low-dimensional clustering. The rest
of the paper is organized as follows. In the next section we present background
information on the kd-tree and how to perform nearest neighbor searches in this
tree. In Section 3 we present the two new splitting methods. In Section 4 we
describe our implementation and present our empirical results.

2. Background

In this section we describe how kd-trees are used for performing exact and
approximate nearest neighbor searching. Bentley introduced the kd-tree as a gen-
eralization of the binary search tree in higher dimensions [Ben75]. Each node of
the tree is implicitly associated with a d-dimensional rectangle, called its cell. The
root node is associated with the bounding rectangle, which encloses all of the data
points. Each node is also implicitly associated with the subset of data points that
lie within this rectangle. (Data points lying on the boundary between two rectan-
gles, may be associated with either.) If the number of points associated with a node
falls below a given threshold, called the bucket size, then this node is a leaf, and
these points are stored with the leaf. (In our experiments we used a bucket size of
one.) Otherwise, the construction algorithm selects a splitting hyperplane, which
is orthogonal to one of the coordinate axes and passes through the cell. There are a
number of splitting methods that may be used for choosing this hyperplane. We will
discuss these in greater detail below. The hyperplane subdivides the associated cell
into two subrectangles, which are then associated with the children of this node,
and the points are subdivided among these children according to which side of the
hyperplane they lie. Each internal node of the tree is associated with its splitting
hyperplane (which may be given as the index of the orthogonal axis and a cutting
value along this axis).

Friedman, Bentley and Finkel [FBF77] present an algorithm to find the near-
est neighbor using the kd-trees. They introduce the following splitting method,
which we call the standard splitting method. For each internal node, the splitting
hyperplane is chosen to be orthogonal to the axis along which the points have the
greatest spread (difference of maximum and minimum). The splitting point is cho-
sen at the median coordinate, so that the two subsets of data points have nearly
equal sizes. The resulting tree has O(n) size and O(log n) height. White and Jain
[WJ96] proposed an alternative, called the VAM-split, with the same basic idea,
but the splitting dimension is chosen to be the one with the maximum variance.

Queries are answered by a simple recursive algorithm. In the basis case, when
the algorithm arrives at a leaf of the tree, it computes the distance from the query
point to each of the data points associated with this node. The smallest such
distance is saved. When arriving at an internal node, it first determines the side
of the associated hyperplane on which the query point lies. The query point is
necessarily closer to this child’s cell. The search recursively visits this child. On
returning from the search, it determines whether the cell associated with the other
child is closer to the query point than the closest point seen so far. If so, then this
child is also visited recursively. When the search returns from the root, the closest
point seen is returned. An important observation is that for each query point, every

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 5

leaf whose distance from the query point is less than the nearest neighbor will be
visited by the algorithm.

It is an easy matter to generalize this search algorithm for answering approx-
imate nearest neighbor queries. Let ε denote the allowed error bound. In the
processing of an internal node, the further child is visited only if its distance from
the query point is less than the distance to the closest point so far, divided by
(1 + ε). Arya et al. [AMN+98] show the correctness of this procedure. They also
show how to generalize the search algorithm for computing the k-closest neighbors,
either exactly or approximately.

Arya and Mount [AM93a] proposed a number of improvements to this basic
algorithm. The first is called incremental distance calculation. This technique
can be applied for any Minkowski metric. In addition to storing the splitting
hyperplane, each internal node of the tree also stores the extents of associated cell
projected orthogonally onto its splitting axis. The algorithm does not maintain
true distances, but instead (for the Euclidean metric) maintains squared distances.
When the algorithm arrives at an internal node, it maintains the squared distance
from the query point to the associated cell. They show that in constant time
(independent of dimension) it is possible to use this information to compute the
squared distance to each of the children’s cell. They also presented a method
called priority search, which uses a heap to visit the leaves of the tree in increasing
order of distance from the query point, rather than in the recursive order dictated
by the structure of the tree. Yet another improvement is a well-known technique
from nearest neighbor searching, called partial distance calculation [BG85, Spr91].
When computing the distance between the query point and a data point, if the
accumulated sum of squared components ever exceeds the squared distance to the
nearest point so far, then the distance computation is terminated.

One of the important elements of approximate nearest neighbor searching,
which was observed by Arya et al. [AMN+98], is that there are two important
properties of any data structure for approximate nearest neighbor searching based
on spatial decomposition.

Balance:: The height of the tree should be O(log n), where n is the number
of data points.

Bounded aspect ratio:: The leaf cells of the tree should have bounded
aspect ratio, meaning that the ratio of the longest to shortest side of each
leaf cell should be bounded above by a constant.

Given these two constraints, they show that approximate nearest neighbor
searching (using priority search) can be performed in O(log n) time from a data
structure of size O(dn). The hidden constant factors in time grow as O(d/ε)d.
Unfortunately, achieving both of these properties does not always seem to be pos-
sible for kd-trees. This is particularly true when the point distribution is highly
clustered. Arya et al. present a somewhat more complex data structure called
a balanced box-decomposition tree, which does satisfy these properties. The extra
complexity seems to be necessary in order to prove their theoretical results, and
they show empirically that it is important when data sets are highly clustered in
low-dimensional subspaces. An interesting practical question is whether there exist
methods that retain the essential simplicity of the kd-tree, while providing practical
efficiency for clustered data distributions (at least in most instances, if not in the
worst case).

6 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

Bounded aspect ratio is a sufficient condition for efficiency, but it is not nec-
essary. The more precise condition in order for their results to apply is called the
packing constraint [AMN+98]. Define a ball of radius r to be the locus of points
that are within distance r of some point in Rd according to the chosen metric. The
packing constraint says that the number of large cells that intersect any such ball
is bounded.

Packing Constraint:: The number of leaf cells of size at least s that inter-
sect an open ball of radius r > 0 is bounded above by a function of r/s
and d, but independent of n.

If a tree has cells of bounded aspect ratio, then it satisfies the packing con-
straint. Arya et al., show that priority search runs in time that is proportional to
the depth of the tree times the number of cells of maximum side length rε/d that
intersect a ball of radius r. If the packing constraint holds, then this number of
cells depends only on the dimension and ε. The main shortcoming of the standard
splitting method is that it may result in cells of unbounded aspect ratio, and hence
does not generally satisfy the packing constraint.

3. Splitting Methods

In this section we describe the splitting methods that are considered in our ex-
periments. As mentioned in the introduction, we implemented two splitting meth-
ods, in addition to the standard kd-tree splitting method. We describe them further
in each of the following sections.

3.1. Sliding-Midpoint. The sliding-midpoint splitting method was first in-
troduced in the ANN library for approximate nearest neighbor searching [MA97].
This method was motivated to remedy the deficiencies of two other splitting meth-
ods, the standard kd-tree splitting method and the midpoint splitting method. To
understand the problem, suppose that the data points are highly clustered along a
few dimensions but vary greatly along some the others (see Fig. 1). The standard
kd-tree splitting method will repeatedly split along the dimension in which the data
points have the greatest spread, leading to many cells with high aspect ratio. A
nearest neighbor query q near the center of the bounding square would visit a large
number of these cells. In contrast, the midpoint splitting method bisects the cell
along its longest side, irrespective of the point distribution. (If there are ties for the
longest side, then the tie is broken in favor of the dimension along which the points
have the highest spread.) This method produces cells of aspect ratio at most 2,
but it may produce leaf cells that contain no data points. The size of the resulting
tree may be very large when the data distribution is highly clustered data and the
dimension is high.

The sliding-midpoint method works as follows. It first attempts to perform a
midpoint split, by the same method described above. If data points lie on both sides
of the splitting plane then the algorithm acts exactly as it would for the midpoint
split. However, if a trivial split were to result (in which all the points lie to one
side of the splitting plane), then it attempts to avoid this by “sliding” the splitting
plane towards the points until it encounters the first data point (see Fig. 2). More
formally, if the split is performed orthogonal to the ith coordinate, and all the
data points have i-coordinates that are larger than that of the splitting plane, then
the splitting plane is translated so that its ith coordinate equals the minimum ith

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 7

Midpoint split

q

Standard split

q

Figure 1. Standard and midpoint splitting methods with clus-
tered point sets.

coordinate among all the data points. Let this point be p1. Then the points are
partitioned with p1 in one part of the partition, and all the other data points in
the other part. A symmetrical rule is applied if the points all have ith coordinates
smaller than the splitting plane.

q

Figure 2. Sliding-midpoint splitting method.

This method cannot result in any trivial splits, implying that the resulting
tree has size O(n). Thus it avoids the problem of large trees, which the midpoint
splitting method is susceptible to. Because there is no guarantee that the point
partition is balanced, the depth of the resulting tree may exceed O(log n). However,
based on our empirical observations, the height of this tree rarely exceeds the height
of the standard kd-tree by more than a small constant factor.

Because of sliding, it is possible to generate a cell C of very high aspect ratio.
Note that when this happens, the sibling C ′ of C is fat along the same dimension
that C is skinny. Thus, it is not possible to generate a situation (as seen in the
left of Fig. 1) where many skinny cells are stacked next to each other. Using this
observation, we have shown that the sliding-midpoint rule satisfies the packing
constraint [MM99].

The sliding-midpoint method can be implemented with little more effort than
the standard kd-tree splitting method. But, because the depth of the tree is not
necessarily O(log n), the O(n log n) construction time bound does not necessarily
hold. There are more complex algorithms for constructing the tree that run in
O(n log n) time [AMN+98]. However, in spite of these shortcomings, we will see
that the sliding-midpoint method, can perform quite well for highly clustered data
sets.

8 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

3.2. Minimum-Ambiguity. All of the splitting methods described so far are
based solely on the data points. This may be quite reasonable in applications where
data points and query points come from the same distribution. However this is not
always the case. (For example, a common use of nearest neighbor searching is
in iterative clustering algorithms, such as the k-means algorithm [For65, GG92,
Mac67]. Depending on the starting conditions of the algorithm, the data points
and query points may be quite different from one another.) If the two distributions
are different, then it is reasonable that preprocessing should be informed of the
expected distribution of the query points, as well as the data points. One way to
do this is to provide the preprocessing phase with the data points and a collection of
sample query points, called training points. The goal is to compute a data structure
which is efficient, assuming that the query distribution is well-represented by the
training points. The idea of presenting a training set of query points is not new.
For example, Clarkson [Cla97] described a nearest neighbor algorithm that uses
this concept.

The minimum-ambiguity splitting method is given a set S of data points and
a training set T of sample query points. For each query point q ∈ T , we compute
the nearest neighbor of q in S as part of the preprocessing. For each such q, let
b(q) denote the nearest neighbor ball, that is, the maximum ball centered at q that
contains no point of S in its interior. As observed earlier, the exact nearest neighbor
search algorithm visits every leaf cell that overlaps b(q).

Given any kd-tree, let C(q) denote the set of leaf cells of the tree that overlap
b(q). This suggests the following optimization problem: given point sets S and T ,
determine a hierarchical subdivision of S of size O(n) such that the total overlap,∑

q∈T |C(q)|, is minimized. This is analogous to the packing constraint, but applied
only to the nearest neighbor balls of the training set. This problem can be solved
optimally through dynamic programming in polynomial time, but the running time
would be unacceptably large given the number of data and training points that we
are interested in. Instead, we devised a simple greedy heuristic, which is the basis
of the minimum-ambiguity splitting method.

To motivate our method, we introduce a model for nearest neighbor searching
in terms of a pruning process on a bipartite graph. Given a cell (i.e., a d-dimensional
rectangle) C. Let SC denote the subset of data points lying within this cell and
let TC denote the subset of training points whose such that the nearest neighbor
balls intersects C. Define the candidate graph for C to be the bipartite graph on
the vertex set S ∪ T , whose edge set is SC × TC . Intuitively, each edge (p, q) in
this graph reflects the possibility that data point p is a candidate to be the nearest
neighbor of training point q. Observe that if a cell C intersects b(q) and contains k
data points, then q has degree k in the candidate graph for C. Since it is our goal
to minimize the number of leaf nodes that overlap C, and assuming that each leaf
node contains at least one data point, then a reasonable heuristic for minimizing
the number of overlapping leaf cells is to minimize the average degree of vertices
in the candidate graph. This is equivalent to minimizing the total number of edges
in the graph. (This method is similar to techniques used in the design of linear
classifiers based on impurity functions [BFOS84]. The idea of using an ambiguity
graph was suggested to us by Joe Mitchell [Mit93], who proposed it as a method
for solving quite a different problem in pattern recognition.)

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 9

Here is how the minimum-ambiguity method selects the splitting hyperplane. If
|SC | ≤ 1, then from our desire to generate a tree of size O(n), we will not subdivide
this cell any further. Otherwise, let H be some orthogonal hyperplane that cuts C
into subcells C1 and C2. Let S1 and S2 be the resulting partition of data points into
these respective subcells, and let T1 and T2 denote the subsets of training points
whose nearest neighbor balls intersect C1 and C2, respectively. Notice that these
subsets are not necessarily disjoint. We assign a score to each such hyperplane H,
which is equal to the sum of the number of edges in the ambiguity graphs of C1

and C2. In particular,

Score(H) = |S1| · |T1| + |S2| · |T2|.
Intuitively a small score is good, because it means that the average ambiguity in

the choice of nearest neighbors is small. The minimum-ambiguity splitting method
selects the orthogonal hyperplane H that produces a nontrivial partition of the
data points and has the smallest score. (For example, in Fig. 3 on the left, we show
the score of 40 for the standard kd-tree splitting method. There are four points in
each of the child cells. Two of the nearest neighbor balls intersect the left child and
eight of the nearest neighbor balls intersect the right child, and hence the score is
4 ·2+4 ·8 = 40. However, because of the higher concentration of training points on
the right side of the cell, the splitting plane shown on the right actually has a lower
score, and hence is preferred by the minimum-ambiguity method.) In this way the
minimum-ambiguity method tailors the structure of the tree to the distribution of
the training points.

Score = 4 2 + 4 8 = 40.

data point

training point

near neighbor ball

Score = 5 3 + 3 6 = 33.. ...

Figure 3. Minimum ambiguity splitting method.

The minimum-ambiguity split is computed as follows. First, the nearest neigh-
bor for each of the training points is computed, and from these the nearest neighbor
balls are computed. This may be done using any algorithm for computing near-
est neighbors, e.g., by building a kd-tree using one of the other splitting methods.
The algorithm then operates in a recursive manner, starting at the root of the new
tree. At each stage it is given the current cell C (initially the bounding box for
the data points) and the subsets SC , TC , and the nearest neighbor balls for the
elements of TC . For each coordinate axis, it projects the points of SC and the
extreme coordinates of the balls b(q) for each q ∈ TC orthogonally onto this axis.
It then sweeps through this set of projections, from the leftmost to the rightmost
data point projection. The score can be updated in constant time as each point
is swept. It selects the hyperplane with the minimum score over all the sweeps.

10 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

If there are ties for the smallest score, then some other criterion may be used, for
example, selecting the split that most evenly partitions the data points.

To improve the efficiency of the sweep, for each axis, we presort the data point
coordinates and the minimum and maximum coordinates of each nearest neighbor
ball into d separate sorted lists. We store cross-reference links between these sorted
lists, so that if a point is deleted from one sorted list it can be deleted from all the
other lists in O(d) time. With this preprocessing, we observe that each node of the
new tree can be constructed in O(d(|TC | + |SC |)) time. This is done by sweeping
through each of the sorted lists (which can be done in this time), then selecting the
split with the lowest score and creating the new node (which takes constant time),
and finally computing the sets TC′ and SC′ for each child C ′ of C. This can be
done by first copying the d sorted lists, and then making a simple traversal through
each copy, removing the elements that do not overlap the child’s cell.

If we let C denote the set of all of the cells associated with all of the nodes in
the resulting minimum-ambiguity tree, the total running time for this procedure is
on the order of

N(S, T) + dn log n + d
∑

C∈C

(|TC | + |SC |),

where N(S, T) is the time to compute the nearest neighbors for each element of T
in the data set S.

Since the running time of nearest neighbor searching N(S, T) is a quantity that
is reasonably well understood, the major unknown factor in the construction time
is the final sum in the above equation. Observe that even if all the splitting planes
were known in advance for the minimum-ambiguity tree, then the time needed to
partition the points of S among the cells of the tree is on the order of d

∑
C∈C |SC |.

This is based on the fact that the time needed to partition the data points in each
cell is proportional to d times the number of points in the cell (assuming presorting
of points). Also observe that if we were to use the minimum-ambiguity tree to
compute the nearest neighbor in S for each training point in T (using the standard
recursive algorithm) then for each q ∈ T , we would visit each cell C ∈ C that the
nearest neighbor ball b(q) intersects. Including an extra factor of d for computing
distances, then running time is on the order of d

∑
C∈C |TC |. Thus, in summary,

the major factor in the construction time for the minimum-ambiguity tree is the
time to partition the data points within the tree plus the time to compute nearest
neighbors of the training points using this tree.

4. Empirical Results

We implemented a kd-tree in C++ using the three splitting methods: the
standard method, sliding-midpoint, and minimum-ambiguity. For each splitting
method we generated a number data point sets, query point sets, and (for minimum-
ambiguity) training point sets. The tree structure was based on the same basic tree
structure used in ANN [MA97]. The experiments were run on a Sparc Ultra,
running Solaris 5.5, and the program was compiled by the g++ compiler. We
measured a number of statistics for the tree, including its size, depth, and the
average aspect ratio of its cells.

Queries were answered using priority search. For each group of queries we
computed a number of statistics including CPU time, number of nodes visited in
the tree, number of floating-point operations, number of distance calculations, and

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 11

ε Avg. error Std. dev. Max. Error
1.0 0.03643 0.0340 0.248
2.0 0.06070 0.0541 0.500
3.0 0.08422 0.0712 0.687

Figure 4. Average error commited, the standard deviation of the
error, and the maximum error versus the allowed error, ε. Values
were averaged over all runs.

number of coordinate accesses. In our plots we show only the number of nodes in
the tree visited during the search. We chose this parameter because it is a machine-
independent quantity, and was closely correlated with CPU time. In most of our
experiments, nearest neighbors were computed approximately.

For each experiment we fixed the number of data points, the dimension, the
data-point distribution, and the error bound ε. In the case of the minimum-
ambiguity method, the query distribution is also fixed, and some number of training
points were generated. Then a kd-tree was generated by applying the appropriate
splitting method. For the standard and sliding-midpoint methods the tree construc-
tion does not depend on ε, implying that the same tree may be used for different
error bounds. For the minimum-ambiguity tree, the error bound was used in com-
puting the tree. In particular, the nearest neighbors of each of the training points
was computed only approximately. Furthermore, the nearest neighbor balls b(q) for
each training point q were shrunken in size by dividing their radius by the factor
1+ε. This is because this is the size of the ball that is used in the search algorithm.

For each tree generated, we generated some number of query points. The query-
point distribution was not always the same as the data distribution, but it is always
the same as the training point distribution. Then the nearest neighbor search was
performed on these query points, and the results were averaged over all queries.
Although we ran a wide variety of experiments, for the sake of conciseness we show
only a few representative cases. For all of the experiments described here, we used
4000 data points in dimension 20 for each data set, and there were 12,000 queries
run for each data set. For the minimum-ambiguity method, the number of training
points was 36,000.

The value of ε was either 1, 2, or 3 in our experiments (allowing the reported
point to be a factor of 2, 3, or 4 further away than the true nearest neighbor,
respectively). Although these errors may seem exorbitantly large, we note that
the observed errors were much smaller. We computed the exact nearest neighbors
off-line to gauge the algorithm’s actual performance. The actual error commited
for each query was computed and then averaged over the runs (see Fig. 4). Note
that average error committed was typically only about 1/30 of the allowable error.
The maximum error was computed for each run of 12,000 query points, and then
averaged over all runs. Even this maximum error was only around 1/4 of the allowed
error. Some variation (on the order of a factor of 2) was observed depending on
the choice of search tree and point distributions. For this reason, we feel that in
applications where good average-case error performance is sufficient, running with
such relatively high values of ε is not unreasonable.

12 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

4.1. Distributions Tested. The distributions that were used in our exper-
iments are listed below. The clustered-gaussian distribution is designed to model
point sets that are clustered, but in which each cluster is full-dimensional. The
clustered-orthogonal-ellipsoid and clustered-ellipsoid distributions are both explic-
itly designed to model point distributions which are clustered, and the clusters
themselves are flat in the sense that the points lie close to a lower dimensional
subspace. In the first case the ellipsoids are aligned with the axes, and in the other
case they are arbitrarily oriented.

Uniform:: Each coordinate was chosen uniformly from the interval [−1, 1].
Clustered-gaussian:: The distribution is given a number of color classes

c, and a standard deviation σ. We generated c points from the uniform
distribution, which form cluster centers. Each point is generated from a
gaussian distribution centered at a randomly chosen cluster center with
standard deviation σ.

Clustered-orthogonal-ellipsoids:: The distribution can be viewed as a
degenerate clustered-gaussian distribution where the standard deviation of
each coordinate is chosen from one of two classes of distributions, one with
a large standard deviation and the other with a small standard deviation.
The distribution is specified by the number of color classes c and four
additional parameters:

• dmax is the maximum number of fat dimensions.
• σlo and σhi are the minimum and maximum bounds on the large

standard deviations, respectively (for the fat sides of the ellipsoid).
• σthin is the small standard deviation (for the thin sides of the ellip-

soid).
Cluster centers are chosen as in the clustered-gaussian distribution. For
each color class, a random number d′ between 1 and dmax is generated,
indicating the number of fat dimensions. Then d′ dimensions are chosen
at random to be fat dimensions of the ellipse. For each fat dimension the
standard deviation for this coordinate is chosen uniformly from [σlo, σhi],
and for each thin dimension the standard deviation is set to σthin. The
points are then generated by the same process as clustered-gaussian, but
using these various standard deviations.

Clustered-ellipsoids:: This distribution is the result of applying d random
rotation transformations to the points of each cluster about its center.
Each cluster is rotated by a different set of rotations. Each rotation is
through a uniformly distributed angle in the range [0, π/2] with respect
to two randomly chosen dimensions.

In our experiments involving both clustered-orthogonal-ellipsoids and clustered-
ellipsoids, we set the number of clusters to 5, dmax = 10, σlo = σhi = 0.3, and σthin

varied from 0.03 to 0.3. Thus, for low values of σthin the ellipsoids are relatively
flat, and for high values this becomes equivalent to a clustered-gaussian distribution
with standard deviation of 0.3.

4.2. Data and Query Points from the Same Distribution. For our first
set of experiments, we considered data and query points from the same clustered
distributions. We considered both clustered-orthogonal-ellipsoids and clustered-
ellipsoid distributions in Figs. 5 and 6, respectively.

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 13

0.03 0.12 0.21 0.3
sigma−thin

0

100

200

300

400

500

600

700

800
N

od
es

 v
is

ite
d

Epsilon = 1

sliding−midpoint
standard
min−ambiguity

0.03 0.12 0.21 0.3
sigma−thin

0

100

200

300

400

N
od

es
 v

is
ite

d

Epsilon = 2

sliding−midpoint
standard
min−ambiguity

(a) (b)

0.03 0.12 0.21 0.3
sigma−thin

0

50

100

150

200

250

N
od

es
 v

is
ite

d

Epsilon = 3

sliding−midpoint
standard
min−ambiguity

(c)

Figure 5. Number of nodes visited versus σthin for ε ∈ {0, 1, 2}.
Data and query points both sampled from the same clustered-
orthogonal-ellipsoid distribution.

The three different graphs are for (a) ε = 1, (b) ε = 2, and (c) ε = 3. In all three
cases the same clusters centers were used. Note that the graphs do not share the
same y-range, and in particular the search algorithm performs significantly faster
as ε increases.

Observe that all of the splitting methods perform better when σthin is small,
indicating that to some extent they exploit the fact that the data points are clus-
tered in lower dimensional subspaces. The relative differences in running time were
most noticeable for small values of σthin, and tended to diminish for larger values.

Although the minimum-ambiguity splitting method was designed for dealing
with data and query points from different distributions, we were somewhat surprised
that it actually performed the best of the three methods in these cases. For small
values of σthin (when low-dimensional clustering is strongest) its average running
time (measured as the number of noded visited in the tree) was typically from 30-
50% lower than the standard splitting method, and over 50% lower than the sliding-
midpoint method. The standard splitting method typically performed better than

14 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

0.03 0.12 0.21 0.3
sigma−thin

0

100

200

300

400

500

600

700
N

od
es

 v
is

ite
d

Epsilon = 1

sliding−midpoint
standard
min−ambiguity

0.03 0.12 0.21 0.3
sigma−thin

0

50

100

150

200

250

300

350

400

N
od

es
 v

is
ite

d

Epsilon = 2

sliding−midpoint
standard
min−ambiguity

(a) (b)

0.03 0.12 0.21 0.3
sigma−thin

0

50

100

150

200

250

N
od

es
 v

is
ite

d

Epsilon = 3

sliding−midpoint
standard
min−ambiguity

(c)

Figure 6. Number of nodes visited versus σthin for ε ∈ {0, 1, 2}.
Data and query points both sampled from the same clustered-
ellipsoid distribution.

the sliding-midpoint method, but the difference decreased to being insignificant
(and sometimes a bit worse) as σthin increased.

4.3. Data and Query Points from Different Distributions. For our sec-
ond set of experiments, we considered data points from a clustered distribution and
query points from a uniform distribution. This particular choice was motivated by
the situation shown in Fig. 2, where the standard splitting method can produce
cells with high aspect ratios.

For the data points we considered both the clustered-orthogonal-ellipsoids and
clustered-ellipsoid distributions in Figs. 7 and 8, respectively. As before, the three
different graphs are for (a) ε = 1, (b) ε = 2, and (c) ε = 3. Again, note that the
graphs do not share the same y-range.

Unlike the previous experiment, overall running times did not vary greatly
with σthin. Sometimes running times increased moderately and other times they

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 15

0.03 0.12 0.21 0.3
sigma−thin

0

500

1000

1500

2000

N
od

es
 v

is
ite

d

Epsilon = 1

standard
min−ambiguity
sliding−midpoint

0.03 0.12 0.21 0.3
sigma−thin

0

100

200

300

400

500

600

N
od

es
 v

is
ite

d

Epsilon = 2

standard
min−ambiguity
sliding−midpoint

(a) (b)

0.03 0.12 0.21 0.3
sigma−thin

0

50

100

150

200

250

300

N
od

es
 v

is
ite

d

Epsilon = 3

standard
min−ambiguity
sliding−midpoint

(c)

Figure 7. Number of nodes visited versus σthin for ε ∈ {0, 1, 2}.
Data sampled from the clustered-orthogonal-ellipsoid distribution
and query points from the uniform distribution.

decreased moderately as a function of σthin. However, there were significant differ-
ences between the standard splitting method, which consistently performed much
worse than the other two methods. For the smallest values of σthin, there was
around a 5-to-1 difference in running time between then standard method and
sliding-midpoint.

For larger values of ε (2 and 3) the performance of sliding-midpoint and minimum-
ambiguity were very similar, with sliding-midpoint having the slight edge. It may
seem somewhat surprising that minimum-ambiguity performed significantly worse
(a factor of 2 to 3 times worse) than sliding-midpoint, since minimum-ambiguity
was designed exactly for this the situation where there is a difference between data
and query distributions. This may be due to limitations on the heuristic itself, or
the limited size of the training set. However, it should be kept in mind that sliding-
midpoint was specially designed to produce large empty cells in the uncluttered
regions outside the clusters (recall Fig. 2).

16 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

0.03 0.12 0.21 0.3
sigma−thin

0

400

800

1200

1600

2000

N
od

es
 v

is
ite

d

Epsilon = 1

standard
min−ambiguity
sliding−midpoint

0.03 0.12 0.21 0.3
sigma−thin

0

200

400

600

N
od

es
 v

is
ite

d

Epsilon = 2

standard
min−ambiguity
sliding−midpoint

(a) (b)

0.03 0.12 0.21 0.3
sigma−thin

0

50

100

150

200

250

300

N
od

es
 v

is
ite

d

Epsilon = 3

standard
min−ambiguity
sliding−midpoint

(c)

Figure 8. Number of nodes visited versus σthin for ε ∈ {0, 1, 2}.
Data sampled from the clustered-ellipsoid distribution and query
points from the uniform distribution.

4.4. Construction Times. The results of the previous sections suggest that
the minimum-ambiguity splitting produces trees that can answer queries efficiently
for a variety of point and data distributions. Its main drawback is the amount
of time that it takes to build the tree. Both the standard and sliding-midpoint
methods can be built quite efficiently in time O(nh), where n is the number of data
points, and h is the height of the tree. The standard kd-tree has O(log n) height,
and while the sliding-midpoint tree need not have O(log n) height, this seems to be
true for many point distributions. For the 4000 point data sets in dimension 20,
both of these trees could be constructed in under 10 CPU seconds.

However, the construction time for the minimum-ambiguity tree is quite a
bit higher. As mentioned earlier, the time to construct the tree is roughly (within
logarithmic factors) proportional to the time to compute the (approximate) nearest
neighbors for all the training points. Since we used 9 times the number of data
points as training points, it is easy to see that the minimum-ambiguity tree will
take much longer to construct than the other two trees. Notice that when ε > 0,

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 17

0.03 0.12 0.21 0.3
sigma−thin

0

500

1000

1500
C

P
U

 s
ec

on
ds

Data: Clustered−orthogonal−ellipsoids
Training: Clustered−orthogonal−ellipsoids

e=1
e=2
e=3

0.03 0.12 0.21 0.3
sigma−thin

0

500

1000

1500

C
P

U
 s

ec
on

ds

Data: Clustered−orthogonal−ellipsoids
Training: Uniform

e=1
e=2
e=3

(a) (b)

0.03 0.12 0.21 0.3
sigma−thin

0

500

1000

1500

C
P

U
 s

ec
on

ds

Data: Clustered−ellipsoids
Training: Clustered−ellipsoids

e=1
e=2
e=3

0.03 0.12 0.21 0.3
sigma−thin

0

500

1000

1500
C

P
U

 s
ec

on
ds

Data: Clustered−ellipsoids
Query: Uniform

e=1
e=2
e=3

(c) (d)

Figure 9. Time to construct minimum-ambiguity tree versus σthin.

we compute nearest neighbors approximately, and so this can offer an improvement
in construction time. In Fig. 9 we present the construction time for the minimum-
ambiguity tree for various combinations of data and training distributions. Observe
that the construction times are considerably greater than those for the other two
methods (which were under 10 CPU seconds), and that the construction time is
significantly faster for higher values of ε.

5. Conclusions

In this paper we have presented an empirical analysis of two new splitting
methods for kd-trees: sliding-midpoint and minimum-ambiguity. Both of these
methods were designed to remedy some of the deficiencies of the standard kd-tree
splitting method, with respect to data distributions that are highly clustered in
low-dimensional subspaces. Both methods were shown to be considerably faster
than the standard splitting method in answering queries when data points were
drawn from a clustered distribution and query points were drawn from a uniform
distribution. The minimum-ambiguity method performed better when both data

18 SONGRIT MANEEWONGVATANA AND DAVID M. MOUNT

and query points were drawn from a clustered distribution. But this method has a
considerably higher construction time. The sliding-midpoint method, while easy to
build, seems to perform sometimes better and sometimes worse than the standard
kd-tree splitting method.

The enhanced performance of the minimum-ambiguity method suggests that
even within the realm of kd-trees, there may be significant improvements to be made
by fine-tuning the structure of the tree to the data and query distributions. How-
ever, because of its high construction cost, it would be nice to determine whether
there are other heuristics that would lead to faster construction times. This sug-
gest the intriguing possibility of search trees whose structure adapts dynamically to
the structure of queries over time. The sliding-midpoint method raises hope that
it may be possible to devise a simple and efficiently computable splitting method,
that performs well across a wider variety of distributions than the standard splitting
method.

6. Acknowledgements

We would like to thank Sunil Arya for helpful discussions on the performance
of the sliding-midpoint method.

References

[AM93a] S. Arya and D. M. Mount, Algorithms for fast vector quantization, Proc. Data Com-
pression Conference, IEEE Press, 1993, pp. 381–390.

[AM93b] S. Arya and D. M. Mount, Approximate nearest neighbor queries in fixed dimensions,
Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, 1993, pp. 271–280.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu, An optimal
algorithm for approximate nearest neighbor searching, Journal of the ACM 45 (1998),
891–923.

[Ben75] J. L. Bentley, Multidimensional binary search trees used for associative searching,
Communications of the ACM 18 (1975), no. 9, 509–517.

[Ber93] M. Bern, Approximate closest-point queries in high dimensions, Inform. Process. Lett.
45 (1993), 95–99.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regres-
sion trees, Wadsworth, Belmont, California, 1984.

[BG85] C.-D. Bei and R. M. Gray, An improvement of the minimum distortion encoding
algorithm for vector quantization, IEEE Transactions on Communications 33 (1985),
no. 10, 1132–1133.

[BKK96] S. Berchtold, D. A. Keim, and H.-P. Kriegel, The X-tree: An index structure for
high-dimensional data, Proc. 22nd VLDB Conference, 1996, pp. 28–39.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, The R∗-tree: An efficient
and robust access method for points and rectangles, Proc. ACM SIGMOD Conf. on
Management of Data, 1990, pp. 322–331.

[CH67] T. M. Cover and P. E. Hart, Nearest neighbor pattern classification, IEEE Trans.
Inform. Theory 13 (1967), 57–67.

[Cha97] T. Chan, Approximate nearest neighbor queries revisited, Proc. 13th Annu. ACM
Sympos. Comput. Geom., 1997, pp. 352–358.

[Cla94] K. L. Clarkson, An algorithm for approximate closest-point queries, Proc. 10th Annu.
ACM Sympos. Comput. Geom., 1994, pp. 160–164.

[Cla97] K. L. Clarkson, Nearest neighbor queries in metric spaces, Proc. 29th Annu. ACM
Sympos. Theory Comput., 1997, pp. 609–617.

[CS93] S. Cost and S. Salzberg, A weighted nearest neighbor algorithm for learning with
symbolic features, Machine Learning 10 (1993), 57–78.

[DDF+90] S. Deerwester, S. T. Dumals, G. W. Furnas, T. K. Landauer, and R. Harshman,
Indexing by latend semantic analysis, J. Amer. Soc. Inform. Sci. 41 (1990), no. 6,
391–407.

ANALYSIS OF APPROXIMATE NEAREST NEIGHBOR SEARCHING 19

[DH73] R. O. Duda and P. E. Hart, Pattern classification and scene analysis, John Wiley &
Sons, NY, 1973.

[DW82] L. Devroye and T. J. Wagner, Nearest neighbor methods in discrimination, Handbook
of Statistics (P. R. Krishnaiah and L. N. Kanal, eds.), vol. 2, North-Holland, 1982.

[FBF77] J. H. Friedman, J. L. Bentley, and R. A. Finkel, An algorithm for finding best matches
in logarithmic expected time, ACM Trans. Math. Software 3 (1977), no. 3, 209–226.

[For65] E. Forgey, Cluster analysis of multivariate data: Efficiency vs. interpretability of
classification, Biometrics 21 (1965), 768.

[FPSSU96] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Advances in
knowledge discovery and data mining, AAAI Press/Mit Press, 1996.

[FSN+95] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, Query by image and video
content: The QBIC system, IEEE Computer 28 (1995), 23–32.

[GG92] A. Gersho and R. M. Gray, Vector quantization and signal compression, Kluwer Aca-
demic, Boston, 1992.

[IM98] P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the
curse of dimensionality, Proc. 30th Annu. ACM Sympos. Theory Comput., 1998.

[JD88] A. K. Jain and R. C. Dubes, Algorithms for clustering data, Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

[Kle97] J. M. Kleinberg, Two algorithms for nearest-neighbor search in high dimension, Proc.
29th Annu. ACM Sympos. Theory Comput., 1997, pp. 599–608.

[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, Efficient search for approximate near-
est neighbor in high dimemsional spaces, Proc. 30th Annu. ACM Sympos. Theory
Comput., 1998.

[KS97] N. Katayama and S. Satoh, The SR-tree: An index structure for high-dimensional
nearest neighbor queries, Proc. ACM SIGMOD Conf. on Management of Data, 1997,
pp. 369–380.

[LJF94] K. I. Lin, H. V. Jagdish, and C. Faloutsos, The TV-tree: An index structure for
high-dimensional data, VLDB Journal 3 (1994), no. 4, 517–542.

[MA97] D. M. Mount and S. Arya, Ann: A library for approximate nearest neighbor
searching, CGC 2nd Annual Fall Workship on Computational Geometry, URL:
http://www.cs.umd.edu/~mount/ANN., 1997.

[Mac67] J. MacQueen, Some methods for classification and analysis of multivariate observa-
tions, Proc. of the Fifth Berkeley Symposium on Math. Stat. and Prob., vol. 1, 1967,
pp. 281–296.

[Mit93] J. S. B. Mitchell, 1993, Private communication.
[MM99] S. Maneewongvatana and D. Mount, It’s okay to be skinny, if your friends are fat,

Center for Geometric Computing 4th Annual Workshop on Computational Geometry,
1999.

[Spr91] R. F. Sproull, Refinements to nearest-neighbor searching in k-dimensional trees, Al-
gorithmica 6 (1991), no. 4, 579–589.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+-tree: A dynamic index for
multi-dimensional objects, Proc. 13th VLDB Conference, 1987, pp. 507–517.

[WJ96] D. A. White and R. Jain, Algorithms and strategies for similarity retrieval, Technical
Report VCL-96-101, Visual Computing Lab., Univ. California, San Diego, CA, 1996.

[Yia93] P. N. Yianilos, Data structures and algorithms for nearest neighbor search in general
metric spaces, Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, 1993, pp. 311–321.

Department of Computer Science, University of Maryland, College Park, Mary-
land 20742

E-mail address: songrit@cs.umd.edu

Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, Maryland 20742

E-mail address: mount@cs.umd.edu

